A quantum reduction to Bianchi I models in LQG

Norbert Bodendorfer

University of Warsaw

based on arXiv:1410.5608

Third EFI winter conference on quantum gravity

Tux, 17.02.2015

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Plan of the talk

- 2 General strategy
- Oetails on classical derivation
- Details on quantum theory
- 5 Further applications of the reduction technique

6 Conclusion

Outline

- 2 General strategy
- 3 Details on classical derivation
- 4 Details on quantum theory
- 5 Further applications of the reduction technique

6 Conclusion

- Mini / midi-superspace quantisation
 - ► LQC [Bojowald '99-; Ashtekar, Bojowald, Lewandowski '03; ...]
 - Schwarzschild black hole [Kastrup, Thiemann '93; Kuchař '94, Gambini, Pullin '13]
 - Spherical symmetry [Bojowald, Kastrup '99, ..., Bojowald, Swiderski '04, ...]
 - More on spherical symmetry [Alvarez, Capurro, Gambini, Pullin, Olmedo, Rastgoo ...]

- Mini / midi-superspace quantisation
 - ► LQC [Bojowald '99-; Ashtekar, Bojowald, Lewandowski '03; ...]
 - Schwarzschild black hole [Kastrup, Thiemann '93; Kuchař '94, Gambini, Pullin '13]
 - Spherical symmetry [Bojowald, Kastrup '99, ..., Bojowald, Swiderski '04, ...]
 - More on spherical symmetry [Alvarez, Capurro, Gambini, Pullin, Olmedo, Rastgoo ...]
- Approximately symmetric spin networks
 - Weave states [Ashtekar, Rovelli, Smolin '92; Bombelli '00]
 - Spinfoam cosmology [Bianchi, Rovelli, Vidotto '10-; Kisielowski, Lewandowski, Puchta '12]
 - Canonical Bianchi I, reduced states [Alesci, Cianfrani '12-; Pawłowski '14]

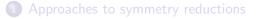
- Mini / midi-superspace quantisation
 - ► LQC [Bojowald '99-; Ashtekar, Bojowald, Lewandowski '03; ...]
 - Schwarzschild black hole [Kastrup, Thiemann '93; Kuchař '94, Gambini, Pullin '13]
 - Spherical symmetry [Bojowald, Kastrup '99, ..., Bojowald, Swiderski '04, ...]
 - More on spherical symmetry [Alvarez, Capurro, Gambini, Pullin, Olmedo, Rastgoo ...]
- Approximately symmetric spin networks
 - Weave states [Ashtekar, Rovelli, Smolin '92; Bombelli '00]
 - Spinfoam cosmology [Bianchi, Rovelli, Vidotto '10-; Kisielowski, Lewandowski, Puchta '12]
 - Canonical Bianchi I, reduced states [Alesci, Cianfrani '12-; Pawłowski '14]
- Study of symmetric connections
 - ► Quantisation ↔ reduction [Bojowald '04; Engle '05; Hanusch '13]
 - Embedding of states [Engle '07; Brunnemann, Fleischhack '07; Fleischhack '10]

- Mini / midi-superspace quantisation
 - ► LQC [Bojowald '99-; Ashtekar, Bojowald, Lewandowski '03; ...]
 - Schwarzschild black hole [Kastrup, Thiemann '93; Kuchař '94, Gambini, Pullin '13]
 - Spherical symmetry [Bojowald, Kastrup '99, ..., Bojowald, Swiderski '04, ...]
 - More on spherical symmetry [Alvarez, Capurro, Gambini, Pullin, Olmedo, Rastgoo ...]
- Approximately symmetric spin networks
 - Weave states [Ashtekar, Rovelli, Smolin '92; Bombelli '00]
 - Spinfoam cosmology [Bianchi, Rovelli, Vidotto '10-; Kisielowski, Lewandowski, Puchta '12]
 - Canonical Bianchi I, reduced states [Alesci, Cianfrani '12-; Pawłowski '14]
- Study of symmetric connections
 - ► Quantisation ↔ reduction [Bojowald '04; Engle '05; Hanusch '13]
 - Embedding of states [Engle '07; Brunnemann, Fleischhack '07; Fleischhack '10]
- Condensate states
 - ► GFT [Gielen, Oriti, Sindoni '13-; Calcagni '14, ...]

- Mini / midi-superspace quantisation
 - ► LQC [Bojowald '99-; Ashtekar, Bojowald, Lewandowski '03; ...]
 - Schwarzschild black hole [Kastrup, Thiemann '93; Kuchař '94, Gambini, Pullin '13]
 - Spherical symmetry [Bojowald, Kastrup '99, ..., Bojowald, Swiderski '04, ...]
 - More on spherical symmetry [Alvarez, Capurro, Gambini, Pullin, Olmedo, Rastgoo ...]
- Approximately symmetric spin networks
 - Weave states [Ashtekar, Rovelli, Smolin '92; Bombelli '00]
 - Spinfoam cosmology [Bianchi, Rovelli, Vidotto '10-; Kisielowski, Lewandowski, Puchta '12]
 - Canonical Bianchi I, reduced states [Alesci, Cianfrani '12-; Pawłowski '14]
- Study of symmetric connections
 - ► Quantisation ↔ reduction [Bojowald '04; Engle '05; Hanusch '13]
 - Embedding of states [Engle '07; Brunnemann, Fleischhack '07; Fleischhack '10]
- Condensate states
 - ► GFT [Gielen, Oriti, Sindoni '13-; Calcagni '14, ...]
- Group averaging w.r.t. symmetry generator at quantum level
 - Spherical symmetry [NB, Lewandowski, Świeżewski '14]

- Mini / midi-superspace quantisation
 - ► LQC [Bojowald '99-; Ashtekar, Bojowald, Lewandowski '03; ...]
 - Schwarzschild black hole [Kastrup, Thiemann '93; Kuchař '94, Gambini, Pullin '13]
 - Spherical symmetry [Bojowald, Kastrup '99, ..., Bojowald, Swiderski '04, ...]
 - More on spherical symmetry [Alvarez, Capurro, Gambini, Pullin, Olmedo, Rastgoo ...]
- Approximately symmetric spin networks
 - Weave states [Ashtekar, Rovelli, Smolin '92; Bombelli '00]
 - Spinfoam cosmology [Bianchi, Rovelli, Vidotto '10-; Kisielowski, Lewandowski, Puchta '12]
 - Canonical Bianchi I, reduced states [Alesci, Cianfrani '12-; Pawłowski '14]
- Study of symmetric connections
 - ► Quantisation ↔ reduction [Bojowald '04; Engle '05; Hanusch '13]
 - Embedding of states [Engle '07; Brunnemann, Fleischhack '07; Fleischhack '10]
- Condensate states
 - GFT [Gielen, Oriti, Sindoni '13-; Calcagni '14, ...]
- Group averaging w.r.t. symmetry generator at quantum level
 - Spherical symmetry [NB, Lewandowski, Świeżewski '14]
- Code symmetry as f(p,q) = 0, impose $\hat{f}(p,q) |\Psi\rangle_{sym} = 0$ at quantum level
 - ▶ Bianchi I models [NB '14] ← this talk
 - Spherical symmetry [NB, Lewandowski, Świeżewski '14]

Outline



2 General strategy

- 3 Details on classical derivation
- 4 Details on quantum theory
- 5 Further applications of the reduction technique

6 Conclusion

Suitable classical starting point

- Gauge fix spatial diffeomorphisms adapted to the symmetry reduction
- ▶ Go to the reduced phase space, i.e. solve constraints or employ Dirac bracket
- Find new connection variables on Γ_{red} (not Ashtekar-Barbero variables)

Suitable classical starting point

- Gauge fix spatial diffeomorphisms adapted to the symmetry reduction
- ▶ Go to the reduced phase space, i.e. solve constraints or employ Dirac bracket
- Find new connection variables on Γ_{red} (not Ashtekar-Barbero variables)

2 Identification of constraints imposed by symmetry reduction

- Find phase space functions $f_i(p,q) = 0$ in the symmetric subspace
- $f_i = 0$ may be a first or second class set of constraints
- Later, choose first class subset via gauge unfixing (\rightarrow Dirac quantisation)

Suitable classical starting point

- Gauge fix spatial diffeomorphisms adapted to the symmetry reduction
- ▶ Go to the reduced phase space, i.e. solve constraints or employ Dirac bracket
- Find new connection variables on Γ_{red} (not Ashtekar-Barbero variables)
- 2 Identification of constraints imposed by symmetry reduction
 - Find phase space functions $f_i(p,q) = 0$ in the symmetric subspace
 - $f_i = 0$ may be a first or second class set of constraints
 - Later, choose first class subset via gauge unfixing (\rightarrow Dirac quantisation)
- Quantise the reduced phase space via LQG techniques
 - At this point, still full GR (if accessible by the gauge fixing)
 - At this point, no (full) spatial diffeomorphism constraint at quantum level

Suitable classical starting point

- Gauge fix spatial diffeomorphisms adapted to the symmetry reduction
- ▶ Go to the reduced phase space, i.e. solve constraints or employ Dirac bracket
- Find new connection variables on Γ_{red} (not Ashtekar-Barbero variables)

2 Identification of constraints imposed by symmetry reduction

- Find phase space functions $f_i(p,q) = 0$ in the symmetric subspace
- $f_i = 0$ may be a first or second class set of constraints
- Later, choose first class subset via gauge unfixing (\rightarrow Dirac quantisation)

Quantise the reduced phase space via LQG techniques

- At this point, still full GR (if accessible by the gauge fixing)
- ▶ At this point, no (full) spatial diffeomorphism constraint at quantum level

(3) Impose reduction conditions $f_i = 0$ as operator equations: $\hat{f}_i |\Psi\rangle_{sym} = 0$

- Find subspace of quantum reduced states $|\Psi\rangle_{svm}$
- Find observables $\hat{\mathcal{O}}_{sym}$ w.r.t. reduction constraints: $[\hat{\mathcal{O}}_{sym}, \hat{f}_i] = 0$

Suitable classical starting point

- Gauge fix spatial diffeomorphisms adapted to the symmetry reduction
- ▶ Go to the reduced phase space, i.e. solve constraints or employ Dirac bracket
- Find new connection variables on Γ_{red} (not Ashtekar-Barbero variables)

2 Identification of constraints imposed by symmetry reduction

- Find phase space functions $f_i(p,q) = 0$ in the symmetric subspace
- $f_i = 0$ may be a first or second class set of constraints
- Later, choose first class subset via gauge unfixing (\rightarrow Dirac quantisation)
- Quantise the reduced phase space via LQG techniques
 - At this point, still full GR (if accessible by the gauge fixing)
 - ► At this point, no (full) spatial diffeomorphism constraint at quantum level

(3) Impose reduction conditions $f_i = 0$ as operator equations: $\hat{f}_i |\Psi\rangle_{sym} = 0$

- $\blacktriangleright\,$ Find subspace of quantum reduced states $\left|\Psi\right\rangle_{\rm sym}$
- Find observables \hat{O}_{sym} w.r.t. reduction constraints: $[\hat{O}_{sym}, \hat{f}_i] = 0$

§ Relate observables $\hat{\mathcal{O}}_{sym}$ to the parameters of a \mathbb{T}^3 Bianchi I model

- Can be related naturally to Bianchi I LQC?
- Can support improved LQC dynamics?

Outline

Approaches to symmetry reductions

- 2 General strategy
- 3 Details on classical derivation
 - Details on quantum theory
 - 5 Further applications of the reduction technique

6 Conclusion

Gauge fixing to obtain suitable coordinates

() Start with ADM phase space $\{q_{ab}(\sigma), P^{cd}(\sigma')\} = \delta^{(3)}(\sigma, \sigma')\delta^c_{(a}\delta^d_{b)}$

2 Impose diagonal metric gauge $q_{a\neq b} = 0 \iff q = \text{diag}(q_{xx}, q_{yy}, q_{zz})$

Gauge fixing to obtain suitable coordinates

- **3** Start with ADM phase space $\{q_{ab}(\sigma), P^{cd}(\sigma')\} = \delta^{(3)}(\sigma, \sigma')\delta^c_{(a}\delta^d_{b)}$
- 2 Impose diagonal metric gauge $q_{a\neq b} = 0 \iff q = \text{diag}(q_{xx}, q_{yy}, q_{zz})$
- 3 Gauge fixes the spatial diffeomorphism constraint $N^a C_a = -2N^a \nabla_b P^b{}_a = 0$ (up to reduced spatial diffeomorphisms with shift vector $\vec{N} = (N^x(x), N^y(y), N^z(z))$)

Gauge fixing to obtain suitable coordinates

- **3** Start with ADM phase space $\{q_{ab}(\sigma), P^{cd}(\sigma')\} = \delta^{(3)}(\sigma, \sigma')\delta^c_{(a}\delta^d_{b)}$
- 2 Impose diagonal metric gauge $q_{a\neq b} = 0 \iff q = \text{diag}(q_{xx}, q_{yy}, q_{zz})$
- 3 Gauge fixes the spatial diffeomorphism constraint $N^a C_a = -2N^a \nabla_b P^b{}_a = 0$ (up to reduced spatial diffeomorphisms with shift vector $\vec{N} = (N^x(x), N^y(y), N^z(z)))$
- **(3)** Coordinatise the reduced phase space via $q_{xx}, q_{yy}, q_{zz}, P^{xx}, P^{yy}, P^{zz}$
- $\textbf{Solve } C_a = 0 \text{ for } P^{a \neq b} \quad \Rightarrow \quad P^{a \neq b}(q_{aa}, P^{bb}) \quad \Rightarrow \quad \text{insert in Hamiltonian}$

Gauge fixing to obtain suitable coordinates

- **3** Start with ADM phase space $\{q_{ab}(\sigma), P^{cd}(\sigma')\} = \delta^{(3)}(\sigma, \sigma')\delta^c_{(a}\delta^d_{b)}$
- 2 Impose diagonal metric gauge $q_{a\neq b} = 0 \iff q = \text{diag}(q_{xx}, q_{yy}, q_{zz})$

3 Gauge fixes the spatial diffeomorphism constraint $N^a C_a = -2N^a \nabla_b P^b{}_a = 0$ (up to reduced spatial diffeomorphisms with shift vector $\vec{N} = (N^x(x), N^y(y), N^z(z)))$

- **(4)** Coordinatise the reduced phase space via $q_{xx}, q_{yy}, q_{zz}, P^{xx}, P^{yy}, P^{zz}$
- $\textbf{Solve } C_a = 0 \text{ for } P^{a \neq b} \quad \Rightarrow \quad P^{a \neq b}(q_{aa}, P^{bb}) \quad \Rightarrow \quad \text{insert in Hamiltonian}$

Choose connection type variables

- 1 Define $e_a e_a = q_{aa}$, $e_a e^a = 1$, without summation, and $E^a = \sqrt{\det q} e^a$
- 2 Define $K_a = K_{ab}e^b$ with K_{ab} being the extrinsic curvature constructed form P^{ab}
- **3** Compute new Poisson brackets: $\{K_a(\sigma), E^b(\sigma')\} = \delta^{(3)}(\sigma, \sigma')\delta_a^b$

Gauge fixing to obtain suitable coordinates

- **(**) Start with ADM phase space $\{q_{ab}(\sigma), P^{cd}(\sigma')\} = \delta^{(3)}(\sigma, \sigma')\delta^c_{(a}\delta^d_{b)}$
- 2 Impose diagonal metric gauge $q_{a\neq b} = 0 \iff q = \text{diag}(q_{xx}, q_{yy}, q_{zz})$

3 Gauge fixes the spatial diffeomorphism constraint $N^a C_a = -2N^a \nabla_b P^b{}_a = 0$ (up to reduced spatial diffeomorphisms with shift vector $\vec{N} = (N^x(x), N^y(y), N^z(z)))$

- **(4)** Coordinatise the reduced phase space via $q_{xx}, q_{yy}, q_{zz}, P^{xx}, P^{yy}, P^{zz}$
- $\textbf{Solve } C_a = 0 \text{ for } P^{a \neq b} \quad \Rightarrow \quad P^{a \neq b}(q_{aa}, P^{bb}) \quad \Rightarrow \quad \text{insert in Hamiltonian}$

Choose connection type variables

- **(**) Define $e_a e_a = q_{aa}$, $e_a e^a = 1$, without summation, and $E^a = \sqrt{\det q} e^a$
- 2 Define $K_a = K_{ab}e^b$ with K_{ab} being the extrinsic curvature constructed form P^{ab}
- **3** Compute new Poisson brackets: $\{K_a(\sigma), E^b(\sigma')\} = \delta^{(3)}(\sigma, \sigma')\delta^b_a$

Gauge fixing to obtain suitable coordinates

- **3** Start with ADM phase space $\{q_{ab}(\sigma), P^{cd}(\sigma')\} = \delta^{(3)}(\sigma, \sigma')\delta^c_{(a}\delta^d_{b)}$
- 2 Impose diagonal metric gauge $q_{a\neq b} = 0 \iff q = \text{diag}(q_{xx}, q_{yy}, q_{zz})$

3 Gauge fixes the spatial diffeomorphism constraint $N^a C_a = -2N^a \nabla_b P^b{}_a = 0$ (up to reduced spatial diffeomorphisms with shift vector $\vec{N} = (N^x(x), N^y(y), N^z(z)))$

- **(**) Coordinatise the reduced phase space via $q_{xx}, q_{yy}, q_{zz}, P^{xx}, P^{yy}, P^{zz}$
- $\textbf{Solve } C_a = 0 \text{ for } P^{a \neq b} \quad \Rightarrow \quad P^{a \neq b}(q_{aa}, P^{bb}) \quad \Rightarrow \quad \text{insert in Hamiltonian}$

Choose connection type variables

- 1 Define $e_a e_a = q_{aa}$, $e_a e^a = 1$, without summation, and $E^a = \sqrt{\det q} e^a$
- 2 Define $K_a = K_{ab}e^b$ with K_{ab} being the extrinsic curvature constructed form P^{ab}
- **③** Compute new Poisson brackets: $\{K_a(\sigma), E^b(\sigma')\} = \delta^{(3)}(\sigma, \sigma')\delta_a^b$
- *K_a*, *E^b* are like Ashtekar-Barbero variables without internal indices
 ⇒ Abelian gauge theory (Poisson bracket of Maxwell theory)

At this stage, only Hamiltonian constraint and reduced spatial diffeomorphisms left.

 \mathbb{T}^3 Bianchi I universe : 3 scale factors & 3 momenta: $q_{ab}(\sigma) = \text{diag}(q_{xx}, q_{yy}, q_{zz})$

 \mathbb{T}^3 Bianchi I universe : 3 scale factors & 3 momenta: $q_{ab}(\sigma) = \text{diag}(q_{xx}, q_{yy}, q_{zz})$

Constraints compatible with a Bianchi I universe

q_{ab} and P^{ab} are diagonal in suitable coordinates
 ⇒ impose P^{a≠b}(q_{aa}, P^{bb}) = 0

 \mathbb{T}^3 Bianchi I universe : 3 scale factors & 3 momenta: $q_{ab}(\sigma) = \text{diag}(q_{xx}, q_{yy}, q_{zz})$

Constraints compatible with a Bianchi I universe

(1) q_{ab} and P^{ab} are diagonal in suitable coordinates \Rightarrow impose $P^{a\neq b}(q_{aa}, P^{bb}) = 0$

E^a and K_a are independent of the spatial coordinate in suitable coordinates

 \Rightarrow impose $\partial_{a}K_{b} = 0 = \partial_{a}e_{b}$

 \mathbb{T}^3 Bianchi I universe : 3 scale factors & 3 momenta: $q_{ab}(\sigma) = \text{diag}(q_{xx}, q_{yy}, q_{zz})$

Constraints compatible with a Bianchi I universe

q_{ab} and *P^{ab}* are diagonal in suitable coordinates
 ⇒ impose *P^{a≠b}(q_{aa}, P^{bb})* = 0

E^a and *K_a* are independent of the spatial coordinate in suitable coordinates ⇒ impose ∂_aK_b = 0 = ∂_ae_b

Choose first class subset to impose as strong operator equations

 \mathbb{T}^3 Bianchi I universe : 3 scale factors & 3 momenta: $q_{ab}(\sigma) = \text{diag}(q_{xx}, q_{yy}, q_{zz})$

Constraints compatible with a Bianchi I universe

- *q_{ab}* and *P^{ab}* are diagonal in suitable coordinates
 ⇒ impose *P^{a≠b}(q_{aa}, P^{bb})* = 0
- *E^a* and *K_a* are independent of the spatial coordinate in suitable coordinates ⇒ impose ∂_aK_b = 0 = ∂_ae_b

Choose first class subset to impose as strong operator equations

Without proof here, see paper for details:

 \mathbb{T}^3 Bianchi I universe : 3 scale factors & 3 momenta: $q_{ab}(\sigma) = \text{diag}(q_{xx}, q_{yy}, q_{zz})$

Constraints compatible with a Bianchi I universe

q_{ab} and *P^{ab}* are diagonal in suitable coordinates
 ⇒ impose *P^{a≠b}(q_{aa}, P^{bb})* = 0

② E^a and K_a are independent of the spatial coordinate in suitable coordinates ⇒ impose $\partial_a K_b = 0 = \partial_a e_b$

Choose first class subset to impose as strong operator equations

Without proof here, see paper for details: A maximal first class subset is

- **()** All spatial diffeomorphisms: $\tilde{C}_a[N^a] = \int_{\Sigma} d^3 \sigma \, E^a \mathcal{L}_{\vec{N}} K_a = 0$ (incorporates also reduced ones)
- 2 Abelian Gauß law: $G[\omega] = \int_{\Sigma} d^3 \sigma \, \omega \, \partial_a E^a = 0$

 \mathbb{T}^3 Bianchi I universe : 3 scale factors & 3 momenta: $q_{ab}(\sigma) = \text{diag}(q_{xx}, q_{yy}, q_{zz})$

Constraints compatible with a Bianchi I universe

q_{ab} and *P^{ab}* are diagonal in suitable coordinates
 ⇒ impose *P^{a≠b}(q_{aa}, P^{bb})* = 0

② E^a and K_a are independent of the spatial coordinate in suitable coordinates ⇒ impose $\partial_a K_b = 0 = \partial_a e_b$

Choose first class subset to impose as strong operator equations

Without proof here, see paper for details: A maximal first class subset is

- **()** All spatial diffeomorphisms: $\tilde{C}_a[N^a] = \int_{\Sigma} d^3 \sigma \, E^a \mathcal{L}_{\vec{N}} \mathcal{K}_a = 0$ (incorporates also reduced ones)
- 2 Abelian Gauß law: $G[\omega] = \int_{\Sigma} d^3 \sigma \, \omega \, \partial_a E^a = 0$

Result:

Direct consequences of a Bianchi I reduction can be imposed as spatial diffeomorphisms and a Gauß law on the (quantised) reduced phase space (as operator equations).

Norbert Bodendorfer (Univ. of Warsaw) Bianchi I quantum reduction in LQG

Classical preparations III: Summary

Phase space: (full GR admitting diagonal metric gauge)

1
$$K_a(\sigma)$$
, $E^b(\sigma)$ are 3 + 3 canonical variables per spatial point σ

- 2 Remaining constraints are
 - reduced spatial diffeomorphisms (preserving the diagonal gauge)
 - 2 Hamiltonian constraint

Direct consequences of a reduction to Bianchi I are

1 All spatial diffeomorphisms:
$$\tilde{C}_a[N^a] = \int_{\Sigma} d^3 \sigma E^a \mathcal{L}_{\vec{N}} K_a = 0$$

2 Abelian Gauß law:
$$G[\omega] = \int_{\Sigma} d^3 \sigma \, \omega \, \partial_a E^a = 0$$

Strategy:

Quantise full phase space via LQG techniques

② Impose symmetry reduction by imposing $\tilde{C}_a = 0 = G$ at the quantum level

Outline

Approaches to symmetry reductions

- 2 General strategy
- 3 Details on classical derivation
- Details on quantum theory
 - 5 Further applications of the reduction technique

6 Conclusion

Standard LQG type quantisation

• Compute holonomies $h_{\gamma}^{\lambda}(K) := \exp\left(i\lambda\int_{\gamma}K_{a}\,ds^{a}\right)$ and fluxes $E(S) = \int_{S}E^{a}\,d^{2}s_{a}$ γ path, S surface, $\lambda \in \mathbb{Z}$ for U(1), or $\lambda \in \mathbb{R}$ for \mathbb{R}_{Bohr} see e.g. [Corichi, Krasnov '97] for U(1)

Standard LQG type quantisation

- ② Define positive linear Ashtekar-Lewandowski functional on holonomy-flux algebra
 ③ Representation follows from the GNS construction: Hilbertspace = L²(Ā, dµ_{AL}) Ā = generalised U(1) or ℝ_{Bohr} connections

Standard LQG type quantisation

Compute holonomies $h_{\gamma}^{\lambda}(K) := \exp\left(i\lambda \int_{\gamma} K_{a} ds^{a}\right)$ and fluxes $E(S) = \int_{S} E^{a} d^{2}s_{a}$ γ path, S surface, $\lambda \in \mathbb{Z}$ for U(1), or $\lambda \in \mathbb{R}$ for \mathbb{R}_{Bohr} see e.g. [Corichi, Krasnov '97] for U(1)

 2 Define positive linear Ashtekar-Lewandowski functional on holonomy-flux algebra
 3 Representation follows from the GNS construction: Hilbertspace = L²(Ā, dμ_{AL}) Ā = generalised U(1) or R_{Bohr} connections

Remarks

• For \mathbb{R}_{Bohr} : $\lim_{R\to\infty} \frac{1}{2R} \int_{-R}^{R} dx f(x) = \int_{\mathbb{R}_{Bohr}} d\mu_{H} f(x)$ provides **normalised** and translation invariant Haar measure \Rightarrow per edge: $\mathcal{H} = L^{2}(\mathbb{R}_{Bohr}, d\mu_{H})$

Standard LQG type quantisation

Compute holonomies $h_{\gamma}^{\lambda}(K) := \exp\left(i\lambda \int_{\gamma} K_a \, ds^a\right)$ and fluxes $E(S) = \int_{S} E^a \, d^2s_a$ $\gamma \text{ path,} \quad S \text{ surface,} \quad \lambda \in \mathbb{Z} \text{ for U(1), or } \lambda \in \mathbb{R} \text{ for } \mathbb{R}_{\text{Bohr}} \quad \text{see e.g. [Corichi, Krasnov '97] for U(1)}$

 ② Define positive linear Ashtekar-Lewandowski functional on holonomy-flux algebra
 ③ Representation follows from the GNS construction: Hilbertspace = L²(Ā, dµ_{AL}) Ā = generalised U(1) or ℝ_{Bohr} connections

Remarks

• For \mathbb{R}_{Bohr} : $\lim_{R\to\infty} \frac{1}{2R} \int_{-R}^{R} dx f(x) = \int_{\mathbb{R}_{Bohr}} d\mu_{H} f(x)$ provides **normalised** and translation invariant Haar measure \Rightarrow per edge: $\mathcal{H} = L^{2}(\mathbb{R}_{Bohr}, d\mu_{H})$

• Choosing $\lambda \in \mathbb{Z}$ over $\lambda \in \mathbb{R}$ (i.e. compactifying $\int_{\gamma} K_a ds^a$) has no justification at this stage (also not later)

Quantisation I: Full theory in diagonal gauge

Standard LQG type quantisation

Compute holonomies $h_{\gamma}^{\lambda}(K) := \exp\left(i\lambda \int_{\gamma} K_a \, ds^a\right)$ and fluxes $E(S) = \int_{S} E^a \, d^2s_a$ $\gamma \text{ path,} \quad S \text{ surface,} \quad \lambda \in \mathbb{Z} \text{ for U(1), or } \lambda \in \mathbb{R} \text{ for } \mathbb{R}_{\text{Bohr}} \quad \text{see e.g. [Corichi, Krasnov '97] for U(1)}$

 ② Define positive linear Ashtekar-Lewandowski functional on holonomy-flux algebra
 ③ Representation follows from the GNS construction: Hilbertspace = L²(Ā, dµ_{AL}) Ā = generalised U(1) or ℝ_{Bohr} connections

Remarks

• For \mathbb{R}_{Bohr} : $\lim_{R\to\infty} \frac{1}{2R} \int_{-R}^{R} dx f(x) = \int_{\mathbb{R}_{Bohr}} d\mu_{H} f(x)$ provides **normalised** and translation invariant Haar measure \Rightarrow per edge: $\mathcal{H} = L^{2}(\mathbb{R}_{Bohr}, d\mu_{H})$

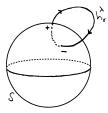
• Choosing $\lambda \in \mathbb{Z}$ over $\lambda \in \mathbb{R}$ (i.e. compactifying $\int_{\gamma} K_a ds^a$) has no justification at this stage (also not later)

Quantisation II: Area operator

Area operator for Abelian theory

- $A(S) = |E(S)| = |\int_S E^a d^2 s_a|$ is analogous to (absolute value of) electric flux
- Important difference to non-Abelian, e.g. SU(2), area op. $\int_{S} \sqrt{|E^{i}E_{i}|}$:
 - Absolute value is outside of the integral
 - E(S) does not detect closed contractible loops for closed S

While one can also define "non-Abelian like" area operator here, the Abelian one will turn out to be most useful.



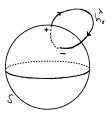
Quantisation II: Area operator

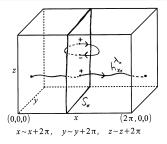
Area operator for Abelian theory

- $A(S) = |E(S)| = |\int_S E^a d^2 s_a|$ is analogous to (absolute value of) electric flux
- Important difference to non-Abelian, e.g. SU(2), area op. $\int_{S} \sqrt{|E^{i}E_{i}|}$:
 - Absolute value is outside of the integral
 - E(S) does not detect closed contractible loops for closed S

While one can also define "non-Abelian like" area operator here, the Abelian one will turn out to be most useful.

- Non-trivial topology: A(S) can detect Wilson loops even for closed S





Quantisation III: Imposing the symmetry reduction

Reduction constraints are very familiar from full theory

- **(**) All spatial diffeomorphisms: $\tilde{C}_a[N^a] = \int_{\Sigma} d^3 \sigma E^a \mathcal{L}_{\vec{N}} K_a = 0$
- (2) Abelian Gauß law: $G[\omega] = \int_{\Sigma} d^3 \sigma \, \omega \, \partial_a E^a = 0$

⇒ spatially diffeomorphism invariant and gauge invariant charge (spin) networks!

Quantisation III: Imposing the symmetry reduction

Reduction constraints are very familiar from full theory

- **1** All spatial diffeomorphisms: $\tilde{C}_a[N^a] = \int_{\Sigma} d^3 \sigma E^a \mathcal{L}_{\vec{N}} K_a = 0$
- 2 Abelian Gauß law: $G[\omega] = \int_{\Sigma} d^3 \sigma \, \omega \, \partial_a E^a = 0$

 \Rightarrow spatially diffeomorphism invariant and gauge invariant charge (spin) networks!

Observables w.r.t. the reduction constraints

- - 2 Diff-equiv. classes of Wilson loops o 3 non-trivial closed loops along $\mathbb{T}^1_x,\mathbb{T}^1_y,\mathbb{T}^1_z$

Quantisation III: Imposing the symmetry reduction

Reduction constraints are very familiar from full theory

- **1** All spatial diffeomorphisms: $\tilde{C}_a[N^a] = \int_{\nabla} d^3 \sigma E^a \mathcal{L}_{\vec{N}} K_a = 0$
- $G[\omega] = \int_{\Sigma} d^3 \sigma \, \omega \, \partial_a E^a = 0$ Abelian Gauß law:

 \Rightarrow spatially diffeomorphism invariant and gauge invariant charge (spin) networks!

Observables w.r.t. the reduction constraints

2 Diff-equiv. classes of Wilson loops \rightarrow 3 non-trivial closed loops along $\mathbb{T}^1_x, \mathbb{T}^1_y, \mathbb{T}^1_z$

Simplest choice of quantum state

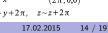
Consider spin network made from 3 Wilson loops wrapping around $\mathbb{T}_x^1, \mathbb{T}_y^1, \mathbb{T}_z^1$, meeting in a single vertex v

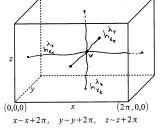
Mapping to Bianchi I LQC states of

[Ashtekar, Wilson-Ewing '09]

$$|\lambda_x,\lambda_y,\lambda_z
angle\mapsto |\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3
angle$$

Norbert Bodendorfer (Univ. of Warsaw)





Hamiltonian constraint / true Hamiltonian (via deparametrisation)

Take original Hamiltonian:

- Evaluate at $q_{a\neq b} = 0$ because of gauge fixing
- Discard $P^{a\neq b}$, $\partial_a e_b$, and $\partial_a K_b$ terms because of reduction constraints

Hamiltonian constraint / true Hamiltonian (via deparametrisation)

Take original Hamiltonian:

- Evaluate at $q_{a\neq b} = 0$ because of gauge fixing
- Discard $P^{a\neq b}$, $\partial_a e_b$, and $\partial_a K_b$ terms because of reduction constraints
- $\Rightarrow H[N] = \int d^3\sigma N \left(e_x K_y K_z + e_y K_z K_x + e_z K_x K_y \right) \text{ looks like in Bianchi I cosmology}$

Hamiltonian constraint / true Hamiltonian (via deparametrisation)

Take original Hamiltonian:

- Evaluate at $q_{a\neq b} = 0$ because of gauge fixing
- Discard $P^{a\neq b}$, $\partial_a e_b$, and $\partial_a K_b$ terms because of reduction constraints
- $\Rightarrow H[N] = \int d^3 \sigma N \left(e_x K_y K_z + e_y K_z K_x + e_z K_x K_y \right) \text{ looks like in Bianchi I cosmology}$

Regularise constraint operator (graph preserving)

- Substitute e_a either by fluxes or Thiemann's trick $e_a = 2\{K_a, V\}$
- Approximate K_a via holonomies: $\int K_a ds^a \approx \sin(\lambda \int K_a ds^a)/\lambda$

Hamiltonian constraint / true Hamiltonian (via deparametrisation)

Take original Hamiltonian:

- Evaluate at $q_{a\neq b} = 0$ because of gauge fixing
- Discard $P^{a\neq b}$, $\partial_a e_b$, and $\partial_a K_b$ terms because of reduction constraints
- $\Rightarrow H[N] = \int d^3 \sigma N \left(e_x K_y K_z + e_y K_z K_x + e_z K_x K_y \right) \text{ looks like in Bianchi I cosmology}$

Regularise constraint operator (graph preserving)

- Substitute e_a either by fluxes or Thiemann's trick $e_a = 2\{K_a, V\}$
- Approximate K_a via holonomies: $\int K_a ds^a \approx \sin(\lambda \int K_a ds^a)/\lambda$

Choice of λ is crucial! U(1) vs. \mathbb{R}_{Bohr}

• U(1) choice: $\lambda = 1$ gives best approximation \Rightarrow "old" LQC dynamics [Ashtekar, Bojowald, Lewandowski '03]

Hamiltonian constraint / true Hamiltonian (via deparametrisation)

Take original Hamiltonian:

- Evaluate at $q_{a\neq b} = 0$ because of gauge fixing
- Discard $P^{a\neq b}$, $\partial_a e_b$, and $\partial_a K_b$ terms because of reduction constraints
- $\Rightarrow H[N] = \int d^3 \sigma N \left(e_x K_y K_z + e_y K_z K_x + e_z K_x K_y \right) \text{ looks like in Bianchi I cosmology}$

Regularise constraint operator (graph preserving)

- Substitute e_a either by fluxes or Thiemann's trick $e_a = 2\{K_a, V\}$
- Approximate K_a via holonomies: $\int K_a ds^a \approx \sin(\lambda \int K_a ds^a)/\lambda$

Choice of λ is crucial! U(1) vs. \mathbb{R}_{Bohr}

• U(1) choice: $\lambda = 1$ gives best approximation \Rightarrow "old" LQC dynamics [Ashtekar, Bojowald, Lewandowski '03]

• \mathbb{R}_{Bohr} allows arbitrarily small $\lambda \in \mathbb{R}$ for better approximation. "improved" LQC choice: $1/\lambda_x = \sqrt{|E^y E^z / E^x|} = \text{size of universe in } x$ -direction \Rightarrow "new" LQC dynamics [Ashtekar, Pawlowski, Singh '06; Ashtekar, Wilson-Ewing '09]

Outline

Approaches to symmetry reductions

- 2 General strategy
- 3 Details on classical derivation
- 4 Details on quantum theory

5 Further applications of the reduction technique

Conclusion

Further application:

The reduction technique works also more generally.

Main steps in the derivation:

- **(**) Choose gauge fixing $q_{??} = 0$ adapted to the symmetry reduction
- Proceed to the reduced phase space
- Onstruct new connection variables
- Solution 2 Section 2 Section $P^{??} = 0$ on the reduced phase space

 \Rightarrow Reduction generates spatial diffeomorphisms (due to linearity of C_a in P^{ab})

Ocheck whether also the connection and its momentum transform properly under the reduction spatial diffeomorphisms

(If not, maybe need additional constraints (here $\partial_a e_b = 0 = \partial_a K_b$))

Further application:

The reduction technique works also more generally.

Main steps in the derivation:

- **(**) Choose gauge fixing $q_{??} = 0$ adapted to the symmetry reduction
- Proceed to the reduced phase space
- Onstruct new connection variables
- Solution 2 Section 2 Section $P^{??} = 0$ on the reduced phase space
 - \Rightarrow Reduction generates spatial diffeomorphisms (due to linearity of C_a in P^{ab})

Ocheck whether also the connection and its momentum transform properly under the reduction spatial diffeomorphisms

(If not, maybe need additional constraints (here $\partial_a e_b = 0 = \partial_a K_b$))

Works also for spherical symmetry

- (Ongoing) work with J. Lewandowski and J. Świeżewski for radial gauge
- Dynamical equivalence more challenging, ongoing work with A. Zipfel

Outline

Approaches to symmetry reductions

- 2 General strategy
- 3 Details on classical derivation
- Details on quantum theory
- 5 Further applications of the reduction technique

6 Conclusion

Conclusion: Proposed reduction programme successful

Suitable classical starting point

- ADM in diagonal metric gauge in terms of q_{aa} , P^{bb}
- Rewritten as Abelian gauge theory in terms of K_a , E^b
- 2 Identification of constraints imposed by symmetry reduction
 - $P^{a\neq b} = 0$ and $\partial_a e_b = 0 = \partial_a K_b$ consistent with Bianchi I
 - ► First class subset: spatial diffeomorphisms and Abelian Gauß law
- **Quantise** the reduced phase space via LQG techniques
 - Like Maxwell theory plus additional reduced diffeomorphisms and Hamiltonian constraint

(4) Impose reduction conditions $f_i = 0$ as operator equations: $\hat{f}_i |\Psi\rangle_{sym} = 0$

- Spatial diffeomorphism invariance and gauge invariance as in LQG
- Observables are closed surfaces and diff-equivalent Wilson loops in x, y, z
- **§ Relate observables** $\hat{\mathcal{O}}_{sym}$ to the parameters of a \mathbb{T}^3 Bianchi I model
 - \blacktriangleright Can be related naturally to Bianchi I LQC \checkmark
 - \blacktriangleright Can support improved LQC dynamics for $\mathbb{R}_{\mathsf{Bohr}}$ choice \checkmark
- Future work: perturbations to Bianchi I, coarse graining, ...

Conclusion: Proposed reduction programme successful

Suitable classical starting point

- ADM in diagonal metric gauge in terms of q_{aa} , P^{bb}
- Rewritten as Abelian gauge theory in terms of K_a , E^b
- 2 Identification of constraints imposed by symmetry reduction
 - $P^{a\neq b} = 0$ and $\partial_a e_b = 0 = \partial_a K_b$ consistent with Bianchi I
 - First class subset: spatial diffeomorphisms and Abelian Gauß law
- **Quantise** the reduced phase space via LQG techniques
 - Like Maxwell theory plus additional reduced diffeomorphisms and Hamiltonian constraint

(4) Impose reduction conditions $f_i = 0$ as operator equations: $\hat{f}_i |\Psi\rangle_{sym} = 0$

- Spatial diffeomorphism invariance and gauge invariance as in LQG
- Observables are closed surfaces and diff-equivalent Wilson loops in x, y, z
- **§** Relate observables $\hat{\mathcal{O}}_{sym}$ to the parameters of a \mathbb{T}^3 Bianchi I model
 - \blacktriangleright Can be related naturally to Bianchi I LQC \checkmark
 - \blacktriangleright Can support improved LQC dynamics for $\mathbb{R}_{\mathsf{Bohr}}$ choice \checkmark
- Future work: perturbations to Bianchi I, coarse graining, ...

Thank you for your attention!