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motivation & logic
WHY?

describe fluctuations of the gravitational
1- GRAVITY > field (strong field regime, BHs, Big bang,
new white holes scenario)

2- QUANTUM GRAVITY recently shared common picture:

at small scales/high energies
space-time # continuum manifold
description in terms of

: ; How do continuum space-time and
discrete/pre-geometric d.o.f. —*

GR emerge 77

quantum statistical field theory language is
expected to be useful to face the puzzle
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motivation & logic

GR is a general-covariant theory: dynamics
is defined by a re-parametrisation invariant
Lagrangian leading to a vanishing canonical

PROBLEM hamiltonian

¢  Statistical mechanics is based on notions
such as energy and preferred time which
have no equivalent in a general covariant
theory

> how do we do statistical physics for a system without a hamiltonian 77

Il

“gravitizing statistical mechanics” : re-derive the founding notions

GOAL ; - : ——_ ;
of the theory in a relativistic/pre-symplectic hamiltonian formalism

rationalise the problem at a formal level: identify the main
STRATEGY conceptual issues of the approach and provide a set of basic
definitions



outline: four main issues

so far...

1 - phase space & statistical state

2 - thermodynamics & notion of
subsystem
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top down approach bottom up approach

3 - recover thermodynamics 4 - gauge fixing and interaction
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1 - phase space & statistical state

Statistical deducing macroscopic properties of
mechanics: matter from the atomic hypothesis

investigate the qualitative behavior of the ensemble of
=> particles (atoms molecules) governed by a deterministic
law of motion (classical mechanics or quantum mechanics)

PROBLEM

time plays a fundamental role: the notion of physical phase
space is different for non-relativistic and relativistic systems

N .
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let’s set a common language first

common description: hamiltonian formalism

< 7

kinematics C = {q“} T*C = {(qaapa)}

dynamics  information about the dynamics
encoded in the surface Y

Y ={pec X|H(p)=0;

H : X — RF constraint hamiltonian

geometric approach!

& (X,wx) a symplectic space: X = T*C is a cotangent space
0 = podq® Poincare’ 1-form of the cotangent bundle

=> natural symplectic form wx = d6

ISSUE 1



dynamics encoded in pre-symplectic space

the constraint surface < = H=1(0) is equipped with a pre-

symplectic (closed degenerate) 2-form Ws= Wxls

=> orbits of W: = graphs of the physical motions

(integral surfaces of the null directions of W; defined by

the vector field X on 2 in the kernel of ws)

(E} wg) fully defines a gen. cov. dynamical system

ws(X) = 0 <=> HAMILTON EQNS

® " is the space of the solutions, or the physical phase space of the system: a point
in ' as a motion of the system, or a Heisenberg state

ISSUE 1



Instantaneous measurement

look at a non-relativistic

&
systems in this terms " i
" = (t,¢"). > C=RxQ
(1 S T
(9% pa) = (8, 6", pt,pi) = Q = T*C
hamiltonian constraint H =p; + Hy = X =IR x T,
the coordinate on IR being the time t and 'nr = T*Q the usual phase space
on
0
X = 5 S, UJZ(X) =0 => Wnr(Xn*r) — _dHU
o the space of the orbits I is in one to one correspondence with the cotangent space
Mnr. the cotangent space Mr= T°Q is the “natural arena” for non-relativistic hamiltonian
mechanics and also the space of the motions: space of the instantaneous states
s for a non relativistic system the statistical state is naturally defined as the probability

distribution p such that dv = pdu where du is the Liouville’s measure on I

ISSUE 1



Instantaneous measurement

¢ indeed, consider the usual ergodic hypothesis

consider the generic (X,v) measured space, Ut : X -> X a “time” evolution that preserves v
and f : X -> C and the ergodic assumption:

under certain conditions, the time average of a function along the trajectories exists almost
everywhere and is related to the space average

TE}TmTf f(UPy) dt—/f P)dv(P) , v —ae B

physically meaningful quantity theoretical quantity

when the observable f is measured, the experiment take some finite time which
is supposed to be large compared to the “mixing time™ so that the measuring
device see the time average of the measured quantity

-~

we do not need to compute/solve the evolution in time (which is

intractable for complex systems): independence from the microscopic
hamiltonian dynamics

X =T Uy =¢04, ~lou0i =T f = complete observable \

/
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Instantaneous measurement on

The same property does not hold in for the relativistic case: one has only

Up : 20 —> 2 w:2% — 1 suchthat wmou,=mw

o the double role (motions + instantaneous states) is lost: a point of I is not seen as
representing the instantaneous state, it represents a full solution (history) of the system

=> what is an instantaneous measurement for a relativistic system ?
=> on which space should we figure a statistical measurement 7
® so far this game was played on the physical phase space I, as in the non-rel case:

1. the statistical state is naturally defined over I

2. f is a complete observable

3. the “time” average is meaningless because f is constant over every orbit

GOAL deduce the statistical properties of a gen cov
D wer——— system from its pre-symplectic structure only
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Instantaneous measurement on

Let’s then work on Z (analysis limited to one dim systems)

1. we want to do statistical mechanics without referring to the (unphysical) time variable used
to parametrised the orbits, by using compatible measurements in a relational approach:

the notion of instantaneous measurement is replaced by the (observation of an) event, i.e. a point
P in the pre-symplectic space Z. a succession of instantaneous measurements gives a list of points

P(1),...,P(N) € Z, all sitting on the same orbit y

T
= 1 the average of a list of measurements requires
SRS J= T/O f(P(t))dt the choice of a 1-form, playing the role of dt

¢ a clock is a T-form 8 over Z such that 0 < / 0 < 400
YU

for all yu , open subset of an orbit y

the B-average of a partial observable f : = - R =

1
along an orbit v is defined by f(0,v) = +— / fo
f"],f 9 Y

4

2. f is a partial observable
¥, what about the measure?

ISSUE 1



statistical state on X

3. from p : I' — R one can be tempted by defining p = pow : ¥ — R, to get a statistical
state over 3. However, this is not a computable quantity: n requires to know the orbits

try to define a measure on X starting from the natural (regular and locally finite)
=>
measure . on T*C, induced by the symplectic form

consider (X,wx) a symplectic space and C : X — R, such that £ = C-'(0) and ws= wxs. Then X

¢ is naturally equipped with the Liouville measure pux, associated to the volume form @d™*/?
=> duz,c = 5(O)dM«X defines a measure on %
PN Mscis preserved under the (unphysical) time evolution generated by the constraint C
d
=ox(C) = [ JP(Po ) dusc(Po) = [ F(Po)dus.c(Po) Vr. ¥
but The measure psc depends crucially on the peculiar choice of constraint C. As the physics should

be entirely contained in the pre-symplectic structure (Z,ws), this measure has no physical
meaning so far, as physics should not depend on C

ISSUE 1



ergodicity and statistical state on X

4. try a different strategy: look again at the ergodic hypothesis as a starting tool

& the B-statistical state associated to an . - 0
orbit y is the linear functional Koz - f = f( 3'}')

defining a measure peyover X that satisfies

| fduor =75 [ f0 vrZoR
0,

=> gy depends a priori on the state y

® a partial observable f is called 6-ergodic if

a system is called 6-ergodic if every B
partial observable is 8-ergodic Mo,y = 1o V’)’ el

is our statistical state physically meaningful?? ...the notion of 6-ergodicity do play a role!

ISSUE 1



ergodicity and statistical state on X

£ if the system is 6-ergodic / f9 — JF(Q) / 0 vf& VP
’YPU TP,

0

use 9")’ = pg}cd'r, by integrating over P,with the 0 = a;dq" + 51‘1293‘
measure lzc and using the fact that it is preserved PYe

Op; T ¢

Po.Cc = &4

=>  f(0) = /fpa cdus,c Vf

fzﬂec Us,C

pe.cdus, c
|5 po.cdus,c

which defines the statistical state d,ng =

the statistical state peis entirely determined by the pre-symplectic structure (Z, ws) and
the choice of a clock 8. Thus, it is physically meaningful (at least for ergodic systems)

after choosing a clock 6, one can talk about statistical measurement for a general-
covariant system, in particular define 6-average. Equality between 6-average and
statistical average is used as a definition of the B-statistical state. This 6-statistical
state is very abstract but, assuming ergodicity, it can be written explicitly

summary

ISSUE 1



2 - thermodynamics: notion of subsystem

@ thermodynamics: we would need to consider multiple gen-cov systems

world is not made of systems that couple to each other, it is made

hil h , it (i i '
RN of “a big system” that we split (in our mind) into components

the goal becomes to find meaningful way of splitting systems and

=>
the approach to follow is somehow imposed by the system...

TWO MAIN CASES:

1. if orbits are 2-dimensional with two independent constraints, then the system can be seen
as the coupling of two subsystems: bottom up approach

e.g. relevant in GR, single point hamiltonian constraint in strong field limit; gas of relativistic
particles; extension to fields...

2. if orbits are 1-dimensional with a hamiltonian constraint which is the sum of two
independent ones, then the system can be seen as the coupling of two subsystems: top

down approach

e.g. relevant for the decoupling between the gravitational field and matter fields

ISSUE 2
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top down approach

define a generic splitting on X :

A mechanical system S, given by (Z,ws), splits into two non-interacting subsystems, S2@ and sb,
if it can be seen as a subspace of an extended phase space (X@ x XD, wxa + 0y ), defined by
a constraint of the form C = C2 + CP = 0

such splitting is characterised by:

¢ a foliation of the pre-symplectic space pBE— |_| 70 X E?b
[a+4Ib=0
where X”’:LJEG'G Xb:uz?b
Ia Ib
® the existence of a constant of motion I =1%=—J°:% 5 R

e Each (E%ugw}(ﬁ |z:c;q) (resp. b) is a pre-symplectic space, that can be

considered as a mechanical system by itself, noted S7a

ISSUE 2



top down approach

e.g.
non-relativistic systems naturally splits into a time part and a system foliated by surface
of constant energy
. b b ' - ' _71b
Y= || ZhxE% . ={®}=R =% ={(¢',p); Ho(¢", p;) = I’}
Te415=0
seen as subspaces of the symplectic space
X ={(tp)} x{(¢",pi)}  wx =dp: Adt+dp; Adqg'
with  C = p; + Ho(q',p;) =0
- O0H, . . OH -
and X ={(t,¢".p;))} wsx=———dg' Adt — —2dp; Adt + dp; A dg’
dq* Ip;
remark

Writing I the physical phase space associated to S and M,(resp ™) the one associated
to Sz (resp. SP). The foliation of the pre-symplectic space induce a foliation of the
physical phase space

[ = I_I re, x I, x Bt where, for all | € R, Al is a
. 5 5 one-dimensional space.
I1a4-1

ie. a degree of freedom (I,Al) lives on the boundary of the subsystems S2 and SP and is
lost if they are treated as independent mechanical systems.

ISSUE 2



3 - from stat mech to thermodynamics: microcanonical ensemble
reproduce now this structure for gen cov systems:

consider a general-covariant system S that splits into two non-interacting subsystems S@ and sb.
Imagine we are interested in measuring partial observables of the subsystem S2 (i.e. f : X8 = R),
using the subsystem Sb as a clock (i.e. 8 is a 1-form over Xb)

assuming B-ergodicity, one gets a family of statistical states, labeled by Ia

~8(C° — I%)dpxe
[6(C* = I*)dpxe

dpsa,

remarks

¢ as long as the subsystem Sj2ais B8-ergodic, the statistical states does not depend on the

clock 8 nor on the dynamics of the subsystem SP => the system SPis used as a
clock without specifying the 1-form 6

¢ we have one probability distribution for each value of 12. As 12 is not allowed to
vary, it would not mean anything to think about a probability distribution for

12 itself.

micro canonical ensemble => entropy and temperature cannot be defined yet

ISSUE 3



interaction and thermodynamics

in order to talk about equilibrium, entropy, temperature, etc. one needs (at least) one quantity
that can be exchanged between two subsystems such that its total amount remains constant

consider a general-covariant system S that splits into two weakly-interacting subsystems

Q
Sa, SPand one non-interacting system SC¢ used as a clock:

C=C*"+C(+V® +Cc°=0 x= || 8% B e 58
Ie41b41¢=0

¢ assuming ergodicity

d — 0(C* + C° + (V) + I°)duxaxxt
Hotle = T5(C* + CO + (V) + 19)dpiay xt

¢ assuming weak perturbation, the state factorises:

(S(Ca' — I{I)dﬁxa §(Cb — (Ia'b — Ia))dﬂxbdja’
d‘u’EG"b- - a b ab
b B f()—(c +G — 1 )douX”*xXb

where |2b = —|Cis the amount of “|” to be shared between S2and St

ISSUE 3



general-covariant equilibrium thermodynamics !

given the probability distribution of 13, IP, with fixed Iab

§(C® — I*)§6(C° — I)duxad
39([ﬂ:_[b;lTL-F_[b =:_[ab) — J1 ( ) g . ) HXxaGllxb
J6(Co+ Cb — I®®)dpxay xb

@ define the l-entropy of the system (a,b) by the usual formula S; =kglogp
additivity (1%, I% 1% + I° = I*®) « p*(I%) p°(I* — I?)

= Sy =S + SjU™ - 1)

b
% define the |-temperatures 1 _ dS? 1 _ dSI

T¢  dl= TP dI*

Finally, the equilibrium value of | is defined by maximizing the |-entropy S| or, equivalently,
by equal-temperatures T@= TP

formally these thermodynamical relation do not depend on the form of the clock!!

ISSUE 3



test the splitting structure: FRLW universe C.Rovelli, Class Quantum Gravity vol.10 (1993)

consider a homogeneous and isotropic universe (FLRW metric) d32 = —dt2 -+ (_],( ) g”dgj?’dg_jj
that contains a non-uniform electro-magnetic field

! /dt(—ﬁ V) &—Q—I-Nk + S
167G “ N ©

2rGp?  3Vka
= = N | - £ —
2 8 /dt ( SV SO ) + H,

S:

not generally covariant, most of the coordinate freedom has been fixed by using the homogeneity of
the gravitational field: there is a residual invariance under re-parametrisation of the coordinate time t

pre-symplectic structure given by C = — Sl p S %a + i f{

3V a 871G =4

plus the Gauss constraint...

V - T
H = /dSm\/ﬁng[g,E.{,A}(:B):EH ; ¥V = jdﬂ»"\/é_?

with

H = VvV~ /d3 (“-1/25 E'E? + gt “a[iAﬂa[kAﬂ)
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FRLW universe

Let’s restrict to the spatially flat case:

e

k=0 and H=V"! /dgﬂj ((ﬁjEiEj + 51“15;4;56[114‘1]@[&141])

® we want to describe the thermodynamics of the e.m. field, using the gravitational d.o.f.

as a clock: performing Fourier transformation, the constraint is equivalent to

i)
{a, pa}l (subsystem taken as a clock) — %pi + / Hydy — ()
0

lais fixed and has to be shared among the I — 2 9 7 7
different modes v of the electromagnetic field a - i v

assume a weak interaction => allow exchange of energy between the different modes of the
electro-magnetic field: the dynamical system fits exactly in the developed framework

assuming ergodicity, the statistical state for the electromagnetic field is independent
from the specific dynamics of {a, pa} (subsystem taken as a clock)

4
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FRLW universe

exactly what happens!

o~

® H.=HVa'ad e=H,a >=HVa*
o i 1
¢ black body like radiation (e(a)) = 40T (a)* = T(a)=— | —=
a
H is the hamiltonian of the electromagnetic field in euclidean space-time so the statistical state should be

the same as the usual one, i.e. given by Bose-Einstein statistics (or Maxwell-Boltzmann for the high
frequency modes)

p = o~ H/keT _ e—(4a)1/4/kb VvV H3/4

key point: instead of considering the conserved
quantity H we choose to call the energy

H H
ad

E(@) — H = %[f_f => 6(&) = -3y = energy density

remark the rate of the clock is reflected in the scale of the energy

ISSUE 3
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4 - bottom up approach

how do we couple two general covariant sys?

¢ consider two non-relativistic systems S2@ and SPdescribed by

X ={(t" pta,q"sPa)} , wxa = dpta A dt" +dps Ndq® , C* = pra + Ha(q", pa)

X0 = {(t pw. ", pp)} » wxv = dpw Adt® +dpy ANdg® , C° = py, + Hy (¢, pp)

¢ couple them in a general-covariant way, into a single system with two time observables:

X ={(t" pta, 4% Pa, t’ Ptv, ¢°, Pb) }
Wxa = dpig A\ dt® + dpg A dg® + dpwp, A dt® + dpp A dg®

C? = Pta T Hﬂ(qa:pa)
C® = py, + Hyp(q°, po)

® the surface of constraint is = = 3@x3b, the orbits are 2-dimensional and the physical
phase space is [ = Mx b

ISSUE 4



multi-fingered time

gauge fixing implies a choice of a subspace of co-dimension 1 in 2. The induced 2-
form generates 1-dimensional orbits which are curves in the previous 2-dimensional
orbits. The physical phase space remains unchanged: from the mechanical point of
view, no specific gauge fixing is preferred.

In each situation, there is a “natural” choice for the gauge fixing. Is
this special choice encoded in the physics of our system ?

is there a preferred choice of gauge from the thermodynamical point
of view?

the two questions are related...

ISSUE 4



gauge and coupling

the interaction between S@ and SP contains the

Idea
information about a preferred choice of gauge

Ha and Hb are both conserved quantities => any linear combination
of them is conserved. both system are at equilibrium independently
so any statistical state that is a product of equilibrium state is
allowed (no need for the temperatures to be equal)

no interaction: &

Ha and Hb are not conserved, only a well chosen combination
, _ aHa + BHb + Vab = aHa + BHb is
Interaction on:

in order to write (simply) a physically meaningful statistical state,
¢ it is crucial that the interaction does not depend on t (the
splitting between the clock and the rest should be perfect).

ISSUE 4



gauge and coupling

an instantaneous interaction among two systems with clocks which do not run the
same way (e.g. in different gravitational potentials) should contain a term of the

form x(t@/a — tb/B).

the preferred gauge choice: t2 = at, th = Bt is the

=> : . —_
natural one making the interaction independent of t

e.g. choose the gauge fixing condition {t38 = fa(t),tP = fO(t); t in IR}, then the
reduced system previously defined is described by the single constraint

dfe df?

pt+—H( YoDa) + g7 —~— Hy(q",pp) = 0

to get the specific form pt+Hp =0, allowing to write a statistical state for

the subsystem {g2,pa,q°,pb}, we need: t2@ =at+t3y and to =Bt+tb0

starting from a system with two times (i.e. two constraints, 2-dimensional
orbits), there might be a gauge choice such that, in the single constraint,
the interaction term does not depend on the clock variables. Only in that
case it is meaningful to write a statistical state

summary

ISSUE 4



discussion

1 - phase space & statistical state

we can do statistical mechanics for general covariant systems over Z,
that is in terms of partial observables

the systems we are interested in are weakly coupled to a measuring device,
=> sensitive to partial observable quantities, thus not predictable. However, the
value displayed by the measuring device should be predictable

new: previous work only considered statistical states over I

¢ the identification of a clock 6 plays a fundamental role => 6-ergodicity

after choosing a reasonable clock 8, one can talk about statistical
measurement for a general-covariant system, in particular define 6-average.
Equality between 6-average and statistical average is used as a definition of
the B-statistical state. This ©-statistical state is very abstract but, assuming
ergodicity, it can be written explicitly



discussion

2 - ensemble: notion of subsystem

¢ we can consistently define subsystems in the pre-symplectic formalism

clock and system live on two independent subsystems of the
pre-symplectic space

straightforward formal analogy with stat mech
(micro canonical ensemble)

3 - thermodynamics

® two weakly-interacting subsystems S2, SPand one non-interacting
system SCused as a clock

we define the l-entropy and |-temperatures and define the
equilibrium | value via entropy maximization

the usual definition of energy does not coincide with the
conserved quantity |



discussion

derivation meaningful only when the clock system is rigorously noninteracting
¢  (foliation preserving) somehow the equivalent of the tensorial structure
characterising a non-rel systems

important: thermodynamics of non-relativistic systems is contained
in the more general framework developed

general insight: as long as ergodicity is satisfied the
=> specific form of the clock does not play any role in
thermodynamics also in the non-relativistic case

4 - gauge fixing and interaction

o We can reduce multiple constrained systems in a single 1-d system by gauge fixing
and successively apply the procedure developed for deriving thermodynamics

the interaction between subsystem can be used to
naturally set a preferred choice of gauge

time independent
interaction

<=> thermodynamics



perspectives (= work in progress)

1 - define interesting physical examples

2 - extend to field theory

3 - extend to quantum mechanics
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