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} Motivation ‘

General Relativity in
Ashtekar variables

AL(X), B (%)

IILQG”
guantization

Symmetry reduction:

Homogeneity, isotropy,

LQG inohomogeneities

Which cosmology we get from the
full theory?
Beyond homogeneity ?

..u



LTheIdea

Look at the inhomogeneous line element
in the BKL conjecture Belinski-Khalatnikov-Lifshitz ‘70 :

ds® = N*(t)dt* e2a(t, Ej(egﬁ{t’m}]ij w' ® w?

ﬁ/ ® one forms corresponding
find a quantum symmetry reduction of LQG compatible with this

GOAL:
line element

If we remove the spatial dependence from o and 3, we can recover generic Bianchi models



Reduced Ashtekar variables
in the hypotesis of the BKL conjecture

Af:. = ¢(t, :r:)w; Ee = p"(t, T )ww]

The Poisson Brackets {Af:.('ra t), E,E (y,t)} o 5;5353(3:?1;) induce

N/

{p'(z,1),ci(y, 1)} = 87GH836° (z — y)

We don’t impose homogenity:

G = W ﬂpi

1

{Gi,G;} =0
() _j : P a
redhEi _ P(EI JrEi_ i dr )
The loop quantization of the reduced theory,

based on the reduced holonomy along the €,
paths lead to the product of three €q

independent U(1), \-




Cosmological LQG

GOAL:

Implement on the SU(2) Kinematical Hilbert space of LQG the classical reduction:

Ai

L

= ¢i(t, z)w? Ef = p'(t, r)wwy

{p'(z,1),ci(y, 1)} = 87GH836° (z — y)

First truncation: we restrict the holonomies to curves along
edges €; parallel to fiducial wf vectors

The SU(2) classical holonomies associated to the reduced variables are

Rhgi _ P(Eifei cim;d:ﬂﬂ{ﬂ@) _ _

Holonomy belong to Ry ,
J — v T
h, = exp (m 'TE)




Consider fluxes across surfaces x3(u,v) with normal vectors
parallel to the fiducial ones

¥,

The classical reduction implies

1 1
E;(S*) = /Eiﬂ—wﬁdudv /Pz—dudu
w w

For consistency only the diagonal part of the matrix E;-(S-T) is non vanishing

N

Second class with the Yi = Z € "Er(S') =0
i 1.k




How to implement the reduction on the holonomies and consistently impose ;=0 ?

Strategy: Mimic the spinfoam procedure

Impose the second class constraint weakly to find a “Physical Hilbert space”

Engle, Pereira, Rovelli,Livine ‘07- ‘08

Imposing a Master constraint strongly on the SU(2) holonomies:

XE = ZX:?X-a: =
i

Y [0 Ei(S*)Em(S") — Ei(S*)Ex(S")]

i,m. k.l

X*hl, = (8mylp)*(r° — mimi)hl, =

~—  Different i for each

To solve it is convenient to introduce SU(2) coherent states



SU(2) coherent states

5,8 >= DY (@)|j,j >= ) _ |i;m > D (@)m;
e

The Master constraint condition acting at the endpoint
(the conjugate condition at the starting point):

X*D?(g)|7,@ >= D(g)(r* — (& - 7)*)|j, @ >= D?(g)(5(j + 1) — (& - 7)?)

J, U >

Using the property o - 7|j, 7 >= j

7,V >

If &; =i inthe Iarge_i limit up to LID corrections the basis element will satisfy:

X*D?(g)|7, @ >=0
Reduced basis Elements

(J, 1D (9)|7, &)




There is a natural way of embedding U(1) cylindrical functions in SU(2) ones:

Projected spinnetworks (Alexandrov, Livine '02)
with the Dupuis-Livine map (bupuis Livine '10)

f:U(Q1) = SU(2)

- SU(2
J(g) = f dh K(g,h)(h), g€ SU(2)
(1)

K(g,h)=)_ /U " dk 7™ (gk)x™(kh) ——— HU 1

These SU(2) functions have the remarkable property that they are completely determined
by their restriction to their U(1) subgroup

U(9)|lua) =0



If we consider projected functions defined over the edge €; choosing the subgroup

U(1); as the one generated by T;

&M%Dﬁiﬁi r=n; (g),?[:,g:\
N Uili iuantum

W< 3,60 (9)i, & >|

The Master constraint equation selects the degree of the map:

ni| = j(n)

The strong quadratic condition implies the linear one weakly
(restriction to symmetric matrix) !

¥

< Y| ER(S s >=8myiB Y vl f dg'D?, (9)m' DL ()0, =0, (ki #1
J,J’




The quantum states associated with an edge €, are entirely determined by their
projection into the subspace with maximum magnetic numbers along the
internal direction |

Ye; = V(9)e, vy, = Z Eigljwi = Z i < j¢j|Rhféi

J J

4. j > bl

Ei(Si)"aEEi — STTFP Zngjwi
J

This is how we find in the SU(2) quantum theory the classical reduction

Al = ¢i(t,z)t | Ef =p'(t, z)wwf {p'(z,1),¢i(y, 1)} = BWG’fﬁ;‘SE (z —y)




Anangx with Sginfoam guantization:

SL(2,C) basis elements SU(2) basis elements
{glp! kﬂjvmjj;?m} Djp;nj ot {g) => {g|jvm T} :Dgﬁr{g)
0(9) =D d; Vjmn D)1 (g) wemmd (g)e, =D DI (9)0

jmn mn;
Linear simplicity constraint
K4+~L =0 — *hl =0 Vk#i
Quadratic part of the constraint imposed strongly:
2 o 2 _ B —
(2’;‘01 — I{";r‘ — I)Cg)w)} =0 — {T T:Tt) e; — 0
Select j(n)=n
p =k
o o Only one condition (SU(2)
Weakly satisfied in the large limit @ has only one parameter label for the irrep.)
{MK -+ "}“th’) =0 Weakly satisfied in the large limit
- o~
Select k=3 < ¥i|Ex(S) | > =0

- i 7]
glx = D27, (g) = f dh K(g,h) D?._(h) glx = 'D;’ (g)
SU(2)



If we define a Projector P, on Physical reduced states:

The projector P, acting on yr. SU(2) cylindrical functions defined on general Graphs I :

e Restrict the Graphs to be part of a cubical lattice

* Select the states belonging to the SU(2) subspace where our constraint conditions
hold weakly:

U(@)e, =Y DY) . (9)0h

Ty



}What is the fate of the GR constraints ? ‘
Gi(A,E) ﬁ P;éiPx

The Gauss constraint of the full theory is implemented by group averaging

Pg = / dg Ug(g) Ug(g)Dln(he) = D2, (gs(e) Pebi(e))

i \ Operator that generates
Spinnetwork states:

< hlr-: {je}: {-T'u} == H H Ty - D?- (h'E)mﬂ ?

vel’ eel’ /

/ / ) S
e S




Implementing PIG;P,

The reduced states will be of the form :

< h|F:jE:IU}H — H H {ji::{uiaﬁf > iﬂjei (h'ﬂi )jij-ﬁ
vel' el

Projection on the intertwiner base of the Livine Speziale Intertwiner: Livine, Speziale ‘07

3s, Wi >= |gu, -+, Jiy a0 3"":/ dg | [ |7, @i >
(!

SU(2) intertwiner

projected on coherent states:
Reduced intertwiner \

SU(2) holonomy

Projected on coherent states -
Reduced holonomy







—

V. (A, E) ey PiV,P,

Ashtekar, Lewandowski,

Full Theory: |S-knot state Marolf Mourao, Thiemann

On the reduced space: |Reduced s-knot states

Equivalence class of graphs that preserve the cellular structure:




H(A,E) — PIAP,

The regularized Euclidean constraint in the full theory reads:

T. Thiemann '96-'98

N(n)

H@[N]: NZ

ciik ﬁ[h(?]h(m}{h[m] 1 }]

We regularize a la Thiemann, but using only elements of the reduced space:

N(n)
N2

m

Rypm L ijk . [Rp,(m) R Ry (m)—1
H™ [N] = IR Tx [RRGD RR( {RRGD 1, VY



Action of the operator

. 7
on a tri-valent node: Antonia’s talk

RHmﬁ] [N] ﬂ}’@

Ji .

¢

Computed with recoupling theory
adapted to the reduced case

s

Jj—m -
AiUi, 1 M) }»4—‘}><?—> + Aki(ji’jj’jk’m)f }_’*JJ‘}’

J4+m ‘0, ‘Q"

R T

+ Permutations

i_m

¢ ¢
yJ



Ai(i JjJkm) | =

\/jtjjjk + 1 [{ _'_]:-|-']‘Tl J;r J.iu: }{J:"‘m _;fj—m. Tk } {_‘_]_?-I—m Fi Jk+m} _f.l‘,—l—m. ji—m j_k

m Jet+Mm Jj m Jj Jetm  m

Remarkably this expression for m=1 and large values simplify to

Diagonal Aij(ji jjjkl) — Ji‘l'i-':.r (14“3:'35317})
volume B Tk Tk

JHm hem g h

Jit+ i (14 costyy) }»0]?,+ ji + g (L4 costu) }»f(}»”?" e 0& ‘

!
NP i N | N 'Qé
2

}‘Odm i-m ‘

]



RH?’% [N ] J";’m —

Ji+7i (1+cosbij) ;.0"’+ Ji t+ g (1+ s Oik g ;’J
L

Ik Jk ﬂ+m ’
& o>

m

Large  limit “seems”:

C cCi1c CoC
1Cz+ 13+ 2C3
pP3a P2 P1

=0




} News ‘
Semiclassical imi

W AIES /Hdgn Hch;{hE: gsy Hi 957
/ i [

Hall, Thiemann, Winkler, Sahlmann, Bahr

ar By )
8wG hy

H; = h expli

SL(2,C) element coding classical data

U, (h’f) — Z Y, {jh‘iﬂ)mﬂ,in (h’ﬁ) intertwiner base

jl :-'i"ﬂ-



Large distance asymptotic behaviour Bianchi Magliaro Perini

G —if)?

Ui ()~ ) |] et et (H D, )Wjy i ()

it

E| E~K =c

Jo = 8w G hry



Project in our reduced space the coherent states

W @lr = “Tn

Py|¥y,) = |¥u)r

Single cell:

Expectation value of the
Hamiltonian on coherent
states for a single cell:

p'p? p’p’ pip!
7 C1C2 + 4| —7 C2C3 + 5 C3C1
p p p

Classical
Bianchi |
Hamiltonian



Perspectives

This analysis opens the way to

Study the Physical solutions on the Dual Diff invariant Space and
eventually construct a Physical Scalar Product

Add matter as a clock: Big Bounce ? QFT on quantum spacetime ?
Link to LQC ?
Spinfoam Cosmology? Bianchi, Krajewski, Rovelli, Vidotto

Something Different ?

(In the homogeneous anisotropic case the scale factors are not independent
(Clebsh conditions) and even less dynamically) Isotropization mechanism?

Arena for the canonical theory:
AQG, Master constraint, deparametrized theories.. Computable!




