
QFT on
quantum
spacetime

AD, JL, JP

motivation

full theory,
full reduction

again full

constraints to
1st order

physical
phase space

QFT on quantum spacetime:
a compatible classical framework

A Dapor, J Lewandowski, J Puchta

University of Warsaw

Tux, 28 February 2013

arXiv:1302.3038



QFT on
quantum
spacetime

AD, JL, JP

motivation

full theory,
full reduction

again full

constraints to
1st order

physical
phase space

outline

1 motivation

2 full theory, full reduction

3 again full

4 constraints up to 1st order (aka no longer full)

5 physical phase space



QFT on
quantum
spacetime

AD, JL, JP

motivation

full theory,
full reduction

again full

constraints to
1st order

physical
phase space

outline

1 motivation

2 full theory, full reduction

3 again full

4 constraints up to 1st order (aka no longer full)

5 physical phase space



QFT on
quantum
spacetime

AD, JL, JP

motivation

full theory,
full reduction

again full

constraints to
1st order

physical
phase space

motivation

the goal:

classical framework for QFT on quantum (cosmological) spacetime

Is the current framework not good? Let’s recall it.

Each dynamical varialbe γ (a coordinate in full phase space) is expanded

γ = γ(0) + εδγ(1) +
1
2
ε2δγ(2) + ...

This is a ”dynamical expansion”:
• γ(0) is solution of the 0th order equations (wait for it)
• δγ(1) is the 1st order correction, so γ(0) + εδγ(1) is solution to 1st order equations
• and so on

⇒ the kinematics is messed up: if I expand around homogeneous isotropic ST q(0)
ab ,

then part of δq(1)
ab will be correction to the homogeneous isotropic sector, so that

{δq(1)
ab , π

cd
(0)} , 0
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Two possibilities to avoid this problem:

1 fix the background once and for all

2 forget about the ”dynamical expansion” given above

first possibility: what is done in standard cosmological perturbation theory

1a Fix FRW solution as a classical curved spacetime

1b Perturbations δγ(1) are considered as the only dynamical variables

1c QFT on curved spacetime construction is employed

second possibility: not an expansion, but an exact splitting

γ = γ(0) + δγ

This is a ”kinematical splitting”:
• γ(0) is the homogeneous isotropic component (not a solution to 0th equations)
• δγ is the rest (inhomogeneous and anisotropic degrees of freedom)

⇒ valid on the full phase space: it simply gives rise to a coordinate system on it.
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We will follow the second solution, as it treats homogeneous and inhomogeneous
dof’s on the same footing:

you agree it’s a better framework for quantizing perturbations and background
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Action:

S =

∫
d4x
√
−g

[
1
2κ

R −
1
2

gµν∂µT∂νT −
1
2

gµν∂µφ∂νφ
]

where κ = 8πG. Three sectors:
• the geometric (G) sector, associated to the metric gµν
• the time (T) sector, a K-G ”clock field” T

• the matter (M) sector, a K-G ”matter field” φ

Hamiltonian analysis (ADM): kinematical phase space Γ = ΓG × ΓT × ΓM with

{qab(x), πcd(y)} = δ(c
a δ

d)
b δ

(3)(x, y), {T(x), pT (y)} = δ(3)(x, y), {φ(x), πφ(y)} = δ(3)(x, y)

and constraints

C =
2κ
√

q

[
πabπ

ab −
1
2

(qabπ
ab)2

]
−

√
q

2κ
R(3)+

+
1

2
√

q
p2

T +

√
q

2
qab∂aT∂bT +

1
2
√

q
π2
φ +

√
q

2
qab∂aφ∂bφ

Ca = −2qac∇bπ
bc + pT∂aT + πφ∂aφ
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full reduction: kinematics

We perform here the full reduction to homogeneous and isotropic sector. This is
done to introduce notation, and to show how not to do in our framework.

Cauchy surface Σ = T3, fiducial coordinates (xa) ∈ [0, 1)3. We consider the sector

Γ(0) = Γ
(0)
G × Γ

(0)
T × Γ

(0)
M ⊂ ΓG × ΓT × ΓM

where
• Γ

(0)
G consists of (q(0)

ab , π
ab
(0)) with

q(0)
ab (x) = e2αδab, πab

(0)(x) =
παe−2α

6
δab

• Γ
(0)
T is parametrized by hom. scalar field and its momentum, (T (0), p(0)

T ).

• φ is test field, i.e. at 0th order vanishes: φ(0) = 0, π(0)
φ = 0⇒ Γ

(0)
M = (0, 0).
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full reduction: dynamics

Only non-vanishing constraint is the homogeneous part of C:

C(0)(N) =

∫
d3xN(x)C(0)(x) = e−3α

[
1
2

(p(0)
T )2 −

κ

12
π2
α

] ∫
d3xN(x)

The intersection Γ(0) ∩ ΓC consists of points representing ST of the FRW type

g(0)
µν dxµdxν = −dt2 + e2α(t)δabdxadxb

filled with a homogeneous scalar field T = T (0)(t).
Hamilton eq. with C(0)(0)⇒ t-dependence:

α̇ = − κ
6 e−3απα

π̇α = 3
2 e−3α(p(0)

T )2 − κ
4 e−3απ2

α

Ṫ (0) = e−3αp(0)
T

ṗ(0)
T = 0

In other words: g(0)
µν satisfies Einstein eq sourced by a homogeneous field T (0), which

satisfies K-G eq on a spacetime of the FRW type g(0)
µν .



QFT on
quantum
spacetime

AD, JL, JP

motivation

full theory,
full reduction

again full

constraints to
1st order

physical
phase space

full reduction: dynamics

Only non-vanishing constraint is the homogeneous part of C:

C(0)(N) =

∫
d3xN(x)C(0)(x) = e−3α

[
1
2

(p(0)
T )2 −

κ

12
π2
α

] ∫
d3xN(x)

The intersection Γ(0) ∩ ΓC consists of points representing ST of the FRW type

g(0)
µν dxµdxν = −dt2 + e2α(t)δabdxadxb

filled with a homogeneous scalar field T = T (0)(t).

Hamilton eq. with C(0)(0)⇒ t-dependence:
α̇ = − κ

6 e−3απα
π̇α = 3

2 e−3α(p(0)
T )2 − κ

4 e−3απ2
α

Ṫ (0) = e−3αp(0)
T
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In our framework, we consider the full phase space, with coordinates defined as
α = 1

2 ln
(

1
3δ

ab
∫

Σ
d3xqab

)
πα = 2e2αδab

∫
Σ

d3xπab

T (0) =
∫

Σ
d3xT

p(0)
T =

∫
Σ

d3xpT

and 

δqab(x) = qab(x) − e2αδab

δπab(x) = πab(x) − πα
6 e−2αδab

δT(x) = T(x) − T (0)

δpT (x) = pT (x) − p(0)
T

δφ(x) = φ(x)
δπφ(x) = πφ(x)

In this coordinates we:
1 solve the full constraints of the theory
2 reduce to the constraint surface ΓC

3 study the gauge transformations generated by the constraints and restrict to ΓP

4 construct the algebra of basic Dirac observables
5 study the 1-dimensional group of automorphisms on it parametrized by T (0)

6 find the physical Hamiltonian (generator of such group)
7 go home and find a real job
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except that...

... we do it up to linear order.

More precisely: in order to see explicit expressions, we implement the canonical
programme expanding the full constraints in δγ and keeping track of the
results of the calculations up to the 1st order only.

⇒ background variables α, πα,T (0), p(0)
T do obey the 0th order dynamics, as in the

standard framework.
However, our framework
• allows to continue to higher orders
• shows that the usual gauge-invariant dof’s are observables only up to 1st order

and have non-trivial Poisson algebra with the background
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first thing to do: Fourier-transform
Flying over the subtleties, we associate to each field γ(x) a real Fourier transformed
field γ̆(k) where k ∈ L = (2πZ)3.

k = 0 components comprise the homogeneous dof’s:

T̆(0) = T (0), p̆T (0) = p(0)
T

As for the metric dof’s, we separate the isotropic part from the rest:

α, πα, δq̆ab(0), δπ̆ab(0)

such that δabδq̆ab(0) = δabδπ̆
ab(0) = 0.

k , 0 components of δq̆ab and δπ̆ab are traceless symmetric 3 × 3 matrices:
expanding them on the basis {Am

ab} with m = 1, 2, ..., 6, we get

qm(k) := Aab
m (k)δq̆ab(k), pm(k) := Am

ab(k)δπ̆ab(k)

Canonical Poisson algebra induces the following algebra on the new variables:

{α, πα} = 1, {T (0), p(0)
T } = 1, {δq̆ab(0), δπ̆cd(0)} = δc

(aδ
d
b) −

1
3δ

cdδab

{qm(k), pn(k′)} = δn
mδk,k′ , {δT̆(k), δp̆T (k′)} = δk,k′ , {δφ̆(k), δπ̆φ(k′)} = δk,k′
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linearized constraints

Replace the splitting γ = γ(0) + δγ in the constraints, and expand for small δγ:

C(x) = C(0)(x) + C(1)(x) + C(2)(x) + ..., Ca(x) = C(0)
a (x) + C(1)

a (x) + C(2)
a (x) + ...

Now, make a real Fourier-transform of the constraints. Using some facts, we get

C̆(0) = C(0) +
∫

d3xC(2)(x) + O(δγ3), C̆a(0) = O(δγ2)

C̆(k) =
i(1−sgn(k))/2

√
2

∫
d3x

(
eik·x + sgn(k)e−ik·x

) [
C(1)(x) + O(δγ2)

]
C̆a(k) =

i(1−sgn(k))/2

√
2

∫
d3x

(
eik·x + sgn(k)e−ik·x

) [
C(1)

a (x) + O(δγ2)
]

⇒ at 1st order we only have

C(0), E(k) := C̆(1)(k), M(k) := kaC̆(1)
a (k), V(k) := vaC̆(1)

a (k), W(k) := waC̆(1)
a (k)

where (k, v,w) form an orthogonal basis for the momentum space R3.
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analysis of true dof’s
Explicitely:

C(0) = e−3α
[

1
2 (p(0)

T )2 − κ
12π

2
α

]
E(k) = − 3e−5α

4

(
κπ2
α

18 + (p(0)
T )2

)
q1(k) − e−α

κ
k2q1(k) + e−α

3κ k2q2(k)−

−
κπαe−α

3 p1(k) + e−3αp(0)
T δp̆T (k)

M(k) = παe−2α

6 q1(k) − 2παe−2α

9 q2(k) − 2e2α

3 p1(k) − 2e2αp2(k) + p(0)
T δT̆(k)

V(k) = παe−2α

3 q3(k) + 2e2αp3(k)

W(k) = παe−2α

3 q4(k) + 2e2αp4(k)

So:
• k = 0 sector (α, πα,T (0), p(0)

T , δq̆ab(0), δπ̆ab(0)) is constrained by C(0)

• E and M constraint the scalar sector (δT̆ , δp̆T , δφ̆, δπ̆φ, q1, p1, q2, p2)
• V and W constraint the vector sector (q3, p3, q4, p4)
• the tensor sector (q5, p5, q6, p6) is unconstrained
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gauge-fixing

Example:

C(0) = O(δγ2) ⇒ p(0)
T = ±

√
κ

6
πα + O(δγ2)

G-fixing: T (0) − τ = 0 for τ ∈ R.

Similarly:

E(k) ≈ 0,M(k) ≈ 0 ⇒ p1 = p1(γfree), p2 = p2(γfree)
V(k) ≈ 0,W(k) ≈ 0 ⇒ p3 = p3(γfree), p4 = p4(γfree)

G-fixing: q1 = q2 = q3 = q4 = 0.

So we have a τ-dependent embedding of the physical phase space ΓP in ΓC ⊂ Γ:

ΓP → ΓτP ⊂ ΓC ⊂ Γ

ΓτP is parametrized by

(γfree) =
(
α, πα, δq̆ab(0), δπ̆ab(0), δT̆(k), δp̆T (k), δφ̆(k), δπ̆φ(k), q5(k), p5(k), q6(k), p6(k)

)
simplicity of g-fixings⇒ symplectic structure reduced to ΓτP is simple:

{α, πα} = 1, {δq̆ab(0), δπ̆cd(0)} = δc
(aδ

d
b) −

1
3δ

cdδab, {δφ̆(k), δπ̆φ(k′)} = δk,k′

{q5(k), p5(k′)} = δk,k′ , {q6(k), p6(k′)} = δk,k′ , {δT̆(k), δp̆T (k′)} = δk,k′



QFT on
quantum
spacetime

AD, JL, JP

motivation

full theory,
full reduction

again full

constraints to
1st order

physical
phase space

gauge-fixing
Example:

C(0) = O(δγ2) ⇒ p(0)
T = ±

√
κ

6
πα + O(δγ2)

G-fixing: T (0) − τ = 0 for τ ∈ R.

Similarly:

E(k) ≈ 0,M(k) ≈ 0 ⇒ p1 = p1(γfree), p2 = p2(γfree)
V(k) ≈ 0,W(k) ≈ 0 ⇒ p3 = p3(γfree), p4 = p4(γfree)

G-fixing: q1 = q2 = q3 = q4 = 0.

So we have a τ-dependent embedding of the physical phase space ΓP in ΓC ⊂ Γ:

ΓP → ΓτP ⊂ ΓC ⊂ Γ

ΓτP is parametrized by

(γfree) =
(
α, πα, δq̆ab(0), δπ̆ab(0), δT̆(k), δp̆T (k), δφ̆(k), δπ̆φ(k), q5(k), p5(k), q6(k), p6(k)

)
simplicity of g-fixings⇒ symplectic structure reduced to ΓτP is simple:

{α, πα} = 1, {δq̆ab(0), δπ̆cd(0)} = δc
(aδ

d
b) −

1
3δ

cdδab, {δφ̆(k), δπ̆φ(k′)} = δk,k′

{q5(k), p5(k′)} = δk,k′ , {q6(k), p6(k′)} = δk,k′ , {δT̆(k), δp̆T (k′)} = δk,k′



QFT on
quantum
spacetime

AD, JL, JP

motivation

full theory,
full reduction

again full

constraints to
1st order

physical
phase space

gauge-fixing
Example:

C(0) = O(δγ2) ⇒ p(0)
T = ±

√
κ

6
πα + O(δγ2)

G-fixing: T (0) − τ = 0 for τ ∈ R.

Similarly:

E(k) ≈ 0,M(k) ≈ 0 ⇒ p1 = p1(γfree), p2 = p2(γfree)
V(k) ≈ 0,W(k) ≈ 0 ⇒ p3 = p3(γfree), p4 = p4(γfree)

G-fixing: q1 = q2 = q3 = q4 = 0.

So we have a τ-dependent embedding of the physical phase space ΓP in ΓC ⊂ Γ:

ΓP → ΓτP ⊂ ΓC ⊂ Γ

ΓτP is parametrized by

(γfree) =
(
α, πα, δq̆ab(0), δπ̆ab(0), δT̆(k), δp̆T (k), δφ̆(k), δπ̆φ(k), q5(k), p5(k), q6(k), p6(k)

)
simplicity of g-fixings⇒ symplectic structure reduced to ΓτP is simple:

{α, πα} = 1, {δq̆ab(0), δπ̆cd(0)} = δc
(aδ

d
b) −

1
3δ

cdδab, {δφ̆(k), δπ̆φ(k′)} = δk,k′

{q5(k), p5(k′)} = δk,k′ , {q6(k), p6(k′)} = δk,k′ , {δT̆(k), δp̆T (k′)} = δk,k′



QFT on
quantum
spacetime

AD, JL, JP

motivation

full theory,
full reduction

again full

constraints to
1st order

physical
phase space

gauge-fixing
Example:

C(0) = O(δγ2) ⇒ p(0)
T = ±

√
κ

6
πα + O(δγ2)

G-fixing: T (0) − τ = 0 for τ ∈ R.

Similarly:

E(k) ≈ 0,M(k) ≈ 0 ⇒ p1 = p1(γfree), p2 = p2(γfree)
V(k) ≈ 0,W(k) ≈ 0 ⇒ p3 = p3(γfree), p4 = p4(γfree)

G-fixing: q1 = q2 = q3 = q4 = 0.

So we have a τ-dependent embedding of the physical phase space ΓP in ΓC ⊂ Γ:

ΓP → ΓτP ⊂ ΓC ⊂ Γ

ΓτP is parametrized by

(γfree) =
(
α, πα, δq̆ab(0), δπ̆ab(0), δT̆(k), δp̆T (k), δφ̆(k), δπ̆φ(k), q5(k), p5(k), q6(k), p6(k)

)
simplicity of g-fixings⇒ symplectic structure reduced to ΓτP is simple:

{α, πα} = 1, {δq̆ab(0), δπ̆cd(0)} = δc
(aδ

d
b) −

1
3δ

cdδab, {δφ̆(k), δπ̆φ(k′)} = δk,k′

{q5(k), p5(k′)} = δk,k′ , {q6(k), p6(k′)} = δk,k′ , {δT̆(k), δp̆T (k′)} = δk,k′



QFT on
quantum
spacetime

AD, JL, JP

motivation

full theory,
full reduction

again full

constraints to
1st order

physical
phase space

gauge-fixing
Example:

C(0) = O(δγ2) ⇒ p(0)
T = ±

√
κ

6
πα + O(δγ2)

G-fixing: T (0) − τ = 0 for τ ∈ R.

Similarly:

E(k) ≈ 0,M(k) ≈ 0 ⇒ p1 = p1(γfree), p2 = p2(γfree)
V(k) ≈ 0,W(k) ≈ 0 ⇒ p3 = p3(γfree), p4 = p4(γfree)

G-fixing: q1 = q2 = q3 = q4 = 0.

So we have a τ-dependent embedding of the physical phase space ΓP in ΓC ⊂ Γ:

ΓP → ΓτP ⊂ ΓC ⊂ Γ

ΓτP is parametrized by

(γfree) =
(
α, πα, δq̆ab(0), δπ̆ab(0), δT̆(k), δp̆T (k), δφ̆(k), δπ̆φ(k), q5(k), p5(k), q6(k), p6(k)

)
simplicity of g-fixings⇒ symplectic structure reduced to ΓτP is simple:

{α, πα} = 1, {δq̆ab(0), δπ̆cd(0)} = δc
(aδ

d
b) −

1
3δ

cdδab, {δφ̆(k), δπ̆φ(k′)} = δk,k′

{q5(k), p5(k′)} = δk,k′ , {q6(k), p6(k′)} = δk,k′ , {δT̆(k), δp̆T (k′)} = δk,k′



QFT on
quantum
spacetime

AD, JL, JP

motivation

full theory,
full reduction

again full

constraints to
1st order

physical
phase space

gauge-fixing
Example:

C(0) = O(δγ2) ⇒ p(0)
T = ±

√
κ

6
πα + O(δγ2)

G-fixing: T (0) − τ = 0 for τ ∈ R.

Similarly:

E(k) ≈ 0,M(k) ≈ 0 ⇒ p1 = p1(γfree), p2 = p2(γfree)
V(k) ≈ 0,W(k) ≈ 0 ⇒ p3 = p3(γfree), p4 = p4(γfree)

G-fixing: q1 = q2 = q3 = q4 = 0.

So we have a τ-dependent embedding of the physical phase space ΓP in ΓC ⊂ Γ:

ΓP → ΓτP ⊂ ΓC ⊂ Γ

ΓτP is parametrized by

(γfree) =
(
α, πα, δq̆ab(0), δπ̆ab(0), δT̆(k), δp̆T (k), δφ̆(k), δπ̆φ(k), q5(k), p5(k), q6(k), p6(k)

)
simplicity of g-fixings⇒ symplectic structure reduced to ΓτP is simple:

{α, πα} = 1, {δq̆ab(0), δπ̆cd(0)} = δc
(aδ

d
b) −

1
3δ

cdδab, {δφ̆(k), δπ̆φ(k′)} = δk,k′

{q5(k), p5(k′)} = δk,k′ , {q6(k), p6(k′)} = δk,k′ , {δT̆(k), δp̆T (k′)} = δk,k′



QFT on
quantum
spacetime

AD, JL, JP

motivation

full theory,
full reduction

again full

constraints to
1st order

physical
phase space

gauge-fixing
Example:

C(0) = O(δγ2) ⇒ p(0)
T = ±

√
κ

6
πα + O(δγ2)

G-fixing: T (0) − τ = 0 for τ ∈ R.

Similarly:

E(k) ≈ 0,M(k) ≈ 0 ⇒ p1 = p1(γfree), p2 = p2(γfree)
V(k) ≈ 0,W(k) ≈ 0 ⇒ p3 = p3(γfree), p4 = p4(γfree)

G-fixing: q1 = q2 = q3 = q4 = 0.

So we have a τ-dependent embedding of the physical phase space ΓP in ΓC ⊂ Γ:

ΓP → ΓτP ⊂ ΓC ⊂ Γ

ΓτP is parametrized by

(γfree) =
(
α, πα, δq̆ab(0), δπ̆ab(0), δT̆(k), δp̆T (k), δφ̆(k), δπ̆φ(k), q5(k), p5(k), q6(k), p6(k)

)

simplicity of g-fixings⇒ symplectic structure reduced to ΓτP is simple:

{α, πα} = 1, {δq̆ab(0), δπ̆cd(0)} = δc
(aδ

d
b) −

1
3δ

cdδab, {δφ̆(k), δπ̆φ(k′)} = δk,k′

{q5(k), p5(k′)} = δk,k′ , {q6(k), p6(k′)} = δk,k′ , {δT̆(k), δp̆T (k′)} = δk,k′



QFT on
quantum
spacetime

AD, JL, JP

motivation

full theory,
full reduction

again full

constraints to
1st order

physical
phase space

gauge-fixing
Example:

C(0) = O(δγ2) ⇒ p(0)
T = ±

√
κ

6
πα + O(δγ2)

G-fixing: T (0) − τ = 0 for τ ∈ R.

Similarly:

E(k) ≈ 0,M(k) ≈ 0 ⇒ p1 = p1(γfree), p2 = p2(γfree)
V(k) ≈ 0,W(k) ≈ 0 ⇒ p3 = p3(γfree), p4 = p4(γfree)

G-fixing: q1 = q2 = q3 = q4 = 0.

So we have a τ-dependent embedding of the physical phase space ΓP in ΓC ⊂ Γ:

ΓP → ΓτP ⊂ ΓC ⊂ Γ

ΓτP is parametrized by

(γfree) =
(
α, πα, δq̆ab(0), δπ̆ab(0), δT̆(k), δp̆T (k), δφ̆(k), δπ̆φ(k), q5(k), p5(k), q6(k), p6(k)

)
simplicity of g-fixings⇒ symplectic structure reduced to ΓτP is simple:

{α, πα} = 1, {δq̆ab(0), δπ̆cd(0)} = δc
(aδ

d
b) −

1
3δ

cdδab, {δφ̆(k), δπ̆φ(k′)} = δk,k′

{q5(k), p5(k′)} = δk,k′ , {q6(k), p6(k′)} = δk,k′ , {δT̆(k), δp̆T (k′)} = δk,k′



QFT on
quantum
spacetime

AD, JL, JP

motivation

full theory,
full reduction

again full

constraints to
1st order

physical
phase space

outline

1 motivation

2 full theory, full reduction

3 again full

4 constraints up to 1st order (aka no longer full)

5 physical phase space



QFT on
quantum
spacetime

AD, JL, JP

motivation

full theory,
full reduction

again full

constraints to
1st order

physical
phase space

observables and dynamics

Pull-back (γfree) from ΓτP ⊂ Γ to the physical phase space ΓP along the τ-dependent
embedding

⇒ τ-dependent coordinates (γτfree) for ΓP, satisfying canonical Poisson algebra

Purpose of dynamics: find a function on ΓP that generates this change

d
dτ
γτfree =

{
γτfree, h

τ
P

}
We call such a function hτP the physical Hamiltonian.

Relational observables: f → Of . In particular Oγτfree

If H = p(0)
T − h̃, then

d
dτ
Oγτfree

= −
∂

∂T (0)Oγ
τ
free

= −{Oγτfree
, p(0)

T } = −{Oγτfree
, h̃} = −{Oγτfree

,OhP }
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d
dτ
Oγτfree

= −O{γτfree ,hP}

where

hP(γτfree) = h̃
(
γτfree; qn = 0,T (0) = τ; pn = pn(γτfree), p

(0)
T = p(0)

T (γτfree)
)

and H = p(0)
T − h̃.

H =
∫

d3x [N(x)C(x) + Na(x)Ca(x)] with C(x) = (pT (x) + h(x))(pT (x) − h(x))/2
√

q
⇒ N(x) = 2

√
q(x)/(pT (x) + h(x)) and Na(x) = 0 gives

H =

∫
d3xpT (x) −

∫
d3xh(x) = p(0)

T − h̃
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Explicitely:

hP = Hhom + Hk=0 +
∑

k,0,m=5,6

HG
m,k +

∑
k,0

HT
k +

∑
k

HM
k

with

Hhom =

√
κ(πτα)2

6

HG
m,k = −

√
6

κ(πτα)2

[
2κe4ατ

(
pm(k)τ +

πταe−4ατ

12 qm(k)τ
)2

+
1
2

(
κ(πτα)2e−4ατ

12 + k2

4κ

)
(qm(k)τ)2

]
HT

k = −

√
6

κ(πτα)2

[
1
2

(
δp̆T (k)τ − κπτα

2 δT̆(k)τ
)2

+ 1
2 e4ατk2(δT̆(k)τ)2

]
HM

k = −

√
6

κ(πτα)2

[
1
2 (δπ̆(k)τ)2 + 1

2 e4ατk2(δφ̆(k)τ)2
]

can be thought of as various Hamiltonians for the different sectors.
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comment on M-S variables

Define
Q(k) := δT̆(k), P(k) := δp̆T (k) −

κπα
2
δT̆(k)

In terms of these variables, HT
k looks like

HT
k = −

√
6

κ(πτα)2

[
1
2

P(k)2 +
1
2

e4ατk2Q(k)2
]

Q and P are nothing but M-S variables: commute with linearized constraints
E,M,V ,W ⇒ are called the gauge-invariant dof’s of the scalar sector.

But:
• as soon as you consider higher orders, they stop being D-obs
• canonical pair only restricted to perturbations phase space:
{α,P(k)} = − κ

2 Q(k) , 0

nice dynamics⇒ non-canonical kinematics, nice kinematics⇒ non-h.o. dynamics
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conclusions

• new framework for cosmological perturbations
• at least as good as the standard one in the classical background case
• arguably better in the quantum background case

• next steps:
• quantization of perturbations and background
• generalization to other matter fields (inflaton, maxwell, ...)

• more technical points:
• role of the 2nd order diffeomorphism constraint (relation to global symmetries?)
• meaning of the gauge-fixing q1 = q2 = q3 = q4 = 0
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