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General Relativity in 
Ashtekar variables Symmetry reduction: 

homogeneity and isotropy 

Cosmological 
models 

Ai

a(x), Ei

a(x) c, p

“LQG inspired” 
quantization 

LQC 

Motivation 

Ashtekar, Agullo, Barrau, Bojowald, 
Campiglia, Corichi, Giesel, Hofmann, Grain,  
Henderson, Kaminski, Lewandowski, Mena Marugan, 
Nelson, Pawlowski, Pullin, Singh, Sloan, Taveras, 
Thiemann,, Winkler, Wilson-Ewing 

Only 
homogeneous 
Cosmologies 



General Relativity in 
Ashtekar variables 

Ai

a(x), Ei

a(x)

Motivation 

“LQG”  
quantization 

LQG 

Symmetry reduction: 
Homogeneity, isotropy, 

inohomogeneities 

Which cosmology we get from the 
full theory? 

 Beyond homogeneity ? 



Look at the inhomogeneous line element  
in the BKL conjecture Belinski-Khalatnikov-Lifshitz ‘70 :  

a Describes the Volume  

b (diagonal matrix, Tr b =0 ) 
Describes local anisotropies   

w one forms corresponding 

to an homogeneous  
Bianchi model   

If we remove the spatial dependence from a and b, we can recover generic Bianchi models  

GOAL: 
 find a quantum symmetry reduction of LQG compatible with this 

line element 

The Idea 



Reduced Ashtekar variables  
in the hypotesis of the BKL conjecture 

The Poisson Brackets           induce   

We don’t impose homogenity: 
The SU(2) Gauss and the Vector constraint don’t vanish identically 

Residual Gauss constraint 

The loop quantization of the reduced theory, 
based on the reduced holonomy along the ei 
paths lead to the product of three 
independent U(1)i 

U(1)i 



Cosmological LQG 

GOAL: 

Implement on the SU(2) Kinematical Hilbert space of LQG the classical reduction: 

First truncation: we restrict the holonomies to curves along  
edges        parallel to fiducial   vectors 

The SU(2) classical holonomies associated to the reduced variables are   

NO sum over i 

Holonomy belong to 
the U(1) subgroup 

generated by ti 



Consider fluxes across surfaces xa(u,v) with normal vectors  
parallel to the fiducial ones 

The classical reduction implies 

For consistency only the diagonal part of the matrix            is non vanishing 

Second class with the 
Gauss constraint    



How to implement the reduction on the holonomies and consistently impose ci=0 ?   

Strategy: Mimic the spinfoam procedure 

Impose the second class constraint weakly to find a “Physical Hilbert space” 

Imposing a Master constraint strongly on the SU(2) holonomies: 

Different i for each 
direction 

To solve it is convenient to introduce SU(2) coherent states 

Engle, Pereira, Rovelli,Livine ‘07- ‘08 

=0 



The Master constraint condition acting at the endpoint  
(the conjugate condition at the starting point): 

Using the property 

Reduced basis Elements  

SU(2) coherent states 

If             in the large j limit up  to Lp corrections the basis element will satisfy:  



There is a natural way of embedding U(1) cylindrical functions in SU(2) ones: 

Projected spinnetworks (Alexandrov, Livine ’02) 

with the Dupuis-Livine map (Dupuis Livine ’10) 

These SU(2) functions have the remarkable property that they are completely determined  
by their restriction to their U(1) subgroup 

U(1) 
trace 

SU(2) 
trace 



If we consider projected functions defined over the edge ei choosing the subgroup  

U(1)i as the one generated by ti  

The Master constraint equation selects the degree of the map: 

U(1) quantum 
number 

The strong quadratic condition implies the linear one weakly  
(restriction to symmetric matrix) ! 



The quantum states associated with an edge ei are entirely determined by their 
projection into the subspace with maximum magnetic numbers along the 

internal direction i 

This is how we find in the SU(2) quantum theory the classical reduction  

The action of fluxes El(S
k) on the reduced space is nonvanishing only for l = k = i 



SL(2,C) basis elements 

Linear simplicity constraint 

Quadratic part of the constraint imposed strongly: 

Weakly satisfied in the large limit 

Select  

Select  

Select j(n)=n  

Weakly satisfied in the large limit 

SU(2) basis elements 

Only one condition (SU(2)  
has only one parameter label for the irrep.) 

Analogy with Spinfoam Quantization: 



If we define a Projector Pc on Physical reduced states: 

The projector Pc acting on yG SU(2) cylindrical functions defined on general Graphs G : 

 

• Restrict the Graphs to be part of a cubical lattice 
 
 
 
 
 
 
 
 
 
 
 

• Select the states belonging to the SU(2) subspace where our constraint conditions 
hold weakly: 
 
 



The Gauss constraint of the full theory is implemented by group averaging  

Operator that generates 
local SU(2) gauge 
transformations 

Gauss Constraint 

Spinnetwork states: 

What is the fate of the GR constraints ? 

SU(2) 
holonomy 

SU(2) 
intertwiner 



Projection on the intertwiner base of the Livine Speziale Intertwiner: 

The reduced states will be of the form : 

Implementing 

Livine, Speziale ‘07 

SU(2) intertwiner 
projected on coherent states: 

Reduced intertwiner 

SU(2) holonomy 
Projected on coherent states 

Reduced holonomy 



Different 
Reduced SU(2)  
intertwiners: 

inhomogeneities 

Different 
Spin labels: 

Anisotropies 

The Inhomogenous sector 

Homogeneous and anisotropic sector 
Homogeneous and Isotropic sector 



On the reduced space:  

Diff Constraint 

s-knot state Ashtekar, Lewandowski,  
Marolf, Mourao, Thiemann 

Full Theory:  

Reduced s-knot states 

Equivalence class of graphs that preserve the cellular structure: 



Hamiltonian Constraint 

The regularized Euclidean constraint in the full theory  reads: 

We regularize à la Thiemann, but using only elements of the reduced space:  

T. Thiemann ’96-’98 



ji 
jj 

jk 

Ji+m 

Jj-m 
jk 

= 

Aij(ji, jj,jk,m) + 

Ji-m 

Jj 
Aki(ji, jj,jk,m) 

+ Permutations 

Action of the operator  
on a tri-valent node: 

m 

m 

Computed with recoupling theory 
adapted to the reduced case  

Antonia’s talk 



Aij(ji, jj,jk,m) = 

Remarkably this expression for m=1 and large values simplify to 

ji jj 
= 

Ji+m 

Jj-m 
jk 

m 
Ji-m 

Jj 

m 

Ji+m 

Jk-m 

m 
Ji 

+ + 

jk Aij(ji, jj,jk,1) = 

Jk 

Diagonal 
volume 



ji jj 
= 

Ji+m 

Jj-m 
jk 

m 
Ji-m 

Jj 

m 

Ji+m 

Jk-m 

m 

Ji 

+ + 

Jk 

Large j limit “seems”: 



Semiclassical limit 

News 

Heat Kernel 
coherent states 

SL(2,C) element coding classical data 

Hall, Thiemann, Winkler, Sahlmann, Bahr  

 intertwiner base 



Large distance asymptotic behaviour Bianchi Magliaro Perini     

Codes the extrinsic 
curvature 

Codes the intrinsic 
geometry 

Livine-Speziale 
Intertwiners 



Project in our reduced space the coherent states 

+ + = 

Classical 
Bianchi I 

Hamiltonian 

Single cell: 

Expectation value of the 
Hamiltonian on coherent 

states for a single cell: 
= 



This analysis opens the way to  
 
• Study the Physical solutions on the Dual Diff invariant Space and 

eventually construct a Physical Scalar Product 
 
• Add matter as a clock: Big Bounce ? QFT on quantum spacetime ? 

 
• Link to LQC ?  

 
• Spinfoam Cosmology? Bianchi, Krajewski, Rovelli, Vidotto 

 
• Something Different ?  
(In the homogeneous anisotropic case the scale factors are not independent 
(Clebsh conditions) and even less dynamically) Isotropization mechanism? 
 
• Arena for the canonical theory:  
 AQG, Master constraint, deparametrized theories.. Computable! 
 

Perspectives 


