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@ Gravity coupled to a scalar field
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Overview

The theory of 3+1 gravity (Lorentzian) minimally coupled to a free massless scalar field" ¢(z)
is described by the action

S:/dt/ 3z [2A2E?+m¢57 (A7 Gj+N“Ca+NC)]
R J5
where
Gj = Do E¢
Ca = Fy B} +7 ¢,
N——
cg"

e’ Fk popt 1 1
C=- {’”"’J + (1 + —) det( B )R+ (WQ + E,“Equw,,,)

det(EZ) 32 V/@et(EY)

cer




Overview

Assuming that

The Hamiltonian constraint is solved for 7 (z) using the diff. constraint

r= i\/ —\Jdet(Bg)Cye +1fdet(B2) /O3 — B EPCECE

(£, £) select different regions of the phase space.
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C':=m—h

where

h = \/—, /det(E¢)Cyqr + \/det(Eg)\/Cgr — EpENCECY

¢ no longer occurs in the function h <> the scalar constraints deparametrized
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Overview

The scalar constraints strongly commute
{C'(2),C'(y)} =0
As a consequence

{r(@),h(y)} =0

For a Dirac observableZ O
{0,Gi} ={0,Cu} = {0,C} =0
N—_——

99 ={0,m}={0,h}
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Quantum theory

@ The physical Hilbert space # is the space of the quantum states of the matter free gravity
which satisfy the quantum vector constraint and the quantum Gauss constraint.

@ The dynamics is defined by a Schrodinger like equation

dy = —Eﬁxp
dt i

where ¢ is a parameter of the transformations

= p+t.

@ The quantum Hamiltonian

H = /d3x\/72\/q(x)Cgr(m)

is a quantum operator corresponding to the classical observable

H = /d3x —24/q(2)C¥ ().

@ Given a quantum observable, the evolution is generated by

%ot —-i[A.0/]

9/30



Kinematic Hilbert space

The kinematic Hilbert space of vacuum gravity .74, is the space of cylindrical functions.

The gauge invariant subspace

oG _ G
‘){kin _jkin

It is the space of solutions of the Gauss constraint obtained by group averaging with respect to
the YM gauge transformations.

10/30
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The vertex Hilbert space %

To construct the Hilbert space of gauge and Diffeomorphism invariant states, an averaging
procedure is performed w.r. to the group

. . el
Diff/TDiffr —  J#ppy C Cyl*

However, another idea is to introduce a Hilbert space that contains solutions of a partial vector

constraint?, by averaging each of the sub-spaces jG with respect to the diffeomorphisms

Diff(¥)vix which act trivially in the set of the vertices of I'. This new Hilbert space admits the
operator C, and in general the operator C(N (IN), and it is preserved by those operators.

This averaging is achieved through the “rigging” maps 7

€3um — S (U] =)

n
T ] eDiff/TDiffp

Combined we get the map 7yix

Mvtx + ‘@kcl'; — (@ka)
Then the space of the Gauss and partially diff. invariant states is defined as

Hx = Tvtx (ﬁkm) (gkm) C Cyl*
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Implementation of the Hamiltonian operator

‘We want to implement a quantum operator corresponding to the classical quantity

/d% \/72, /det(E2)Cgr(z)
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Implementation of the Hamiltonian operator

We want to implement a quantum operator corresponding to the classical quantity

/d3 \/ 2/det(E)Cyr () = lim Z \/ 2, /det(E#)ACSE ) (h, B)

A - cell of the cellular decomposition €.

Explicitly
o) = —2,fdet(B2) ACK ) (h, B)
=26 Tr [WQ/(;’ n"). )(A) “)k} N Ei(S; C A)E;(S) € A)

+2 (1 + %) V(A)/ \/det(ES)R d3z
=B (1+@)cg
Ch)

€’ - regulator that is the coordinates size of the loop o} 7

14/30



The Euclidean operator

Euclidean part:

n TW} eV Ei(S)E; (SY)

EUéTT |:W(1)2 h(l) T(l)lc:| abEi(Sé)Ej(S[)]) — s“}CTT‘ |:W(1)2
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The Euclidean operator

Euclidean part:

S

l
. ka} 0 Bi(S5)E; (S))

E“}CTT |:W(1)2 h(l) T(l)k:| abEi(Sé)Ej(Sé’) . Si]}CTT‘ |:

h :
(e:
*rg
Consider a pair of edges {e1,e2}
incident at node v with a loop « as-
sociated to it and a set of local coor-
dinates (%) such that

2%(e1(t1)) = (t1,0,0)
2 (e2(t2)) = (0,t2,0)
a(ei(t:) = fi*(t:); -
z(a(t)) = a®(t)

The loop « is lying in the surface
spanned by e and ea.

(') : p: ' — z°

o (t) — alt)

15/30



The Euclidean operator

The loop is tangent to the two edges e
and €’ at the node up to the k& + 1 and
k" 4+ 1 orders respectively, where k
and k' are respectively the tangentiality
orders of e and e’ with respect to the
rest of edges at the node.

This prescription makes a loop assigned
to a given pair of edges perfectly distin-
guishable from any other loop at the same
node. It also allows to distinguish a loop,
the outer loop, from the inner loop as-
sociated to it when those loops carry the
same representation label.

A class of Diff. equivalent surfaces* —» Diff. invariant prescription

16/30



The Euclidean operator

The resulting operator:

lim 225” Tr [ )2 <l) )(A)T(l)k:| N E;i(SI C A)E; (Sl}] cA)

e/ —0
6 s . .
= Z W2 e(ér,ég)e, Tr [h&f}, ® k] JiverJjves
{vier,es}er
- Y R,
{v,er,ey}er
P

- Coefficient resulting from the averaging over relevant background structure.

F(f‘i[,é‘]) -O, 1.

EE o Mvix <@ka) — Mvx (@ﬁ-l) C %x



The Euclidean operator

The action of the Euclidean operator on a node of a spin network



The Euclidean operator

The action of the Euclidean operator on a node of a spin network

— — ke k.o
CE'U,e,e’ <v;]ﬁvje’7-~';ke’7"~‘ :CE'U,E,E’ e el

W

= 3v6(=)TeTer Ther 1 73‘1}/ e 1 (v) € (é,¢") x
f

Je Jet .
Jer
Je! Jer 1 1 1 1 1 x k. l ker
X d . . . ! B ek T e A R T
; Te {]e Te kc/} {]e Te Je ¥ ¥ ks



The curvature operator

Lorentzian part

—

ck =v(a) (/A \Jdet(E)R d%) = V(A)(/A \/det(ER d%)

V(A) - Volume operator®

\/ det/ﬁ R d3z) - Curvature operator®
(fA ( 1) P

19/30



The curvature operator

Regularization of the curvature term:

(f oane.) - 35 (5 -)
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The curvature operator

Regularization of the curvature term:
3 A2 oA
Vdet(BHRdPz ) = Y Lt (— — 07
A heA Gh

Length operator

A i A ijk
TS Z% AZ4 YA&,B TS > A24 TIZJA Ej(sia)Ek(SzAﬁ)
a,

- - . a,B
La =/6,GL G 5 Gy = -
e asV(8) 3V ()
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The curvature operator

Regularization of the curvature term:

(f oane.) - 35 (5 -)

Length operator

< Z% actYAas 3 ZB aorlon Bi(Sho)Er(SX5)
a, a,

La =1/6;;GAGY ; Gy = =
e asV(2) asV(8)

Angle operator

§"FEi(Sho) Er(S3 )

Gliaﬁ = 7 — arccos
\/6’ijEi(SlAa)Ej(SlAa)\/6’klEk(S2Aﬁ)El(S2Aﬂ)
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The curvature operator

Regularization of the curvature term:

(f oane.) - 35 (5 -)

Length operator

i k
Y Vi 5 z T B (S50) Bk (5% 5)

- . . a,B T
La =\/65GL G 5 G\ = ’ =
HEATA V() a3V (A)

Angle operator

§"FEi(Sho) Er(S3 )

Gliaﬁ = T — arccos
\/6’ijEi(SlAa)Ej(SlAa)\/6’klEk(S2Aﬁ)El(S2Aﬂ)

Regularized expression:

> $ij YA oy 8y (B) Aa252<E)

\/u ,B1,a9,8
Ja VAUEDR &z = L2 (ah - Z N QJ[KS(E)>

20/30



The curvature operator

The final quantum operator corresponding to the Lorentzian part:
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The curvature operator

The final quantum operator corresponding to the Lorentzian part:

62’ D Mvix (@ﬁ-l> — Thtx (@ka> C Hnx

62’ = Z R2T(U) <ﬁu - 15\7],:0) \/5”(62'161 v,e 1, e/ )(ejk’l’ v e‘]f,/el) < AU - é’u,ae’)

«

v,€,€ v,e, e’/
L . Ko (v ~ ~
CLv,e,e’ <U§Je7.7e’s ey ke’: ceel = # (]I'u - PVU:()) \/6”(61li1, CJU C/)(Ejk/l"]v ﬁJ’f)/E/) X
2 . o
X H“_ev,e.e’ (’L);je,je/,...;ke/,...‘
Ay oe,e!
2
= 20 oGeder ko) [ =2 = BGendur k) ) X
2 v,e,e!

X (]L, — va=U) <1);jg7j€/,. B .;kel, .. |



The curvature operator

The final quantum operator corresponding to the Lorentzian part:

62’ D Mvix (@ﬁ-l) — Thtx (@ka> C Hnx

Y O N e ]

[e%
vee v,e,e’

L . Ko (v ~ ~
CLv,e,e’ <U§Je7.7e’s ey ke’: ceel = # (]I'u - PVU:()) \/6”(61li1, CJU e/)(éjk/l/']v ﬁJ’f)/E/) X
o .
X H“_ev,e.e’ (U;je,]e/,...;ke/,...‘
Ay oe,e!
K2 (v) . 27 o
- T\/cue,aeukeo( fem,]e/,ke/)) x
v,e,e!
X (]L, - va=U) <’I);jg7j€/, eee ke/, .. |

where

o o o kor (kg +1) — je(Je +1) = Gor(Gor + 1)\ 2
c(Jc,Je/,kE/)::Jc(Jc+1)Je/(JE/+1),( ot (ks + 1) e(r; ) = Jer Uer ))
kor(ker +1) —je(Ge +1) —dor (Gor + 1)

2 ;

ker(kgr +1) —je(je +1) = jor (s +1)

2v/de(e + Dier (Ger + 1)

0(JesJerskgr) i= m — arccos |:



Symmetric Hamiltonian operator

At this level we defined two operators CE and C'L on the space 7y (%ﬁ;ﬂ) C Hux.
To construct a symmetric Hamiltonian operator, we choose to use the adjoint operator Ct

Ct: g [C’T] C M — Hx

such that . _
CTw) == (¥ C[P),

vV, 77/)/ € Mvix (@ka) : <\II/

Notice that 7yix (@Cfn) c9 [C‘JT]



Symmetric Hamiltonian operator

At this level we defined two operators CE and C'L on the space 7y (915;“) C Hux.
To construct a symmetric Hamiltonian operator, we choose to use the adjoint operator Ct

Ct: g [C’T] C M — Hx

such that . _
CTw) == (¥ C[P),

Vo, v em (25): (W

Notice that 7yix (@Cfn) c9 [C‘JT]

Now we can introduce different expression to built a symmetric operator
CS™ .= sym(CE, CET, 0L, OLT)
Typical examples:

oA o
° J(C+CH) Self-adjoint extensions?

[
o) @

admit self-adjoint extensions

o L(VEEEFTLVEEETT)



Symmetric Hamiltonian operator

We can finally define the physical Hamiltonian for this deparametrized model

H:=VC%m = Z \/ésym

vel



Symmetric Hamiltonian operator

We can finally define the physical Hamiltonian for this deparametrized model

H:=VCsm = Z \/ésym

vel

] i i 9G
H has a domain that contains 7y (jkm

) & has the following properties:

@ Gauge invariant & diffeomorphism invariant;
o Cylindrically consistent;

@ Locality problem can be solved & Self-adjoint extensions exist (both depending on the
choice of symmetrization);

o Identification of orthogonal stable subspaces;
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Vacuum theory

Hamiltonian constraint operator

ok e
¢ Pl BB (

C¥(z) = |: (BT

1+ %) det(Ef)R} —0.

o Construct )flﬁ = ?I(Gin;
o Construct .7%x by averaging w.r.t. Diff(X)yix;
@ Implement the Hamiltonian constraint:
C(N) = /d3:c N(z) C¥(z) =0, VN
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COM(N) 1= Sym(CE(N), CFT(N), CL(N), CLH (N)
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25/30



Vacuum theory

Hamiltonian constraint operator

ok e
¢ Pl BB (

C¥(z) = |: (BT

1+ %) det(Ef)R} —0.

o Construct )flﬁ = ?I(Gin;
o Construct .7%x by averaging w.r.t. Diff(X)yix;
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Vacuum theory

Hamiltonian constraint operator

ok e
¢ Pl BB (

C¥(z) = |: (BT

1+ %) det(Ef)R} —0.

G _ G .
e Construct 5" = D5 ;

o Construct .7%x by averaging w.r.t. Diff(X)yix;

@ Implement the Hamiltonian constraint:
C(N) = /d3:c N(z) C¥(z) =0, VN
by adopting the regularization shown above, define the operator:
COM(N) 1= Sym(CE(N), CFT(N), CL(N), CLH (N)
on Hix;
@ Solve C’Sym(N) = 0in S,
@ Average w.r.t. to the remaining diffeomorphisms to obtain the physical space.

25/30
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Vacuum theory

“Master constraint” operator

220G _ G .
@ Construct 45" = 9,5 ;

@ Construct .#h;s by averaging w.r.t. Diff(X);

o Implement the following “Master constraint”:

C& ()2
C = [dPr =L =0
/ q(x)

following the same regularization procedure as for C (), then define the operator:
csm = Sym(éE7 CET,C/’\L,C/L\T)
on Hpifs;

@ Solve CSm =0 in Jhigs to obtain the physical space.
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Examples of elements in the kernel of cct:

Uy = agO + B2 11+ V2Bk

(Blue loops are tangent loops.)

where a1, as, 81, B2 € C, and crL o

Uy, Wo € Hphys
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@ Computing commutators of C'(N)’s & C'T(M)’s (algebra anomalies?);
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e Computing commutators of C'(N)’s & CT(M)’s (algebra anomalies?);
@ Construct (just enough!) Kernel elements & test coherent states approach;
o Investigate self-adjointness for other symmetrizations of CSym (N);

@ Calculate states (approximate/truncated) evolution in presence of a scalar field.



Thank you!
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