AD, JL, JP

motivation

full theory, full reduction

again full

constraints t 1st order

physical phase spac

QFT on quantum spacetime: a compatible classical framework

A Dapor, J Lewandowski, J Puchta

University of Warsaw

Tux, 28 February 2013

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

arXiv:1302.3038

AD, JL, JP

outline

motivation

full theory, full reduction

again full

constraints to 1 st order

physical phase space

1 motivation

2 full theory, full reduction

3 again full

4 constraints up to 1st order (aka no longer full)

5 physical phase space

<□> <@> < E> < E> E のQ@

AD, JL, JP

motivation

full theory, full reduction

again full

constraints to 1st order

physical phase space

1 motivation

2 full theory, full reduction

3 again full

4 constraints up to 1st order (aka no longer full)

(5) physical phase space

outline

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

AD, JL, JP

motivation

full theory, full reduction

again full

constraints 1st order

physical phase space

the goal:

classical framework for QFT on quantum (cosmological) spacetime

motivation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

AD, JL, JP

motivation

full theory, full reduction

again full

constraints t 1st order

physical phase space

the goal:

motivation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

classical framework for QFT on quantum (cosmological) spacetime Is the current framework not good? Let's recall it.

AD, JL, JP

motivation

full theory, full reduction

again full

constraints t 1st order

physical phase space

the goal:

classical framework for QFT on quantum (cosmological) spacetime Is the current framework not good? Let's recall it.

motivation

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Each dynamical variable γ (a coordinate in full phase space) is expanded

$$\gamma = \gamma^{(0)} + \epsilon \delta \gamma^{(1)} + \frac{1}{2} \epsilon^2 \delta \gamma^{(2)} + \dots$$

AD, JL, JP

motivation

full theory, full reduction

again full

constraints t 1st order

physical phase space

the goal:

classical framework for QFT on quantum (cosmological) spacetime Is the current framework not good? Let's recall it.

Each dynamical varialbe γ (a coordinate in full phase space) is expanded

$$\gamma = \gamma^{(0)} + \epsilon \delta \gamma^{(1)} + \frac{1}{2} \epsilon^2 \delta \gamma^{(2)} + \dots$$

This is a "dynamical expansion":

- $\gamma^{(0)}$ is solution of the 0th order equations (wait for it)
- $\delta \gamma^{(1)}$ is the 1st order correction, so $\gamma^{(0)} + \epsilon \delta \gamma^{(1)}$ is solution to 1st order equations
- and so on

motivation

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

AD, JL, JP

motivation

full theory, full reduction

again full

constraints t 1st order

physical phase space

the goal:

classical framework for QFT on quantum (cosmological) spacetime Is the current framework not good? Let's recall it.

Each dynamical variable γ (a coordinate in full phase space) is expanded

$$\gamma = \gamma^{(0)} + \epsilon \delta \gamma^{(1)} + \frac{1}{2} \epsilon^2 \delta \gamma^{(2)} + \dots$$

This is a "dynamical expansion":

- $\gamma^{(0)}$ is solution of the 0th order equations (wait for it)
- $\delta \gamma^{(1)}$ is the 1st order correction, so $\gamma^{(0)} + \epsilon \delta \gamma^{(1)}$ is solution to 1st order equations
- and so on

 \Rightarrow the kinematics is messed up: if I expand around homogeneous isotropic ST $q_{ab}^{(0)}$, then part of $\delta q_{ab}^{(1)}$ will be correction to the homogeneous isotropic sector, so that

$$\{\delta q_{ab}^{(1)}, \pi_{(0)}^{cd}\} \neq 0$$

motivation

AD, JL, JP

QFT on quantum

spacetime

full theory, full reduction

again full

constraints t 1st order

physical phase spac Two possibilities to avoid this problem:

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

QFT on quantum spacetime

AD, JL, JP

motivation

full theory, full reduction

again full

constraints t 1st order

physical phase space Two possibilities to avoid this problem:

 $1\;$ fix the background once and for all

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

QFT on quantum spacetime

AD, JL, JP

motivation

full theory, full reduction

again full

constraints to 1st order

physical phase space

Two possibilities to avoid this problem:

- 1 fix the background once and for all
- 2 forget about the "dynamical expansion" given above

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

QFT on quantum spacetime

AD, JL, JP

motivation

full theory, full reduction

again full

constraints to 1st order

physical phase space Two possibilities to avoid this problem:

- 1 fix the background once and for all
- 2 forget about the "dynamical expansion" given above

first possibility: what is done in standard cosmological perturbation theory

- 1a Fix FRW solution as a classical curved spacetime
- 1b Perturbations $\delta \gamma^{(1)}$ are considered as the only dynamical variables
- 1c QFT on curved spacetime construction is employed

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

QFT on quantum spacetime

AD, JL, JP

motivation

full theory, full reduction

again full

constraints t 1st order

physical phase spac Two possibilities to avoid this problem:

- 1 fix the background once and for all
- 2 forget about the "dynamical expansion" given above

first possibility: what is done in standard cosmological perturbation theory

- 1a Fix FRW solution as a classical curved spacetime
- 1b Perturbations $\delta \gamma^{(1)}$ are considered as the only dynamical variables
- 1c QFT on curved spacetime construction is employed

second possibility: not an expansion, but an exact splitting

$$\gamma = \gamma^{(0)} + \delta \gamma$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

QFT on quantum spacetime

AD, JL, JP

motivation

full theory, full reduction

again full

constraints to 1st order

physical phase spac Two possibilities to avoid this problem:

- 1 fix the background once and for all
- 2 forget about the "dynamical expansion" given above

first possibility: what is done in standard cosmological perturbation theory

- 1a Fix FRW solution as a classical curved spacetime
- 1b Perturbations $\delta \gamma^{(1)}$ are considered as the only dynamical variables
- 1c QFT on curved spacetime construction is employed

second possibility: not an expansion, but an exact splitting

$$\gamma = \gamma^{(0)} + \delta \gamma$$

This is a "kinematical splitting":

- $\gamma^{(0)}$ is the homogeneous isotropic component (not a solution to 0th equations)
- $\delta\gamma$ is the rest (inhomogeneous and anisotropic degrees of freedom)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

QFT on quantum spacetime

AD, JL, JP

motivation

full theory, full reduction

gain full

constraints t 1st order

hysical hase space Two possibilities to avoid this problem:

- 1 fix the background once and for all
- 2 forget about the "dynamical expansion" given above

first possibility: what is done in standard cosmological perturbation theory

- 1a Fix FRW solution as a classical curved spacetime
- 1b Perturbations $\delta \gamma^{(1)}$ are considered as the only dynamical variables
- 1c QFT on curved spacetime construction is employed

second possibility: not an expansion, but an exact splitting

 $\gamma = \gamma^{(0)} + \delta \gamma$

This is a "kinematical splitting":

- $\gamma^{(0)}$ is the homogeneous isotropic component (not a solution to 0th equations)
- $\delta\gamma$ is the rest (inhomogeneous and anisotropic degrees of freedom)
- \Rightarrow valid on the full phase space: it simply gives rise to a coordinate system on it.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

AD, JL, JP motivation

QFT on quantum spacetime

full theory, full reduction

again full

constraints t 1st order

physical phase space

We will follow the second solution, as it treats homogeneous and inhomogeneous dof's on the same footing:

you agree it's a better framework for quantizing perturbations and background

AD, JL, JP

outline

motivation

full theory, full reduction

again full

constraints to 1st order

physical phase space

1 motivation

2 full theory, full reduction

3 again full

4 constraints up to 1st order (aka no longer full)

(5) physical phase space

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

AD, JL, JP

motivation

full theory, full reduction

again full

constraints to 1st order

physical phase spac

full theory

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • 9 < @</p>

AD, JL, JP

motivation

full theory, full reduction

again full

constraints t 1st order

physical phase spac

$S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa} R - \frac{1}{2} g^{\mu\nu} \partial_{\mu} T \partial_{\nu} T - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right]$

where $\kappa = 8\pi G$.

Action:

full theory

▲□▶ ▲課▶ ▲注▶ ★注▶ … 注: のへぐ

AD, JL, JP

Action:

motivation

full theory, full reduction

again full

constraints t 1st order

physical phase space

$S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa} R - \frac{1}{2} g^{\mu\nu} \partial_{\mu} T \partial_{\nu} T - \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi \right]$

where $\kappa = 8\pi G$. Three sectors:

- the geometric (G) sector, associated to the metric $g_{\mu\nu}$
- the time (T) sector, a K-G "clock field" T
- the matter (M) sector, a K-G "matter field" ϕ

full theory

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

AD, JL, JP

Action:

motivation

full theory, full reduction

- again full
- constraints 1st order

physical phase spac

$S = \int d^4x \sqrt{-g} \left[\frac{1}{2\kappa} R - \frac{1}{2} g^{\mu\nu} \partial_\mu T \partial_\nu T - \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi \right]$

where $\kappa = 8\pi G$. Three sectors:

- the geometric (G) sector, associated to the metric $g_{\mu\nu}$
- the time (T) sector, a K-G "clock field" T
- the matter (M) sector, a K-G "matter field" ϕ

Hamiltonian analysis (ADM): kinematical phase space $\Gamma = \Gamma_G \times \Gamma_T \times \Gamma_M$ with $\{q_{ab}(x), \pi^{cd}(y)\} = \delta_a^{(c} \delta_b^{(d)} \delta^{(3)}(x, y), \quad \{T(x), p_T(y)\} = \delta^{(3)}(x, y), \quad \{\phi(x), \pi_{\phi}(y)\} = \delta^{(3)}(x, y)$ and constraints

$$\begin{cases} C = \frac{2\kappa}{\sqrt{q}} \left[\pi_{ab} \pi^{ab} - \frac{1}{2} (q_{ab} \pi^{ab})^2 \right] - \frac{\sqrt{q}}{2\kappa} R^{(3)} + \frac{1}{2\sqrt{q}} p_T^2 + \frac{\sqrt{q}}{2} q^{ab} \partial_a T \partial_b T + \frac{1}{2\sqrt{q}} \pi_{\phi}^2 + \frac{\sqrt{q}}{2} q^{ab} \partial_a \phi \partial_b \phi \\ C_a = -2q_{ac} \nabla_b \pi^{bc} + p_T \partial_a T + \pi_{\phi} \partial_a \phi \end{cases}$$

full theory

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

AD, JL, JP

motivation

full theory, full reduction

again full

constraints 1st order

physical phase space

full reduction: kinematics

(日)

(日)
(日)

(日)
(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)

(日)
</p

We perform here the full reduction to homogeneous and isotropic sector. This is done to introduce notation, and to show how *not* to do in our framework.

AD, JL, JP

motivation

full theory, full reduction

again full

constraints t 1st order

physical phase space

full reduction: kinematics

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We perform here the full reduction to homogeneous and isotropic sector. This is done to introduce notation, and to show how *not* to do in our framework.

Cauchy surface $\Sigma = \mathbb{T}^3$, fiducial coordinates $(x^a) \in [0, 1)^3$.

AD, JL, JP

motivation

full theory, full reduction

again full

constraints t 1st order

physical phase space

full reduction: kinematics

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We perform here the full reduction to homogeneous and isotropic sector. This is done to introduce notation, and to show how *not* to do in our framework.

Cauchy surface $\Sigma = \mathbb{T}^3$, fiducial coordinates $(x^a) \in [0, 1)^3$. We consider the sector

 $\Gamma^{(0)} = \Gamma_G^{(0)} \times \Gamma_T^{(0)} \times \Gamma_M^{(0)} \quad \subset \quad \Gamma_G \times \Gamma_T \times \Gamma_M$

where

AD, JL, JP

motivation

full theory, full reduction

again full

constraints t 1st order

physical phase space

full reduction: kinematics

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We perform here the full reduction to homogeneous and isotropic sector. This is done to introduce notation, and to show how *not* to do in our framework.

Cauchy surface $\Sigma = \mathbb{T}^3$, fiducial coordinates $(x^a) \in [0, 1)^3$. We consider the sector

 $\Gamma^{(0)} = \Gamma^{(0)}_G \times \Gamma^{(0)}_T \times \Gamma^{(0)}_M \quad \subset \quad \Gamma_G \times \Gamma_T \times \Gamma_M$

where

• $\Gamma_G^{(0)}$ consists of $(q_{ab}^{(0)}, \pi_{(0)}^{ab})$ with

$$q_{ab}^{(0)}(x) = e^{2\alpha}\delta_{ab}, \quad \pi_{(0)}^{ab}(x) = \frac{\pi_{\alpha}e^{-2\alpha}}{6}\delta^{ab}$$

AD, JL, JP

motivation

full theory, full reduction

again full

constraints t 1st order

physical phase space

full reduction: kinematics

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We perform here the full reduction to homogeneous and isotropic sector. This is done to introduce notation, and to show how *not* to do in our framework.

Cauchy surface $\Sigma = \mathbb{T}^3$, fiducial coordinates $(x^a) \in [0, 1)^3$. We consider the sector

 $\Gamma^{(0)} = \Gamma^{(0)}_G \times \Gamma^{(0)}_T \times \Gamma^{(0)}_M \quad \subset \quad \Gamma_G \times \Gamma_T \times \Gamma_M$

where

• $\Gamma_G^{(0)}$ consists of $(q_{ab}^{(0)}, \pi_{(0)}^{ab})$ with

$$q_{ab}^{(0)}(x) = e^{2\alpha}\delta_{ab}, \quad \pi_{(0)}^{ab}(x) = \frac{\pi_{\alpha}e^{-2\alpha}}{6}\delta^{ab}$$

• $\Gamma_T^{(0)}$ is parametrized by hom. scalar field and its momentum, $(T^{(0)}, p_T^{(0)})$.

AD, JL, JP

motivation

full theory, full reduction

again full

constraints t 1st order

physical phase space

full reduction: kinematics

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We perform here the full reduction to homogeneous and isotropic sector. This is done to introduce notation, and to show how *not* to do in our framework.

Cauchy surface $\Sigma = \mathbb{T}^3$, fiducial coordinates $(x^a) \in [0, 1)^3$. We consider the sector

 $\Gamma^{(0)} = \Gamma^{(0)}_G \times \Gamma^{(0)}_T \times \Gamma^{(0)}_M \quad \subset \quad \Gamma_G \times \Gamma_T \times \Gamma_M$

where

• $\Gamma_G^{(0)}$ consists of $(q_{ab}^{(0)}, \pi_{(0)}^{ab})$ with

$$q_{ab}^{(0)}(x) = e^{2\alpha}\delta_{ab}, \quad \pi_{(0)}^{ab}(x) = \frac{\pi_{\alpha}e^{-2\alpha}}{6}\delta^{ab}$$

- $\Gamma_T^{(0)}$ is parametrized by hom. scalar field and its momentum, $(T^{(0)}, p_T^{(0)})$.
- ϕ is *test* field, i.e. at 0th order vanishes: $\phi^{(0)} = 0, \pi_{\phi}^{(0)} = 0 \Rightarrow \Gamma_M^{(0)} = (0, 0).$

AD, JL, JP

motivation

full theory, full reduction

again full

constraints 1st order

physical phase spac

full reduction: dynamics

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

Only non-vanishing constraint is the homogeneous part of C:

$$C^{(0)}(N) = \int d^3x N(x) C^{(0)}(x) = e^{-3\alpha} \left[\frac{1}{2} (p_T^{(0)})^2 - \frac{\kappa}{12} \pi_\alpha^2 \right] \int d^3x N(x)$$

AD, JL, JP

motivation

full theory, full reduction

again full

constraints 1st order

physical phase space

full reduction: dynamics

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Only non-vanishing constraint is the homogeneous part of C:

$$C^{(0)}(N) = \int d^3x N(x) C^{(0)}(x) = e^{-3\alpha} \left[\frac{1}{2} (p_T^{(0)})^2 - \frac{\kappa}{12} \pi_\alpha^2 \right] \int d^3x N(x)$$

The intersection $\Gamma^{(0)} \cap \Gamma_C$ consists of points representing ST of the FRW type

 $g^{(0)}_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^2 + e^{2\alpha(t)}\delta_{ab}dx^a dx^b$

filled with a homogeneous scalar field $T = T^{(0)}(t)$.

AD, JL, JP

motivation

full theory, full reduction

again full

constraints 1st order

physical phase space

full reduction: dynamics

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Only non-vanishing constraint is the homogeneous part of C:

$$C^{(0)}(N) = \int d^3x N(x) C^{(0)}(x) = e^{-3\alpha} \left[\frac{1}{2} (p_T^{(0)})^2 - \frac{\kappa}{12} \pi_\alpha^2 \right] \int d^3x N(x)$$

The intersection $\Gamma^{(0)} \cap \Gamma_C$ consists of points representing ST of the FRW type

 $g^{(0)}_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^2 + e^{2\alpha(t)}\delta_{ab}dx^a dx^b$

filled with a homogeneous scalar field $T = T^{(0)}(t)$. Hamilton eq. with $C^{(0)}(0) \Rightarrow t$ -dependence:

$$\begin{cases} \dot{\alpha} &= -\frac{\kappa}{6}e^{-3\alpha}\pi_{\alpha} \\ \dot{\pi}_{\alpha} &= \frac{3}{2}e^{-3\alpha}(p_{T}^{(0)})^{2} - \frac{\kappa}{4}e^{-3\alpha}\pi_{\alpha}^{2} \\ \dot{T}^{(0)} &= e^{-3\alpha}p_{T}^{(0)} \\ \dot{p}_{T}^{(0)} &= 0 \end{cases}$$

In other words: $g^{(0)}_{\mu\nu}$ satisfies Einstein eq sourced by a homogeneous field $T^{(0)}$, which satisfies K-G eq on a spacetime of the FRW type $g^{(0)}_{\mu\nu}$.

AD, JL, JP

motivatio

full theory, full reduction

again full

constraints to 1st order

physical phase space

1 motivation

2 full theory, full reduction

3 again full

4 constraints up to 1st order (aka no longer full)

(5) physical phase space

outline

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ○ のへで

AD, JL, JP

motivation

full theory, full reduction

again full

constraints to 1st order

physical phase spac

the programme

AD, JL, JP

motivation

full theory, full reductio

again full

constraints t 1st order

physical phase spac

the programme

In our framework, we consider the full phase space, with coordinates defined as

$$\begin{array}{rcl} \alpha & = & \frac{1}{2} \ln \left(\frac{1}{3} \delta^{ab} \int_{\Sigma} d^3 x q_{ab} \right) \\ \pi_{\alpha} & = & 2e^{2\alpha} \delta_{ab} \int_{\Sigma} d^3 x \pi^{ab} \\ T^{(0)} & = & \int_{\Sigma} d^3 x T \\ p_T^{(0)} & = & \int_{\Sigma} d^3 x p_T \end{array}$$

AD, JL, JP

motivation

full theory, full reductio

again full

constraints t 1st order

physical phase space and

the programme

In our framework, we consider the full phase space, with coordinates defined as

 $\begin{cases} \alpha &= \frac{1}{2} \ln \left(\frac{1}{3} \delta^{ab} \int_{\Sigma} d^3 x q_{ab} \right) \\ \pi_{\alpha} &= 2e^{2\alpha} \delta_{ab} \int_{\Sigma} d^3 x \pi^{ab} \\ T^{(0)} &= \int_{\Sigma} d^3 x T \\ p_T^{(0)} &= \int_{\Sigma} d^3 x p_T \end{cases}$

 $\begin{cases} \delta q_{ab}(x) = q_{ab}(x) - e^{2\alpha} \delta_{ab} \\ \delta \pi^{ab}(x) = \pi^{ab}(x) - \frac{\pi_{\alpha}}{6} e^{-2\alpha} \delta^{ab} \\ \delta T(x) = T(x) - T^{(0)} \\ \delta p_T(x) = p_T(x) - p_T^{(0)} \\ \delta \phi(x) = \phi(x) \\ \delta \pi_{\phi}(x) = \pi_{\phi}(x) \end{cases}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

AD, JL, JP

motivation

full theory, full reductio

again full

constraints t 1st order

physical phase space and

In our framework, we consider the full phase space, with coordinates defined as

 $\begin{cases} \alpha &= \frac{1}{2} \ln \left(\frac{1}{3} \delta^{ab} \int_{\Sigma} d^3 x q_{ab} \right) \\ \pi_{\alpha} &= 2e^{2\alpha} \delta_{ab} \int_{\Sigma} d^3 x \pi^{ab} \\ T^{(0)} &= \int_{\Sigma} d^3 x T \\ p_T^{(0)} &= \int_{\Sigma} d^3 x p_T \end{cases}$

 $\begin{cases} \delta q_{ab}(x) = q_{ab}(x) - e^{2\alpha} \delta_{ab} \\ \delta \pi^{ab}(x) = \pi^{ab}(x) - \frac{\pi_{\alpha}}{6} e^{-2\alpha} \delta^{ab} \\ \delta T(x) = T(x) - T^{(0)} \\ \delta p_T(x) = p_T(x) - p_T^{(0)} \\ \delta \phi(x) = \phi(x) \\ \delta \pi_{\phi}(x) = \pi_{\phi}(x) \end{cases}$

▲□▶▲□▶▲□▶▲□▶ □ のQで

In this coordinates we:

AD, JL, JP

motivation

full theory, full reductio

again full

constraints t 1st order

physical phase space and

In our framework, we consider the full phase space, with coordinates defined as

 $\begin{cases} \alpha &= \frac{1}{2} \ln \left(\frac{1}{3} \delta^{ab} \int_{\Sigma} d^3 x q_{ab} \right) \\ \pi_{\alpha} &= 2e^{2\alpha} \delta_{ab} \int_{\Sigma} d^3 x \pi^{ab} \\ T^{(0)} &= \int_{\Sigma} d^3 x T \\ p_T^{(0)} &= \int_{\Sigma} d^3 x p_T \end{cases}$

the programme

▲□▶▲□▶▲□▶▲□▶ □ のQで

 $\begin{cases} \delta q_{ab}(x) &= q_{ab}(x) - e^{2\alpha} \delta_{ab} \\ \delta \pi^{ab}(x) &= \pi^{ab}(x) - \frac{\pi_{\alpha}}{6} e^{-2\alpha} \delta^{ab} \\ \delta T(x) &= T(x) - T^{(0)} \\ \delta p_T(x) &= p_T(x) - p_T^{(0)} \\ \delta \phi(x) &= \phi(x) \\ \delta \pi_{\phi}(x) &= \pi_{\phi}(x) \end{cases}$

In this coordinates we:

1 solve the *full* constraints of the theory
AD, JL, JP

motivation

full theory, full reduction

again full

constraints t 1st order

physical phase space and

In our framework, we consider the full phase space, with coordinates defined as

 $\begin{cases} \alpha &= \frac{1}{2} \ln \left(\frac{1}{3} \delta^{ab} \int_{\Sigma} d^3 x q_{ab} \right) \\ \pi_{\alpha} &= 2e^{2\alpha} \delta_{ab} \int_{\Sigma} d^3 x \pi^{ab} \\ T^{(0)} &= \int_{\Sigma} d^3 x T \\ p_T^{(0)} &= \int_{\Sigma} d^3 x p_T \end{cases}$

the programme

▲□▶▲□▶▲□▶▲□▶ □ のQで

 $\begin{cases} \delta q_{ab}(x) = q_{ab}(x) - e^{2\alpha} \delta_{ab} \\ \delta \pi^{ab}(x) = \pi^{ab}(x) - \frac{\pi_{\alpha}}{6} e^{-2\alpha} \delta^{ab} \\ \delta T(x) = T(x) - T^{(0)} \\ \delta p_T(x) = p_T(x) - p_T^{(0)} \\ \delta \phi(x) = \phi(x) \\ \delta \pi_{\phi}(x) = \pi_{\phi}(x) \end{cases}$

In this coordinates we:

- 1 solve the *full* constraints of the theory
- **2** reduce to the constraint surface Γ_C

AD, JL, JP

motivation

full theory, full reduction

again full

constraints t 1st order

physical phase space In our framework, we consider the full phase space, with coordinates defined as

 $\begin{cases} \alpha &= \frac{1}{2} \ln \left(\frac{1}{3} \delta^{ab} \int_{\Sigma} d^3 x q_{ab} \right) \\ \pi_{\alpha} &= 2e^{2\alpha} \delta_{ab} \int_{\Sigma} d^3 x \pi^{ab} \\ T^{(0)} &= \int_{\Sigma} d^3 x T \\ p_T^{(0)} &= \int_{\Sigma} d^3 x p_T \end{cases}$

the programme

▲□▶▲□▶▲□▶▲□▶ □ のQで

and

$\delta q_{ab}(x)$	=	$q_{ab}(x) - e^{2\alpha}\delta_{ab}$
$\delta \pi^{ab}(x)$	=	$\pi^{ab}(x) - \frac{\pi_{\alpha}}{6}e^{-2\alpha}\delta^{ab}$
$\delta T(x)$	=	$T(x) - T^{(0)}$
$\delta p_T(x)$	=	$p_T(x) - p_T^{(0)}$
$\delta \phi(x)$	=	$\phi(x)$
$\delta \pi_{\phi}(x)$	=	$\pi_{\phi}(x)$

In this coordinates we:

- 1 solve the *full* constraints of the theory
- **2** reduce to the constraint surface Γ_C
- **(3)** study the gauge transformations generated by the constraints and restrict to Γ_P

AD, JL, JP

motivation

full theory, full reduction

again full

constraints t 1st order

physical phase space and

In our framework, we consider the full phase space, with coordinates defined as

 $\begin{cases} \alpha &= \frac{1}{2} \ln \left(\frac{1}{3} \delta^{ab} \int_{\Sigma} d^{3} x q_{ab} \right) \\ \pi_{\alpha} &= 2e^{2\alpha} \delta_{ab} \int_{\Sigma} d^{3} x \pi^{ab} \\ T^{(0)} &= \int_{\Sigma} d^{3} x T \\ p_{T}^{(0)} &= \int_{\Sigma} d^{3} x p_{T} \end{cases}$

 $\begin{cases} \delta q_{ab}(x) = q_{ab}(x) - e^{2\alpha} \delta_{ab} \\ \delta \pi^{ab}(x) = \pi^{ab}(x) - \frac{\pi_a}{6} e^{-2\alpha} \delta^{ab} \\ \delta T(x) = T(x) - T^{(0)} \\ \delta p_T(x) = p_T(x) - p_T^{(0)} \\ \delta \phi(x) = \phi(x) \\ \delta \pi_{\phi}(x) = \pi_{\phi}(x) \end{cases}$

In this coordinates we:

- 1 solve the *full* constraints of the theory
- **2** reduce to the constraint surface Γ_C
- **(3)** study the gauge transformations generated by the constraints and restrict to Γ_P
- ④ construct the algebra of basic Dirac observables

the programme

▲□▶▲□▶▲□▶▲□▶ □ のQで

AD, JL, JP

motivation

full theory, full reduction

again full

constraints t 1st order

physical phase space and

In our framework, we consider the full phase space, with coordinates defined as

 $\begin{cases} \alpha &= \frac{1}{2} \ln \left(\frac{1}{3} \delta^{ab} \int_{\Sigma} d^3 x q_{ab} \right) \\ \pi_{\alpha} &= 2e^{2\alpha} \delta_{ab} \int_{\Sigma} d^3 x \pi^{ab} \\ T^{(0)} &= \int_{\Sigma} d^3 x T \\ p_T^{(0)} &= \int_{\Sigma} d^3 x p_T \end{cases}$

 $\begin{cases} \delta q_{ab}(x) = q_{ab}(x) - e^{2\alpha} \delta_{ab} \\ \delta \pi^{ab}(x) = \pi^{ab}(x) - \frac{\pi_{\alpha}}{6} e^{-2\alpha} \delta^{ab} \\ \delta T(x) = T(x) - T^{(0)} \\ \delta p_T(x) = p_T(x) - p_T^{(0)} \\ \delta \phi(x) = \phi(x) \\ \delta \pi_{\phi}(x) = \pi_{\phi}(x) \end{cases}$

In this coordinates we:

- 1 solve the *full* constraints of the theory
- **2** reduce to the constraint surface Γ_C
- **(3)** study the gauge transformations generated by the constraints and restrict to Γ_P
- ④ construct the algebra of basic Dirac observables
- **§** study the 1-dimensional group of automorphisms on it parametrized by $T^{(0)}$

the programme

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

AD, JL, JP

motivation

full theory, full reduction

again full

constraints t 1st order

physical phase space and

In our framework, we consider the full phase space, with coordinates defined as

$$\begin{array}{rcl} \alpha & = & \frac{1}{2} \ln \left(\frac{1}{3} \delta^{ab} \int_{\Sigma} d^3 x q_{ab} \right) \\ \pi_{\alpha} & = & 2 e^{2\alpha} \delta_{ab} \int_{\Sigma} d^3 x \pi^{ab} \\ T^{(0)} & = & \int_{\Sigma} d^3 x T \\ p_T^{(0)} & = & \int_{\Sigma} d^3 x p_T \end{array}$$

 $\begin{cases} \delta q_{ab}(x) = q_{ab}(x) - e^{2\alpha} \delta_{ab} \\ \delta \pi^{ab}(x) = \pi^{ab}(x) - \frac{\pi_a}{6} e^{-2\alpha} \delta^{ab} \\ \delta T(x) = T(x) - T^{(0)} \\ \delta p_T(x) = p_T(x) - p_T^{(0)} \\ \delta \phi(x) = \phi(x) \\ \delta \pi_{\phi}(x) = \pi_{\phi}(x) \end{cases}$

In this coordinates we:

- 1 solve the *full* constraints of the theory
- **2** reduce to the constraint surface Γ_C
- **(3)** study the gauge transformations generated by the constraints and restrict to Γ_P
- ④ construct the algebra of basic Dirac observables
- **§** study the 1-dimensional group of automorphisms on it parametrized by $T^{(0)}$
- (6) find the physical Hamiltonian (generator of such group)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

AD, JL, JP

motivation

full theory, full reduction

again full

constraints t 1st order

physical phase space and

In our framework, we consider the full phase space, with coordinates defined as

 $\begin{cases} \alpha &= \frac{1}{2} \ln \left(\frac{1}{3} \delta^{ab} \int_{\Sigma} d^{3} x q_{ab} \right) \\ \pi_{\alpha} &= 2e^{2\alpha} \delta_{ab} \int_{\Sigma} d^{3} x \pi^{ab} \\ T^{(0)} &= \int_{\Sigma} d^{3} x T \\ p_{T}^{(0)} &= \int_{\Sigma} d^{3} x p_{T} \end{cases}$

 $\begin{cases} \delta q_{ab}(x) = q_{ab}(x) - e^{2\alpha} \delta_{ab} \\ \delta \pi^{ab}(x) = \pi^{ab}(x) - \frac{\pi_{\alpha}}{6} e^{-2\alpha} \delta^{ab} \\ \delta T(x) = T(x) - T^{(0)} \\ \delta p_T(x) = p_T(x) - p_T^{(0)} \\ \delta \phi(x) = \phi(x) \\ \delta \pi_{\phi}(x) = \pi_{\phi}(x) \end{cases}$

In this coordinates we:

- 1 solve the *full* constraints of the theory
- **2** reduce to the constraint surface Γ_C
- **(3)** study the gauge transformations generated by the constraints and restrict to Γ_P
- ④ construct the algebra of basic Dirac observables
- **§** study the 1-dimensional group of automorphisms on it parametrized by $T^{(0)}$
- **6** find the physical Hamiltonian (generator of such group)
- go home and find a real job

the programme

AD, JL, JP

motivation

full theory, full reduction

again full

constraints to 1st order

physical phase spac

except that ...

AD, JL, JP

motivation

full theory, full reduction

again full

constraints to 1st order

physical phase space

except that...

... we do it up to linear order.

except that...

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

... we do it up to linear order.

QFT on quantum spacetime

AD, JL, JP

again full

More precisely: in order to see explicit expressions, we implement the canonical programme expanding the full constraints in $\delta\gamma$ and keeping track of the results of the calculations up to the 1st order only.

except that ...

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

... we do it up to linear order.

More precisely: in order to see explicit expressions, we implement the canonical programme expanding the full constraints in $\delta\gamma$ and keeping track of the results of the calculations up to the 1st order only.

 \Rightarrow background variables $\alpha, \pi_{\alpha}, T^{(0)}, p_T^{(0)}$ do obey the 0th order dynamics, as in the standard framework.

AD, JL, JP

QFT on quantum spacetime

full theory, full reduction

again full

constraints 1st order

physical phase space

except that ...

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

... we do it up to linear order.

QFT on quantum spacetime

AD, JL, JP

again full

More precisely: in order to see explicit expressions, we implement the canonical programme expanding the full constraints in $\delta\gamma$ and keeping track of the results of the calculations up to the 1st order only.

 \Rightarrow background variables $\alpha, \pi_{\alpha}, T^{(0)}, p_T^{(0)}$ do obey the 0th order dynamics, as in the standard framework.

However, our framework

- allows to continue to higher orders
- shows that the usual gauge-invariant dof's are observables only up to 1st order and have non-trivial Poisson algebra with the background

AD, JL, JP

motivation

full theory, full reduction

again full

constraints t 1st order

physical phase spac

first thing to do: Fourier-transform

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Flying over the subtleties, we associate to each field $\gamma(x)$ a real Fourier transformed field $\check{\gamma}(k)$ where $k \in \mathcal{L} = (2\pi\mathbb{Z})^3$.

AD, JL, JP

motivation

full theory, full reductio

again full

constraints 1st order

physical phase space

first thing to do: Fourier-transform

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Flying over the subtleties, we associate to each field $\gamma(x)$ a real Fourier transformed field $\check{\gamma}(k)$ where $k \in \mathcal{L} = (2\pi\mathbb{Z})^3$.

k = 0 components comprise the homogeneous dof's:

 $\check{T}(0) = T^{(0)}, \quad \check{p}_T(0) = p_T^{(0)}$

AD, JL, JP

motivation

full theory, full reductio

again full

constraints t 1st order

physical phase spac

first thing to do: Fourier-transform

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Flying over the subtleties, we associate to each field $\gamma(x)$ a real Fourier transformed field $\check{\gamma}(k)$ where $k \in \mathcal{L} = (2\pi\mathbb{Z})^3$.

k = 0 components comprise the homogeneous dof's:

$$\check{T}(0) = T^{(0)}, \quad \check{p}_T(0) = p_T^{(0)}$$

As for the metric dof's, we separate the isotropic part from the rest:

 α , π_{α} , $\delta \check{q}_{ab}(0)$, $\delta \check{\pi}^{ab}(0)$

such that $\delta^{ab}\delta\check{q}_{ab}(0) = \delta_{ab}\delta\check{\pi}^{ab}(0) = 0.$

AD, JL, JP

motivation

full theory, full reductio

again full

constraints t 1st order

physical phase spac

first thing to do: Fourier-transform

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Flying over the subtleties, we associate to each field $\gamma(x)$ a real Fourier transformed field $\check{\gamma}(k)$ where $k \in \mathcal{L} = (2\pi\mathbb{Z})^3$.

k = 0 components comprise the homogeneous dof's:

$$\breve{T}(0) = T^{(0)}, \ \breve{p}_T(0) = p_T^{(0)}$$

As for the metric dof's, we separate the isotropic part from the rest:

 α , π_{α} , $\delta \check{q}_{ab}(0)$, $\delta \check{\pi}^{ab}(0)$

such that $\delta^{ab} \delta \check{q}_{ab}(0) = \delta_{ab} \delta \check{\pi}^{ab}(0) = 0$. $k \neq 0$ components of $\delta \check{q}_{ab}$ and $\delta \check{\pi}^{ab}$ are traceless symmetric 3 × 3 matrices: expanding them on the basis $\{A^m_{ab}\}$ with m = 1, 2, ..., 6, we get

 $q_m(k) := A_m^{ab}(k)\delta \breve{q}_{ab}(k), \quad p^m(k) := A_{ab}^m(k)\delta \breve{\pi}^{ab}(k)$

AD, JL, JP

motivation

full theory, full reductio

again full

constraints t 1st order

physical phase spac

first thing to do: Fourier-transform

Flying over the subtleties, we associate to each field $\gamma(x)$ a real Fourier transformed field $\check{\gamma}(k)$ where $k \in \mathcal{L} = (2\pi\mathbb{Z})^3$.

k = 0 components comprise the homogeneous dof's:

$$\breve{T}(0) = T^{(0)}, \ \breve{p}_T(0) = p_T^{(0)}$$

As for the metric dof's, we separate the isotropic part from the rest:

 α , π_{α} , $\delta \check{q}_{ab}(0)$, $\delta \check{\pi}^{ab}(0)$

such that $\delta^{ab} \delta \check{q}_{ab}(0) = \delta_{ab} \delta \check{\pi}^{ab}(0) = 0$. $k \neq 0$ components of $\delta \check{q}_{ab}$ and $\delta \check{\pi}^{ab}$ are traceless symmetric 3 × 3 matrices: expanding them on the basis $\{A^m_{ab}\}$ with m = 1, 2, ..., 6, we get

 $q_m(k) := A_m^{ab}(k)\delta \breve{q}_{ab}(k), \quad p^m(k) := A_{ab}^m(k)\delta \breve{\pi}^{ab}(k)$

Canonical Poisson algebra induces the following algebra on the new variables:

 $\{\alpha, \pi_{\alpha}\} = 1, \quad \{T^{(0)}, p_{T}^{(0)}\} = 1, \quad \{\delta \check{q}_{ab}(0), \delta \check{\pi}^{cd}(0)\} = \delta_{(a}^{c} \delta_{b)}^{d} - \frac{1}{3} \delta^{cd} \delta_{ab}$ $\{q_{m}(k), p^{n}(k')\} = \delta_{m}^{n} \delta_{k,k'}, \quad \{\delta \check{T}(k), \delta \check{p}_{T}(k')\} = \delta_{k,k'}, \quad \{\delta \check{\phi}(k), \delta \check{\pi}_{\phi}(k')\} = \delta_{k,k'}$

AD, JL, JP

outline

motivation

full theory, full reduction

again full

constraints to 1st order

physical phase space

1 motivation

2 full theory, full reduction

3 again full

4 constraints up to 1st order (aka no longer full)

(5) physical phase space

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

AD, JL, JP

linearized constraints

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

motivation

full theory, full reduction

again full

constraints to 1st order

physical phase spac

AD, JL, JP

motivation

full theory, full reduction

again full

constraints to 1st order

physical phase space

linearized constraints

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Replace the splitting $\gamma = \gamma^{(0)} + \delta \gamma$ in the constraints, and expand for small $\delta \gamma$:

 $C(x) = C^{(0)}(x) + C^{(1)}(x) + C^{(2)}(x) + \dots, \qquad C_a(x) = C_a^{(0)}(x) + C_a^{(1)}(x) + C_a^{(2)}(x) + \dots$

linearized constraints

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Replace the splitting $\gamma = \gamma^{(0)} + \delta \gamma$ in the constraints, and expand for small $\delta \gamma$:

QFT on quantum

spacetime AD, JL, JP

constraints to 1st order

$$C(x) = C^{(0)}(x) + C^{(1)}(x) + C^{(2)}(x) + \dots, \qquad C_a(x) = C_a^{(0)}(x) + C_a^{(1)}(x) + C_a^{(2)}(x) + \dots$$

Now, make a real Fourier-transform of the constraints. Using some facts, we get

$$\begin{split} \check{C}(0) &= C^{(0)} + \int d^3x C^{(2)}(x) + O(\delta\gamma^3), \qquad \check{C}_a(0) = O(\delta\gamma^2) \\ \check{C}(k) &= \frac{i^{(1-\operatorname{sgn}(k))/2}}{\sqrt{2}} \int d^3x \left(e^{ik\cdot x} + \operatorname{sgn}(k) e^{-ik\cdot x} \right) \left[C^{(1)}(x) + O(\delta\gamma^2) \right] \\ \check{C}_a(k) &= \frac{i^{(1-\operatorname{sgn}(k))/2}}{\sqrt{2}} \int d^3x \left(e^{ik\cdot x} + \operatorname{sgn}(k) e^{-ik\cdot x} \right) \left[C^{(1)}_a(x) + O(\delta\gamma^2) \right] \end{split}$$

linearized constraints

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Replace the splitting $\gamma = \gamma^{(0)} + \delta \gamma$ in the constraints, and expand for small $\delta \gamma$:

$$C(x) = C^{(0)}(x) + C^{(1)}(x) + C^{(2)}(x) + \dots, \qquad C_a(x) = C_a^{(0)}(x) + C_a^{(1)}(x) + C_a^{(2)}(x) + \dots$$

Now, make a real Fourier-transform of the constraints. Using some facts, we get

$$\begin{split} \check{C}(0) &= C^{(0)} + \int d^3x C^{(2)}(x) + O(\delta\gamma^3), \qquad \check{C}_a(0) = O(\delta\gamma^2) \\ \check{C}(k) &= \frac{i^{(1-\operatorname{sgn}(k))/2}}{\sqrt{2}} \int d^3x \left(e^{ik\cdot x} + \operatorname{sgn}(k) e^{-ik\cdot x} \right) \left[C^{(1)}(x) + O(\delta\gamma^2) \right] \\ \check{C}_a(k) &= \frac{i^{(1-\operatorname{sgn}(k))/2}}{\sqrt{2}} \int d^3x \left(e^{ik\cdot x} + \operatorname{sgn}(k) e^{-ik\cdot x} \right) \left[C_a^{(1)}(x) + O(\delta\gamma^2) \right] \end{split}$$

 \Rightarrow at 1st order we only have

QFT on quantum spacetime

AD, JL, JP

constraints to 1st order

 $C^{(0)}, \quad E(k) := \check{C}^{(1)}(k), \quad M(k) := k^a \check{C}^{(1)}_a(k), \quad V(k) := v^a \check{C}^{(1)}_a(k), \quad W(k) := w^a \check{C}^{(1)}_a(k)$

where (k, v, w) form an orthogonal basis for the momentum space \mathbb{R}^3 .

AD, JL, JP

motivation

full theory, full reduction

again full

constraints to 1st order

physical phase spac

Explicitely:

analysis of true dof's

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

QFT on quantum spacetime AD, JL, JP

analysis of true dof's

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

Explicitely:

motivation

full theory, full reductio

again full

constraints to 1st order

physical phase space

$$C^{(0)} = e^{-3\alpha} \left[\frac{1}{2} (p_T^{(0)})^2 - \frac{\kappa}{12} \pi_\alpha^2 \right]$$

$$E(k) = -\frac{3e^{-5\alpha}}{4} \left(\frac{\kappa \pi_\alpha^2}{18} + (p_T^{(0)})^2 \right) q_1(k) - \frac{e^{-\alpha}}{\kappa} k^2 q_1(k) + \frac{e^{-\alpha}}{3\kappa} k^2 q_2(k) - \frac{\kappa \pi_\alpha e^{-\alpha}}{3} p^1(k) + e^{-3\alpha} p_T^{(0)} \delta \breve{p}_T(k)$$

$$M(k) = \frac{\pi_\alpha e^{-2\alpha}}{6} q_1(k) - \frac{2\pi_\alpha e^{-2\alpha}}{9} q_2(k) - \frac{2e^{2\alpha}}{3} p^1(k) - 2e^{2\alpha} p^2(k) + p_T^{(0)} \delta \breve{T}(k)$$

$$V(k) = \frac{\pi_\alpha e^{-2\alpha}}{3} q_3(k) + 2e^{2\alpha} p^3(k)$$

$$W(k) = \frac{\pi_\alpha e^{-2\alpha}}{3} q_4(k) + 2e^{2\alpha} p^4(k)$$

QFT on quantum spacetime AD, JL, JP

analysis of true dof's

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Explicitely:

So:

full dramm.

constraints to 1st order

physical phase space

$$C^{(0)} = e^{-3\alpha} \left[\frac{1}{2} (p_T^{(0)})^2 - \frac{\kappa}{12} \pi_\alpha^2 \right]$$

$$E(k) = -\frac{3e^{-5\alpha}}{4} \left(\frac{\kappa \pi_\alpha^2}{18} + (p_T^{(0)})^2 \right) q_1(k) - \frac{e^{-\alpha}}{\kappa} k^2 q_1(k) + \frac{e^{-\alpha}}{3\kappa} k^2 q_2(k) - \frac{\kappa \pi_\alpha e^{-\alpha}}{3} p^1(k) + e^{-3\alpha} p_T^{(0)} \delta \breve{p}_T(k)$$

$$M(k) = \frac{\pi_\alpha e^{-2\alpha}}{6} q_1(k) - \frac{2\pi_\alpha e^{-2\alpha}}{9} q_2(k) - \frac{2e^{2\alpha}}{3} p^1(k) - 2e^{2\alpha} p^2(k) + p_T^{(0)} \delta \breve{T}(k)$$

$$V(k) = \frac{\pi_\alpha e^{-2\alpha}}{3} q_3(k) + 2e^{2\alpha} p^3(k)$$

$$W(k) = \frac{\pi_\alpha e^{-2\alpha}}{3} q_4(k) + 2e^{2\alpha} p^4(k)$$

• k = 0 sector $(\alpha, \pi_{\alpha}, T^{(0)}, p_T^{(0)}, \delta \check{q}_{ab}(0), \delta \check{\pi}^{ab}(0))$ is constrained by $C^{(0)}$

QFT on quantum spacetime AD, JL, JP

analysis of true dof's

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Explicitely:

motivation

full theory, full reduction

again full

constraints to 1st order

physical phase space

$$C^{(0)} = e^{-3\alpha} \left[\frac{1}{2} (p_T^{(0)})^2 - \frac{\kappa}{12} \pi_\alpha^2 \right]$$

$$E(k) = -\frac{3e^{-5\alpha}}{4} \left(\frac{\kappa \pi_\alpha^2}{18} + (p_T^{(0)})^2 \right) q_1(k) - \frac{e^{-\alpha}}{\kappa} k^2 q_1(k) + \frac{e^{-\alpha}}{3\kappa} k^2 q_2(k) - \frac{\kappa \pi_\alpha e^{-\alpha}}{3} p^1(k) + e^{-3\alpha} p_T^{(0)} \delta \breve{p}_T(k)$$

$$M(k) = \frac{\pi_\alpha e^{-2\alpha}}{6} q_1(k) - \frac{2\pi_\alpha e^{-2\alpha}}{9} q_2(k) - \frac{2e^{2\alpha}}{3} p^1(k) - 2e^{2\alpha} p^2(k) + p_T^{(0)} \delta \breve{T}(k)$$

$$V(k) = \frac{\pi_\alpha e^{-2\alpha}}{3} q_3(k) + 2e^{2\alpha} p^3(k)$$

$$W(k) = \frac{\pi_\alpha e^{-2\alpha}}{3} q_4(k) + 2e^{2\alpha} p^4(k)$$

So:

- k = 0 sector $(\alpha, \pi_{\alpha}, T^{(0)}, p_T^{(0)}, \delta \check{q}_{ab}(0), \delta \check{\pi}^{ab}(0))$ is constrained by $C^{(0)}$
- *E* and *M* constraint the *scalar sector* $(\delta \check{T}, \delta \check{p}_T, \delta \check{\phi}, \delta \check{\pi}_{\phi}, q_1, p^1, q_2, p^2)$

AD, JL, JP

motivation

full theory, full reductio

again full

constraints to 1st order

physical phase space

Explicitely:

$$C^{(0)} = e^{-3\alpha} \left[\frac{1}{2} (p_T^{(0)})^2 - \frac{\kappa}{12} \pi_{\alpha}^2 \right]$$

$$E(k) = -\frac{3e^{-5\alpha}}{4} \left(\frac{\kappa \pi_{\alpha}^2}{18} + (p_T^{(0)})^2 \right) q_1(k) - \frac{e^{-\alpha}}{\kappa} k^2 q_1(k) + \frac{e^{-\alpha}}{3\kappa} k^2 q_2(k) - \frac{\kappa \pi_{\alpha} e^{-\alpha}}{3} p^1(k) + e^{-3\alpha} p_T^{(0)} \delta \breve{p}_T(k)$$

$$M(k) = \frac{\pi_{\alpha} e^{-2\alpha}}{6} q_1(k) - \frac{2\pi_{\alpha} e^{-2\alpha}}{9} q_2(k) - \frac{2e^{2\alpha}}{3} p^1(k) - 2e^{2\alpha} p^2(k) + p_T^{(0)} \delta \breve{T}(k)$$

$$V(k) = \frac{\pi_{\alpha} e^{-2\alpha}}{3} q_3(k) + 2e^{2\alpha} p^3(k)$$

$$W(k) = \frac{\pi_{\alpha} e^{-2\alpha}}{3} q_4(k) + 2e^{2\alpha} p^4(k)$$

So:

- k = 0 sector $(\alpha, \pi_{\alpha}, T^{(0)}, p_T^{(0)}, \delta \check{q}_{ab}(0), \delta \check{\pi}^{ab}(0))$ is constrained by $C^{(0)}$
- *E* and *M* constraint the scalar sector $(\delta \check{T}, \delta \check{p}_T, \delta \check{\phi}, \delta \check{\pi}_{\phi}, q_1, p^1, q_2, p^2)$
- *V* and *W* constraint the vector sector (q_3, p^3, q_4, p^4)

analysis of true dof's

AD, JL, JP

motivation

full theory, full reductio

again full

constraints to 1st order

physical phase space

Explicitely:

$$C^{(0)} = e^{-3\alpha} \left[\frac{1}{2} (p_T^{(0)})^2 - \frac{\kappa}{12} \pi_\alpha^2 \right]$$

$$E(k) = -\frac{3e^{-5\alpha}}{4} \left(\frac{\kappa \pi_\alpha^2}{18} + (p_T^{(0)})^2 \right) q_1(k) - \frac{e^{-\alpha}}{\kappa} k^2 q_1(k) + \frac{e^{-\alpha}}{3\kappa} k^2 q_2(k) - \frac{\kappa \pi_\alpha e^{-\alpha}}{3} p^1(k) + e^{-3\alpha} p_T^{(0)} \delta \breve{p}_T(k)$$

$$M(k) = \frac{\pi_\alpha e^{-2\alpha}}{6} q_1(k) - \frac{2\pi_\alpha e^{-2\alpha}}{9} q_2(k) - \frac{2e^{2\alpha}}{3} p^1(k) - 2e^{2\alpha} p^2(k) + p_T^{(0)} \delta \breve{T}(k)$$

$$V(k) = \frac{\pi_\alpha e^{-2\alpha}}{3} q_3(k) + 2e^{2\alpha} p^3(k)$$

$$W(k) = \frac{\pi_\alpha e^{-2\alpha}}{3} q_4(k) + 2e^{2\alpha} p^4(k)$$

So:

- k = 0 sector $(\alpha, \pi_{\alpha}, T^{(0)}, p_T^{(0)}, \delta \check{q}_{ab}(0), \delta \check{\pi}^{ab}(0))$ is constrained by $C^{(0)}$
- *E* and *M* constraint the scalar sector $(\delta \check{T}, \delta \check{p}_T, \delta \check{\phi}, \delta \check{\pi}_{\phi}, q_1, p^1, q_2, p^2)$
- *V* and *W* constraint the vector sector (q_3, p^3, q_4, p^4)
- the *tensor sector* (q_5, p^5, q_6, p^6) is unconstrained

analysis of true dof's

)

AD, JL, JP

motivation

full theory, full reduction

again full

constraints to 1st order

physical phase spac

gauge-fixing

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

AD, JL, JP

motivation

full theory, full reduction

again full

constraints to 1st order

physical phase spac

Example:

$$C^{(0)} = O(\delta\gamma^2) \quad \Rightarrow \quad p_T^{(0)} = \pm \sqrt{\frac{\kappa}{6}\pi_{\alpha}} + O(\delta\gamma^2)$$

gauge-fixing

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

AD, JL, JP

motivation

full theory, full reductio

again full

constraints to 1st order

physical phase space

$C^{(0)} = O(\delta \gamma^2) \quad \Rightarrow \quad p_T^{(0)} = \pm \sqrt{\frac{\kappa}{6}} \pi_{\alpha} + O(\delta \gamma^2)$

gauge-fixing

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

G-fixing: $T^{(0)} - \tau = 0$ for $\tau \in \mathbb{R}$.

Example:

AD, JL, JP

motivation

full theory, full reductio

again full

constraints to 1st order

physical phase space

gauge-fixing

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$C^{(0)} = O(\delta\gamma^2) \quad \Rightarrow \quad p_T^{(0)} = \pm \sqrt{\frac{\kappa}{6}}\pi_{\alpha} + O(\delta\gamma^2)$$

G-fixing: $T^{(0)} - \tau = 0$ for $\tau \in \mathbb{R}$.

Similarly:

Example:

$$\begin{array}{lll} E(k) \approx 0, M(k) \approx 0 & \Rightarrow & p^1 = p^1(\gamma_{free}), p^2 = p^2(\gamma_{free}) \\ V(k) \approx 0, W(k) \approx 0 & \Rightarrow & p^3 = p^3(\gamma_{free}), p^4 = p^4(\gamma_{free}) \end{array}$$

AD, JL, JP

motivation

full theory, full reductio

again full

constraints to 1st order

physical phase space

gauge-fixing

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

$$C^{(0)} = O(\delta\gamma^2) \quad \Rightarrow \quad p_T^{(0)} = \pm \sqrt{\frac{\kappa}{6}}\pi_{\alpha} + O(\delta\gamma^2)$$

G-fixing: $T^{(0)} - \tau = 0$ for $\tau \in \mathbb{R}$.

Similarly:

Example:

$$\begin{array}{lll} E(k) \approx 0, M(k) \approx 0 & \Rightarrow & p^1 = p^1(\gamma_{free}), p^2 = p^2(\gamma_{free}) \\ V(k) \approx 0, W(k) \approx 0 & \Rightarrow & p^3 = p^3(\gamma_{free}), p^4 = p^4(\gamma_{free}) \end{array}$$

G-fixing: $q_1 = q_2 = q_3 = q_4 = 0$.

AD, JL, JP

motivation

full theory, full reduction

again full

constraints to 1st order

physical phase space

Example:

$$C^{(0)} = O(\delta\gamma^2) \quad \Rightarrow \quad p_T^{(0)} = \pm \sqrt{\frac{\kappa}{6}}\pi_{\alpha} + O(\delta\gamma^2)$$

gauge-fixing

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

G-fixing: $T^{(0)} - \tau = 0$ for $\tau \in \mathbb{R}$.

Similarly:

$$\begin{array}{rcl} E(k)\approx 0, M(k)\approx 0 & \Rightarrow & p^1=p^1(\gamma_{free}), p^2=p^2(\gamma_{free})\\ V(k)\approx 0, W(k)\approx 0 & \Rightarrow & p^3=p^3(\gamma_{free}), p^4=p^4(\gamma_{free}) \end{array}$$

G-fixing: $q_1 = q_2 = q_3 = q_4 = 0$.

So we have a τ -dependent embedding of the physical phase space Γ_P in $\Gamma_C \subset \Gamma$:

 $\Gamma_P \to \Gamma_P^\tau \subset \Gamma_C \subset \Gamma$

AD, JL, JP

motivation

full reduction

again full

constraints to 1st order

physical phase space

Example:

$$C^{(0)} = O(\delta\gamma^2) \quad \Rightarrow \quad p_T^{(0)} = \pm \sqrt{\frac{\kappa}{6}}\pi_{\alpha} + O(\delta\gamma^2)$$

G-fixing: $T^{(0)} - \tau = 0$ for $\tau \in \mathbb{R}$.

Similarly:

$$\begin{array}{rcl} E(k) \approx 0, M(k) \approx 0 & \Rightarrow & p^1 = p^1(\gamma_{free}), p^2 = p^2(\gamma_{free}) \\ V(k) \approx 0, W(k) \approx 0 & \Rightarrow & p^3 = p^3(\gamma_{free}), p^4 = p^4(\gamma_{free}) \end{array}$$

G-fixing: $q_1 = q_2 = q_3 = q_4 = 0$.

So we have a τ -dependent embedding of the physical phase space Γ_P in $\Gamma_C \subset \Gamma$:

 $\Gamma_P \to \Gamma_P^\tau \subset \Gamma_C \subset \Gamma$

 Γ_{P}^{τ} is parametrized by

 $(\gamma_{free}) = \left(\alpha, \pi_{\alpha}, \delta \check{q}_{ab}(0), \delta \check{\pi}^{ab}(0), \delta \check{T}(k), \delta \check{p}_{T}(k), \delta \check{\phi}(k), \delta \check{\pi}_{\phi}(k), q_{5}(k), p^{5}(k), q_{6}(k), p^{6}(k)\right)$

うつつ 川 (一) (二) (二) (二) (二)

gauge-fixing

AD, JL, JP

motivation

full reduction

again full

constraints to 1st order

physical phase space

Example:

$$C^{(0)} = O(\delta\gamma^2) \quad \Rightarrow \quad p_T^{(0)} = \pm \sqrt{\frac{\kappa}{6}} \pi_{\alpha} + O(\delta\gamma^2)$$

gauge-fixing

G-fixing: $T^{(0)} - \tau = 0$ for $\tau \in \mathbb{R}$.

Similarly:

$$\begin{array}{rcl} E(k) \approx 0, M(k) \approx 0 & \Rightarrow & p^1 = p^1(\gamma_{free}), p^2 = p^2(\gamma_{free}) \\ V(k) \approx 0, W(k) \approx 0 & \Rightarrow & p^3 = p^3(\gamma_{free}), p^4 = p^4(\gamma_{free}) \end{array}$$

G-fixing: $q_1 = q_2 = q_3 = q_4 = 0$.

So we have a τ -dependent embedding of the physical phase space Γ_P in $\Gamma_C \subset \Gamma$:

 $\Gamma_P \to \Gamma_P^\tau \subset \Gamma_C \subset \Gamma$

 Γ_P^{τ} is parametrized by

 $(\gamma_{free}) = \left(\alpha, \pi_{\alpha}, \delta \check{q}_{ab}(0), \delta \check{\pi}^{ab}(0), \delta \check{T}(k), \delta \check{p}_{T}(k), \delta \check{\phi}(k), \delta \check{\pi}_{\phi}(k), q_{5}(k), p^{5}(k), q_{6}(k), p^{6}(k)\right)$ simplicity of g-fixings \Rightarrow symplectic structure reduced to Γ_{P}^{r} is simple:

 $\{\alpha, \pi_{\alpha}\} = 1, \quad \{\delta \check{q}_{ab}(0), \delta \check{\pi}^{cd}(0)\} = \delta^c_{(a} \delta^d_{b)} - \frac{1}{3} \delta^{cd} \delta_{ab}, \quad \{\delta \check{\phi}(k), \delta \check{\pi}_{\phi}(k')\} = \delta_{k,k'}$

 $\{q_5(k), p^5(k')\} = \delta_{k,k'}, \quad \{q_6(k), p^6(k')\} = \delta_{k,k'}, \quad \{\delta \check{T}(k), \delta \check{p}_T(k')\} = \delta_{k,k'}$

AD, JL, JP

motivatio

full theory, full reduction

again full

constraints to 1st order

physical phase space

1 motivation

2 full theory, full reduction

3 again full

4 constraints up to 1st order (aka no longer full)

(5) physical phase space

outline

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで
AD, JL, JP

motivation

full theory, full reduction

again full

constraints t 1st order

physical phase space

observables and dynamics

(日)

Pull-back (γ_{free}) from $\Gamma_P^{\tau} \subset \Gamma$ to the physical phase space Γ_P along the τ -dependent embedding

AD, JL, JP

motivation

full theory, full reductio

again full

constraint 1st order

physical phase space

observables and dynamics

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Pull-back (γ_{free}) from $\Gamma_p^{\tau} \subset \Gamma$ to the physical phase space Γ_P along the τ -dependent embedding

 $\Rightarrow \tau$ -dependent coordinates (γ_{free}^{τ}) for Γ_P , satisfying canonical Poisson algebra

AD, JL, JP

motivation

full theory, full reductio

again ful

constrain 1st order

physical phase space

observables and dynamics

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Pull-back (γ_{free}) from $\Gamma_p^{\tau} \subset \Gamma$ to the physical phase space Γ_P along the τ -dependent embedding

 $\Rightarrow \tau$ -dependent coordinates (γ_{free}^{τ}) for Γ_P , satisfying canonical Poisson algebra

Purpose of dynamics: find a function on Γ_P that generates this change

$$rac{d}{d au}\gamma^{ au}_{free}=\left\{\gamma^{ au}_{free},h^{ au}_{P}
ight\}$$

AD, JL, JP

motivation

full theory, full reductio

again ful

constraints 1st order

physical phase space

Pull-back (γ_{free}) from $\Gamma_P^{\tau} \subset \Gamma$ to the physical phase space Γ_P along the τ -dependent embedding

 $\Rightarrow \tau$ -dependent coordinates (γ_{free}^{τ}) for Γ_P , satisfying canonical Poisson algebra

Purpose of dynamics: find a function on Γ_P that generates this change

$$\frac{d}{d\tau}\gamma^{\tau}_{free} = \left\{\gamma^{\tau}_{free}, h^{\tau}_{P}\right\}$$

We call such a function h_p^{τ} the *physical Hamiltonian*.

observables and dynamics

- ロ ト - 4 回 ト - 4 □ - 4

AD, JL, JP

motivation

full theory, full reduction

again ful

constraints 1st order

physical phase space

observables and dynamics

- ロ ト - 4 回 ト - 4 □ - 4

Pull-back (γ_{free}) from $\Gamma_p^{\tau} \subset \Gamma$ to the physical phase space Γ_P along the τ -dependent embedding

 $\Rightarrow \tau$ -dependent coordinates (γ_{free}^{τ}) for Γ_P , satisfying canonical Poisson algebra

Purpose of dynamics: find a function on Γ_P that generates this change

$$\frac{d}{d\tau}\gamma^{\tau}_{free} = \left\{\gamma^{\tau}_{free}, h^{\tau}_{P}\right\}$$

We call such a function h_p^{τ} the *physical Hamiltonian*.

Relational observables: $f \rightarrow O_f$. In particular $O_{\gamma_{free}^{\tau}}$

AD, JL, JP

motivation

full theory, full reduction

again ful

constraints 1st order

physical phase space

Pull-back (γ_{free}) from $\Gamma_P^{\tau} \subset \Gamma$ to the physical phase space Γ_P along the τ -dependent

observables and dynamics

- ロ ト - 4 回 ト - 4 □ - 4

embedding

 $\Rightarrow \tau$ -dependent coordinates (γ_{free}^{τ}) for Γ_P , satisfying canonical Poisson algebra

Purpose of dynamics: find a function on Γ_P that generates this change

$$\frac{d}{d\tau}\gamma^{\tau}_{free} = \left\{\gamma^{\tau}_{free}, h^{\tau}_{P}\right\}$$

We call such a function h_p^{τ} the *physical Hamiltonian*.

Relational observables: $f \to O_f$. In particular $O_{\gamma_{free}^{\tau}}$ If $H = p_T^{(0)} - \tilde{h}$, then

$$\frac{d}{d\tau}O_{\gamma_{free}^{\tau}} = -\frac{\partial}{\partial T^{(0)}}O_{\gamma_{free}^{\tau}} = -\{O_{\gamma_{free}^{\tau}}, p_T^{(0)}\} = -\{O_{\gamma_{free}^{\tau}}, \tilde{h}\} = -\{O_{\gamma_{free}^{\tau}}, O_{hp}\}$$

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

$$\frac{d}{d\tau}O_{\gamma_{free}^{\tau}} = -O_{\{\gamma_{free}^{\tau}, h_P\}}$$

where

$$h_P(\gamma_{free}^{\tau}) = \tilde{h}\left(\gamma_{free}^{\tau}; q_n = 0, T^{(0)} = \tau; p^n = p^n(\gamma_{free}^{\tau}), p_T^{(0)} = p_T^{(0)}(\gamma_{free}^{\tau})\right)$$

and $H = p_T^{(0)} - \tilde{h}$.

motivat

QFT on quantum spacetime

AD, JL, JP

again full

constraints 1st order

$$\frac{d}{d\tau}O_{\gamma_{free}^{\tau}} = -O_{\{\gamma_{free}^{\tau}, h_P\}}$$

where

QFT on quantum spacetime

AD, JL, JP

physical phase space

$$h_P(\gamma_{free}^{\tau}) = \tilde{h}\left(\gamma_{free}^{\tau}; q_n = 0, T^{(0)} = \tau; p^n = p^n(\gamma_{free}^{\tau}), p_T^{(0)} = p_T^{(0)}(\gamma_{free}^{\tau})\right)$$

and
$$H = p_T^{(0)} - \tilde{h}$$
.

$$H = \int d^3x \left[N(x)C(x) + N^a(x)C_a(x) \right] \text{ with } C(x) = (p_T(x) + h(x))(p_T(x) - h(x))/2 \sqrt{q}$$

▲□▶▲□▶▲□▶▲□▶ ■ のへで

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\frac{d}{d\tau}O_{\gamma_{free}^{\tau}} = -O_{\{\gamma_{free}^{\tau}, h_P\}}$$

where

$$h_P(\gamma_{free}^{\tau}) = \tilde{h}\left(\gamma_{free}^{\tau}; q_n = 0, T^{(0)} = \tau; p^n = p^n(\gamma_{free}^{\tau}), p_T^{(0)} = p_T^{(0)}(\gamma_{free}^{\tau})\right)$$

and $H = p_T^{(0)} - \tilde{h}$.

 $H = \int d^3x \left[N(x)C(x) + N^a(x)C_a(x) \right] \text{ with } C(x) = (p_T(x) + h(x))(p_T(x) - h(x))/2 \sqrt{q}$ $\Rightarrow N(x) = 2 \sqrt{q(x)}/(p_T(x) + h(x)) \text{ and } N^a(x) = 0 \text{ gives}$

$$H = \int d^{3}x p_{T}(x) - \int d^{3}x h(x) = p_{T}^{(0)} - \tilde{h}$$

QFT on quantum spacetime

AD, JL, JP

motivation

full theory, full reduction

again full

constraints t 1st order physical phase space

AD, JL, JP

motivation

full theory, full reduction

Explicitely:

again full

constraints 1st order

physical phase space

observables and dynamics

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

Explicitely:

$$h_P = H_{\text{hom}} + H_{k=0} + \sum_{k \neq 0, m=5,6} H_{m,k}^G + \sum_{k \neq 0} H_k^T + \sum_k H_k^M$$

quantum spacetime AD, JL, JP

QFT on

motivation

full theory, full reduction

again full

constraints 1st order

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • 9 < @</p>

Explicitely:

$$h_P = H_{\text{hom}} + H_{k=0} + \sum_{k \neq 0, m=5,6} H_{m,k}^G + \sum_{k \neq 0} H_k^T + \sum_k H_k^M$$

with

QFT on quantum spacetime

AD, JL, JP

physical phase space

$$\begin{split} H_{\text{hom}} &= \sqrt{\frac{\kappa(\pi_{\alpha}^{\tau})^2}{6}} \\ H_{m,k}^G &= -\sqrt{\frac{6}{\kappa(\pi_{\alpha}^{\tau})^2}} \left[2\kappa e^{4\alpha^{\tau}} \left(p^m(k)^{\tau} + \frac{\pi_{\alpha}^{\tau} e^{-4\alpha^{\tau}}}{12} q_m(k)^{\tau} \right)^2 + \frac{1}{2} \left(\frac{\kappa(\pi_{\alpha}^{\tau})^2 e^{-4\alpha^{\tau}}}{12} + \frac{k^2}{4\kappa} \right) (q_m(k)^{\tau})^2 \right] \\ H_k^T &= -\sqrt{\frac{6}{\kappa(\pi_{\alpha}^{\tau})^2}} \left[\frac{1}{2} \left(\delta \breve{p}_T(k)^{\tau} - \frac{\kappa \pi_{\alpha}^{\tau}}{2} \delta \breve{T}(k)^{\tau} \right)^2 + \frac{1}{2} e^{4\alpha^{\tau}} k^2 (\delta \breve{T}(k)^{\tau})^2 \right] \\ H_k^M &= -\sqrt{\frac{6}{\kappa(\pi_{\alpha}^{\tau})^2}} \left[\frac{1}{2} (\delta \breve{\pi}(k)^{\tau})^2 + \frac{1}{2} e^{4\alpha^{\tau}} k^2 (\delta \breve{\phi}(k)^{\tau})^2 \right] \end{split}$$

can be thought of as various Hamiltonians for the different sectors.

AD, JL, JP

motivation

full theory, full reduction

again full

constraints to 1st order

physical phase space

comment on M-S variables

▲□▶ ▲□▶ ▲ 三▶ ★ 三▶ 三三 - のへぐ

AD, JL, JP

motivation

full theory, full reduction Define

again full

constraints t 1st order

physical phase space

comment on M-S variables

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ へ ⊙

$$Q(k) := \delta \check{T}(k), \quad P(k) := \delta \check{p}_T(k) - \frac{\kappa \pi_\alpha}{2} \delta \check{T}(k)$$

comment on M-S variables

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Define

$$Q(k) := \delta \breve{T}(k), \quad P(k) := \delta \breve{p}_T(k) - \frac{\kappa \pi_{\alpha}}{2} \delta \breve{T}(k)$$

In terms of these variables, H_k^T looks like

$$H_k^T = -\sqrt{\frac{6}{\kappa(\pi_\alpha^\tau)^2}} \left[\frac{1}{2}P(k)^2 + \frac{1}{2}e^{4\alpha^\tau}k^2Q(k)^2\right]$$

Q and *P* are nothing but M-S variables: commute with linearized constraints $E, M, V, W \Rightarrow$ are called the gauge-invariant dof's of the scalar sector.

QFT on quantum spacetime

AD, JL, JP

motivation

full theory, full reductio

again full

constraints t 1st order

comment on M-S variables

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Define

$$Q(k) := \delta \breve{T}(k), \quad P(k) := \delta \breve{p}_T(k) - \frac{\kappa \pi_{\alpha}}{2} \delta \breve{T}(k)$$

In terms of these variables, H_k^T looks like

$$H_k^T = -\sqrt{\frac{6}{\kappa(\pi_\alpha^\tau)^2}} \left[\frac{1}{2} P(k)^2 + \frac{1}{2} e^{4\alpha^\tau} k^2 Q(k)^2 \right]$$

Q and *P* are nothing but M-S variables: commute with linearized constraints $E, M, V, W \Rightarrow$ are called the gauge-invariant dof's of the scalar sector.

But:

- as soon as you consider higher orders, they stop being D-obs
- canonical pair only restricted to perturbations phase space: $\{\alpha, P(k)\} = -\frac{\kappa}{2}Q(k) \neq 0$

QFT on quantum spacetime

AD, JL, JP

motivation

full theory, full reductio

again full

constraints t 1st order

comment on M-S variables

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Define

$$Q(k) := \delta \breve{T}(k), \quad P(k) := \delta \breve{p}_T(k) - \frac{\kappa \pi_{\alpha}}{2} \delta \breve{T}(k)$$

In terms of these variables, H_k^T looks like

$$H_k^T = -\sqrt{\frac{6}{\kappa(\pi_\alpha^\tau)^2}} \left[\frac{1}{2} P(k)^2 + \frac{1}{2} e^{4\alpha^\tau} k^2 Q(k)^2 \right]$$

Q and *P* are nothing but M-S variables: commute with linearized constraints $E, M, V, W \Rightarrow$ are called the gauge-invariant dof's of the scalar sector.

But:

- as soon as you consider higher orders, they stop being D-obs
- canonical pair only restricted to perturbations phase space: $\{\alpha, P(k)\} = -\frac{\kappa}{2}Q(k) \neq 0$

nice dynamics \Rightarrow non-canonical kinematics, nice kinematics \Rightarrow non-h.o. dynamics

full theor

QFT on quantum spacetime

AD, JL, JP

again full

constraints t 1st order

AD, JL, JP

motivation

full theory, full reduction

again full

constraints to 1st order

physical phase space

conclusions

◆□ ▶ < @ ▶ < E ▶ < E ▶ E • 9 < @</p>

conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

AD, JL, JP

QFT on quantum spacetime

full theory, full reduction

again full

constraints to 1st order

physical phase space

· new framework for cosmological perturbations

- at least as good as the standard one in the classical background case
- · arguably better in the quantum background case

conclusions

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

. .. .

QFT on quantum spacetime

AD, JL, JP

full reduction

again full

constraints to 1st order

physical phase space

· new framework for cosmological perturbations

- at least as good as the standard one in the classical background case
- · arguably better in the quantum background case
- next steps:
 - quantization of perturbations and background
 - generalization to other matter fields (inflaton, maxwell, ...)

conclusions

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

QFT on quantum spacetime

AD, JL, JP

full reduction

- again full
- constraints to 1st order

- new framework for cosmological perturbations
 - · at least as good as the standard one in the classical background case
 - · arguably better in the quantum background case
- next steps:
 - quantization of perturbations and background
 - generalization to other matter fields (inflaton, maxwell, ...)
- more technical points:
 - role of the 2nd order diffeomorphism constraint (relation to global symmetries?)
 - meaning of the gauge-fixing $q_1 = q_2 = q_3 = q_4 = 0$

AD, JL, JP

motivation

full theory, full reduction

again full

constraints to 1st order

physical phase space

Vielen Dank!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●