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Proposals for a symmetry reduced quantum theory in LQG

Mini / midi-superspace quantisation
I LQC [Bojowald ’99-; Ashtekar, Bojowald, Lewandowski ’03; ...]

I Schwarzschild black hole [Kastrup, Thiemann ’93; Kuchǎr ’94, Gambini, Pullin ’13]

I Spherical symmetry [Bojowald, Kastrup ’99, ..., Bojowald, Swiderski ’04, ...]

I More on spherical symmetry [Alvarez, Capurro, Gambini, Pullin, Olmedo, Rastgoo . . . ]

Approximately symmetric spin networks
I Weave states [Ashtekar, Rovelli, Smolin ’92; Bombelli ’00]

I Spinfoam cosmology [Bianchi, Rovelli, Vidotto ’10-; Kisielowski, Lewandowski, Puchta ’12]

I Canonical Bianchi I, reduced states [Alesci, Cianfrani ’12-; Paw lowski ’14]

Study of symmetric connections
I Quantisation ↔ reduction [Bojowald ’04; Engle ’05; Hanusch ’13]

I Embedding of states [Engle ’07; Brunnemann, Fleischhack ’07; Fleischhack ’10]

Condensate states
I GFT [Gielen, Oriti, Sindoni ’13-; Calcagni ’14, ...]

Group averaging w.r.t. symmetry generator at quantum level
I Spherical symmetry [NB, Lewandowski, Świeżewski ’14]

Code symmetry as f (p, q) = 0, impose ̂f (p, q) |Ψ〉sym = 0 at quantum level
I Bianchi I models [NB ’14] ← this talk
I Spherical symmetry [NB, Lewandowski, Świeżewski ’14]
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I Spherical symmetry [Bojowald, Kastrup ’99, ..., Bojowald, Swiderski ’04, ...]

I More on spherical symmetry [Alvarez, Capurro, Gambini, Pullin, Olmedo, Rastgoo . . . ]

Approximately symmetric spin networks
I Weave states [Ashtekar, Rovelli, Smolin ’92; Bombelli ’00]

I Spinfoam cosmology [Bianchi, Rovelli, Vidotto ’10-; Kisielowski, Lewandowski, Puchta ’12]

I Canonical Bianchi I, reduced states [Alesci, Cianfrani ’12-; Paw lowski ’14]

Study of symmetric connections
I Quantisation ↔ reduction [Bojowald ’04; Engle ’05; Hanusch ’13]

I Embedding of states [Engle ’07; Brunnemann, Fleischhack ’07; Fleischhack ’10]

Condensate states
I GFT [Gielen, Oriti, Sindoni ’13-; Calcagni ’14, ...]

Group averaging w.r.t. symmetry generator at quantum level
I Spherical symmetry [NB, Lewandowski, Świeżewski ’14]
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Code symmetry as f (p, q) = 0, impose ̂f (p, q) |Ψ〉sym = 0 at quantum level
I Bianchi I models [NB ’14] ← this talk
I Spherical symmetry [NB, Lewandowski, Świeżewski ’14]
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Code symmetry as f (p, q) = 0, impose ̂f (p, q) |Ψ〉sym = 0 at quantum level
I Bianchi I models [NB ’14] ← this talk
I Spherical symmetry [NB, Lewandowski, Świeżewski ’14]
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General strategy for the symmetry reduction

1 Suitable classical starting point

I Gauge fix spatial diffeomorphisms adapted to the symmetry reduction
I Go to the reduced phase space, i.e. solve constraints or employ Dirac bracket
I Find new connection variables on Γred (not Ashtekar-Barbero variables)

2 Identification of constraints imposed by symmetry reduction

I Find phase space functions fi (p, q) = 0 in the symmetric subspace
I fi = 0 may be a first or second class set of constraints
I Later, choose first class subset via gauge unfixing (→ Dirac quantisation)

3 Quantise the reduced phase space via LQG techniques

I At this point, still full GR (if accessible by the gauge fixing)
I At this point, no (full) spatial diffeomorphism constraint at quantum level

4 Impose reduction conditions fi = 0 as operator equations: f̂i |Ψ〉sym = 0

I Find subspace of quantum reduced states |Ψ〉sym

I Find observables Ôsym w.r.t. reduction constraints: [Ôsym, f̂i ] = 0

5 Relate observables Ôsym to the parameters of a T3 Bianchi I model

I Can be related naturally to Bianchi I LQC?
I Can support improved LQC dynamics?
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Classical preparations I: Phase space

Gauge fixing to obtain suitable coordinates

1 Start with ADM phase space {qab(σ),Pcd(σ′)} = δ(3)(σ, σ′)δc(aδ
d
b)

2 Impose diagonal metric gauge qa 6=b = 0 ⇔ q = diag(qxx , qyy , qzz)

3 Gauge fixes the spatial diffeomorphism constraint NaCa = −2Na∇bP
b
a = 0

(up to reduced spatial diffeomorphisms with shift vector ~N = (Nx (x),Ny (y),Nz (z)))

4 Coordinatise the reduced phase space via qxx , qyy , qzz ,P
xx ,Pyy ,Pzz

5 Solve Ca = 0 for Pa 6=b ⇒ Pa 6=b(qaa,P
bb) ⇒ insert in Hamiltonian

Choose connection type variables

1 Define eaea = qaa, eae
a = 1, without summation, and E a =

√
det qea

2 Define Ka = Kabe
b with Kab being the extrinsic curvature constructed form Pab

3 Compute new Poisson brackets: {Ka(σ),E b(σ′)} = δ(3)(σ, σ′)δba

4 Ka, E b are like Ashtekar-Barbero variables without internal indices
⇒ Abelian gauge theory (Poisson bracket of Maxwell theory)

At this stage, only Hamiltonian constraint and reduced spatial diffeomorphisms left.
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Classical preparations II: Consequences of symmetry
T3 Bianchi I universe : 3 scale factors & 3 momenta: qab(σ) = diag(qxx , qyy , qzz)

Constraints compatible with a Bianchi I universe

1 qab and Pab are diagonal in suitable coordinates

⇒ impose Pa 6=b(qaa,P
bb) = 0

2 E a and Ka are independent of the spatial coordinate in suitable coordinates

⇒ impose ∂aKb = 0 = ∂aeb

Choose first class subset to impose as strong operator equations
Without proof here, see paper for details: A maximal first class subset is

1 All spatial diffeomorphisms: C̃a[Na] =
∫

Σ
d3σ E aL~NKa = 0 (incorporates also reduced ones)

2 Abelian Gauß law: G [ω] =
∫

Σ
d3σ ω ∂aE

a = 0

Result:
Direct consequences of a Bianchi I reduction can be imposed as spatial diffeomorphisms
and a Gauß law on the (quantised) reduced phase space (as operator equations).
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Classical preparations III: Summary

Phase space: (full GR admitting diagonal metric gauge)

1 Ka(σ), E b(σ) are 3 + 3 canonical variables per spatial point σ

2 Remaining constraints are

1 reduced spatial diffeomorphisms (preserving the diagonal gauge)
2 Hamiltonian constraint

Direct consequences of a reduction to Bianchi I are

1 All spatial diffeomorphisms: C̃a[Na] =
∫

Σ
d3σ E aL~NKa = 0

2 Abelian Gauß law: G [ω] =
∫

Σ
d3σ ω ∂aE

a = 0

Strategy:

1 Quantise full phase space via LQG techniques

2 Impose symmetry reduction by imposing C̃a = 0 = G at the quantum level

Norbert Bodendorfer (Univ. of Warsaw) Bianchi I quantum reduction in LQG 17.02.2015 10 / 19
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Quantisation I: Full theory in diagonal gauge

Standard LQG type quantisation

1 Compute holonomies hλγ (K) := exp
(
iλ
∫
γ
Ka ds

a
)

and fluxes E(S) =
∫
S
E a d2sa

γ path, S surface, λ ∈ Z for U(1), or λ ∈ R for RBohr see e.g. [Corichi, Krasnov ’97] for U(1)

2 Define positive linear Ashtekar-Lewandowski functional on holonomy-flux algebra

3 Representation follows from the GNS construction: Hilbertspace = L2(Ā, dµAL)
Ā = generalised U(1) or RBohr connections

Remarks

For RBohr: limR→∞
1

2R

∫ R

−R
dx f (x) =

∫
RBohr

dµH f (x) provides normalised and

translation invariant Haar measure ⇒ per edge: H = L2(RBohr, dµH)

Choosing λ ∈ Z over λ ∈ R (i.e. compactifying
∫
γ
Kads

a) has no justification at

this stage (also not later)
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Quantisation II: Area operator

Area operator for Abelian theory

A(S) = |E(S)| = |
∫
S
E a d2sa| is analogous to (absolute value of) electric flux

Important difference to non-Abelian, e.g. SU(2), area op.
∫
S

√
|E iEi |:

I - Absolute value is outside of the integral
I - E(S) does not detect closed contractible loops for closed S

While one can also define “non-Abelian like” area operator here, the Abelian one will turn out to be most useful.

I ()
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Quantisation III: Imposing the symmetry reduction

Reduction constraints are very familiar from full theory

1 All spatial diffeomorphisms: C̃a[Na] =
∫

Σ
d3σ E aL~NKa = 0

2 Abelian Gauß law: G [ω] =
∫

Σ
d3σ ω ∂aE

a = 0

⇒ spatially diffeomorphism invariant and gauge invariant charge (spin) networks!

Observables w.r.t. the reduction constraints

1 Area of closed surfaces → 3 non-trivial areas A(T2
x),A(T2

y ),A(T2
z)

2 Diff-equiv. classes of Wilson loops → 3 non-trivial closed loops along T1
x ,T1

y ,T1
z

Simplest choice of quantum state
Consider spin network made from 3 Wilson loops
wrapping around T1

x ,T1
y ,T1

z , meeting in a single
vertex v .

Mapping to Bianchi I LQC states of
[Ashtekar, Wilson-Ewing ’09]

|λx , λy , λz〉 7→ |p1, p2, p3〉
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Quantisation IV: Dynamics

Hamiltonian constraint / true Hamiltonian (via deparametrisation)

Take original Hamiltonian:

Evaluate at qa 6=b = 0 because of gauge fixing

Discard Pa 6=b, ∂aeb, and ∂aKb terms because of reduction constraints

⇒ H[N] =
∫
d3σN (exKyKz + eyKzKx + ezKxKy ) looks like in Bianchi I cosmology

Regularise constraint operator (graph preserving)

Substitute ea either by fluxes or Thiemann’s trick ea = 2{Ka,V }
Approximate Ka via holonomies:

∫
Kads

a ≈ sin(λ
∫
Kads

a)/λ

Choice of λ is crucial! U(1) vs. RBohr

U(1) choice: λ = 1 gives best approximation
⇒ “old” LQC dynamics [Ashtekar, Bojowald, Lewandowski ’03]

RBohr allows arbitrarily small λ ∈ R for better approximation.
“improved” LQC choice: 1/λx =

√
|E yE z/E x | = size of universe in x-direction

⇒ “new” LQC dynamics [Ashtekar, Pawlowski, Singh ’06; Ashtekar, Wilson-Ewing ’09]

Norbert Bodendorfer (Univ. of Warsaw) Bianchi I quantum reduction in LQG 17.02.2015 15 / 19



Quantisation IV: Dynamics

Hamiltonian constraint / true Hamiltonian (via deparametrisation)

Take original Hamiltonian:

Evaluate at qa 6=b = 0 because of gauge fixing

Discard Pa 6=b, ∂aeb, and ∂aKb terms because of reduction constraints

⇒ H[N] =
∫
d3σN (exKyKz + eyKzKx + ezKxKy ) looks like in Bianchi I cosmology

Regularise constraint operator (graph preserving)

Substitute ea either by fluxes or Thiemann’s trick ea = 2{Ka,V }
Approximate Ka via holonomies:

∫
Kads

a ≈ sin(λ
∫
Kads

a)/λ

Choice of λ is crucial! U(1) vs. RBohr

U(1) choice: λ = 1 gives best approximation
⇒ “old” LQC dynamics [Ashtekar, Bojowald, Lewandowski ’03]

RBohr allows arbitrarily small λ ∈ R for better approximation.
“improved” LQC choice: 1/λx =

√
|E yE z/E x | = size of universe in x-direction

⇒ “new” LQC dynamics [Ashtekar, Pawlowski, Singh ’06; Ashtekar, Wilson-Ewing ’09]

Norbert Bodendorfer (Univ. of Warsaw) Bianchi I quantum reduction in LQG 17.02.2015 15 / 19



Quantisation IV: Dynamics

Hamiltonian constraint / true Hamiltonian (via deparametrisation)

Take original Hamiltonian:

Evaluate at qa 6=b = 0 because of gauge fixing

Discard Pa 6=b, ∂aeb, and ∂aKb terms because of reduction constraints

⇒ H[N] =
∫
d3σN (exKyKz + eyKzKx + ezKxKy ) looks like in Bianchi I cosmology

Regularise constraint operator (graph preserving)

Substitute ea either by fluxes or Thiemann’s trick ea = 2{Ka,V }
Approximate Ka via holonomies:

∫
Kads

a ≈ sin(λ
∫
Kads

a)/λ

Choice of λ is crucial! U(1) vs. RBohr

U(1) choice: λ = 1 gives best approximation
⇒ “old” LQC dynamics [Ashtekar, Bojowald, Lewandowski ’03]

RBohr allows arbitrarily small λ ∈ R for better approximation.
“improved” LQC choice: 1/λx =

√
|E yE z/E x | = size of universe in x-direction

⇒ “new” LQC dynamics [Ashtekar, Pawlowski, Singh ’06; Ashtekar, Wilson-Ewing ’09]

Norbert Bodendorfer (Univ. of Warsaw) Bianchi I quantum reduction in LQG 17.02.2015 15 / 19



Quantisation IV: Dynamics

Hamiltonian constraint / true Hamiltonian (via deparametrisation)

Take original Hamiltonian:

Evaluate at qa 6=b = 0 because of gauge fixing

Discard Pa 6=b, ∂aeb, and ∂aKb terms because of reduction constraints

⇒ H[N] =
∫
d3σN (exKyKz + eyKzKx + ezKxKy ) looks like in Bianchi I cosmology

Regularise constraint operator (graph preserving)

Substitute ea either by fluxes or Thiemann’s trick ea = 2{Ka,V }
Approximate Ka via holonomies:

∫
Kads

a ≈ sin(λ
∫
Kads

a)/λ

Choice of λ is crucial! U(1) vs. RBohr

U(1) choice: λ = 1 gives best approximation
⇒ “old” LQC dynamics [Ashtekar, Bojowald, Lewandowski ’03]

RBohr allows arbitrarily small λ ∈ R for better approximation.
“improved” LQC choice: 1/λx =

√
|E yE z/E x | = size of universe in x-direction

⇒ “new” LQC dynamics [Ashtekar, Pawlowski, Singh ’06; Ashtekar, Wilson-Ewing ’09]

Norbert Bodendorfer (Univ. of Warsaw) Bianchi I quantum reduction in LQG 17.02.2015 15 / 19



Quantisation IV: Dynamics

Hamiltonian constraint / true Hamiltonian (via deparametrisation)

Take original Hamiltonian:

Evaluate at qa 6=b = 0 because of gauge fixing

Discard Pa 6=b, ∂aeb, and ∂aKb terms because of reduction constraints

⇒ H[N] =
∫
d3σN (exKyKz + eyKzKx + ezKxKy ) looks like in Bianchi I cosmology

Regularise constraint operator (graph preserving)

Substitute ea either by fluxes or Thiemann’s trick ea = 2{Ka,V }
Approximate Ka via holonomies:

∫
Kads

a ≈ sin(λ
∫
Kads

a)/λ

Choice of λ is crucial! U(1) vs. RBohr

U(1) choice: λ = 1 gives best approximation
⇒ “old” LQC dynamics [Ashtekar, Bojowald, Lewandowski ’03]

RBohr allows arbitrarily small λ ∈ R for better approximation.
“improved” LQC choice: 1/λx =

√
|E yE z/E x | = size of universe in x-direction

⇒ “new” LQC dynamics [Ashtekar, Pawlowski, Singh ’06; Ashtekar, Wilson-Ewing ’09]

Norbert Bodendorfer (Univ. of Warsaw) Bianchi I quantum reduction in LQG 17.02.2015 15 / 19



Outline

1 Approaches to symmetry reductions

2 General strategy

3 Details on classical derivation

4 Details on quantum theory

5 Further applications of the reduction technique

6 Conclusion

Norbert Bodendorfer (Univ. of Warsaw) Bianchi I quantum reduction in LQG 17.02.2015 16 / 19



Further application:

The reduction technique works also more generally.

Main steps in the derivation:

1 Choose gauge fixing q?? = 0 adapted to the symmetry reduction

2 Proceed to the reduced phase space

3 Construct new connection variables

4 Evaluate the reduction constraints P?? = 0 on the reduced phase space

⇒ Reduction generates spatial diffeomorphisms (due to linearity of Ca in Pab)

5 Check whether also the connection and its momentum transform properly under
the reduction spatial diffeomorphisms
(If not, maybe need additional constraints (here ∂aeb = 0 = ∂aKb))

Works also for spherical symmetry

(Ongoing) work with J. Lewandowski and J. Świeżewski for radial gauge

Dynamical equivalence more challenging, ongoing work with A. Zipfel
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Dynamical equivalence more challenging, ongoing work with A. Zipfel

Norbert Bodendorfer (Univ. of Warsaw) Bianchi I quantum reduction in LQG 17.02.2015 17 / 19



Outline

1 Approaches to symmetry reductions

2 General strategy

3 Details on classical derivation

4 Details on quantum theory

5 Further applications of the reduction technique

6 Conclusion

Norbert Bodendorfer (Univ. of Warsaw) Bianchi I quantum reduction in LQG 17.02.2015 18 / 19



Conclusion: Proposed reduction programme successful
1 Suitable classical starting point

I ADM in diagonal metric gauge in terms of qaa, Pbb

I Rewritten as Abelian gauge theory in terms of Ka, E b

2 Identification of constraints imposed by symmetry reduction

I Pa 6=b = 0 and ∂aeb = 0 = ∂aKb consistent with Bianchi I
I First class subset: spatial diffeomorphisms and Abelian Gauß law

3 Quantise the reduced phase space via LQG techniques
I Like Maxwell theory plus additional reduced diffeomorphisms and Hamiltonian constraint

4 Impose reduction conditions fi = 0 as operator equations: f̂i |Ψ〉sym = 0

I Spatial diffeomorphism invariance and gauge invariance as in LQG
I Observables are closed surfaces and diff-equivalent Wilson loops in x , y , z

5 Relate observables Ôsym to the parameters of a T3 Bianchi I model

I Can be related naturally to Bianchi I LQC X
I Can support improved LQC dynamics for RBohr choice X

6 Future work: perturbations to Bianchi I, coarse graining, ...

Thank you for your attention!
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3 Quantise the reduced phase space via LQG techniques
I Like Maxwell theory plus additional reduced diffeomorphisms and Hamiltonian constraint

4 Impose reduction conditions fi = 0 as operator equations: f̂i |Ψ〉sym = 0

I Spatial diffeomorphism invariance and gauge invariance as in LQG
I Observables are closed surfaces and diff-equivalent Wilson loops in x , y , z

5 Relate observables Ôsym to the parameters of a T3 Bianchi I model

I Can be related naturally to Bianchi I LQC X
I Can support improved LQC dynamics for RBohr choice X

6 Future work: perturbations to Bianchi I, coarse graining, ...

Thank you for your attention!
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