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motivation

classical framework for QFT on quantum (cosmological) spacetime
Is the current framework not good? Let’s recall it.

Each dynamical varialbe vy (a coordinate in full phase space) is expanded

1
Yy = y(o) + 66’)/(1) + 5625’)/(2) + ...
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motivation
the goal:

classical framework for QFT on quantum (cosmological) spacetime

Is the current framework not good? Let’s recall it.
Each dynamical varialbe y (a coordinate in full phase space) is expanded

y =79+ ey + %ezéy(z) +...
This is a "dynamical expansion”:
o ¥ is solution of the Oth order equations (wait for it)

o 5y is the Ist order correction, so ¥'¥ + 5y is solution to 1st order equations
e and so on
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motivation
the goal:

classical framework for QFT on quantum (cosmological) spacetime

Is the current framework not good? Let’s recall it.
Each dynamical varialbe y (a coordinate in full phase space) is expanded

y =79+ ey + %ezéy(z) +...
This is a "dynamical expansion”:
o ¥ is solution of the Oth order equations (wait for it)

o 5y is the Ist order correction, so ¥'¥ + 5y is solution to 1st order equations
e and so on

= the kinematics is messed up: if I expand around homogeneous isotropic ST q(O)

ab’
then part of 6qfllb) will be correction to the homogeneous isotropic sector, so that

{6(12]/))’ ﬂ;él)} #0
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first possibility: what is done in standard cosmological perturbation theory
la Fix FRW solution as a classical curved spacetime

1b Perturbations 6y'" are considered as the only dynamical variables

lc QFT on curved spacetime construction is employed



QFT on
quantum
spacetime

AD, JL, JP

motivation

full theory
full reduction

again full

constraints to

1st order

physical

phase space

motivation

Two possibilities to avoid this problem:
1 fix the background once and for all

2 forget about the "dynamical expansion” given above

first possibility: what is done in standard cosmological perturbation theory
la Fix FRW solution as a classical curved spacetime
1b Perturbations 6y'" are considered as the only dynamical variables

lc QFT on curved spacetime construction is employed

second possibility: not an expansion, but an exact splitting

(0)

y=y" +0y



QFT on
quantum
spacetime

AD, JL, JP

motivation

full theory
full reduction

again full

constraints to

1st order

physical

phase space

motivation

Two possibilities to avoid this problem:
1 fix the background once and for all

2 forget about the "dynamical expansion” given above

first possibility: what is done in standard cosmological perturbation theory
la Fix FRW solution as a classical curved spacetime
1b Perturbations 6y'" are considered as the only dynamical variables

lc QFT on curved spacetime construction is employed

second possibility: not an expansion, but an exact splitting

y=7"+oy

This is a "kinematical splitting”:
o ¥© is the homogeneous isotropic component (not a solution to Oth equations)

e ¢y is the rest (inhomogeneous and anisotropic degrees of freedom)
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Two possibilities to avoid this problem:
1 fix the background once and for all

2 forget about the "dynamical expansion” given above

first possibility: what is done in standard cosmological perturbation theory
la Fix FRW solution as a classical curved spacetime
1b Perturbations 6y'" are considered as the only dynamical variables

lc QFT on curved spacetime construction is employed

second possibility: not an expansion, but an exact splitting

y=7"+oy

This is a "kinematical splitting”:
o ¥© is the homogeneous isotropic component (not a solution to Oth equations)
e ¢y is the rest (inhomogeneous and anisotropic degrees of freedom)

= valid on the full phase space: it simply gives rise to a coordinate system on it.



motivation

We will follow the second solution, as it treats homogeneous and inhomogeneous
dof’s on the same footing:

you agree it’s a better framework for quantizing perturbations and background
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Action:

full theory
f d'x\=g [_R— ~¢"9,Td,T - guvaﬂ¢av¢
where x = 87G.
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Action:

1 1
fd%r[ R- 7g‘”8 16,T — 7g“vc') $0,¢

where « = 87G. Three sectors:
e the geometric (G) sector, associated to the metric g,,,

o the time (T) sector, a K-G "clock field”
o the matter (M) sector, a K-G “matter field” ¢
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full theory

1 1
fd“xf[ R- 7g“"8 16,T — 7g‘”(') $0,¢

where « = 87G. Three sectors:
e the geometric (G) sector, associated to the metric g,,,

o the time (T) sector, a K-G "clock field” T
o the matter (M) sector, a K-G “matter field” ¢

Hamiltonian analysis (ADM): kinematical phase space I' = ' X I'r X [y, with

{qap(), 7 ()} =

and constraints

5606, y),  AT@), pr)} = 6V (x, y),

2k 1
= — |mpn® - 7(Qah7rab)2 -
\/a \/»
1
+ ——=¢",TO,T + ——
2\/»]77" q b

= _zqa('vbﬂ'bl: + pTaaT + 7T¢6a¢

V4
2

RO+

"

{(x0), Ty}

\f

qa a[l (bab ¢

=5%(x,y)



full reduction: kinematics

We perform here the full reduction to homogeneous and isotropic sector. This is
done to introduce notation, and to show how not to do in our framework.
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We perform here the full reduction to homogeneous and isotropic sector. This is
done to introduce notation, and to show how not to do in our framework.

Cauchy surface = T?, fiducial coordinates (x*) € [0, 1)°.
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We perform here the full reduction to homogeneous and isotropic sector. This is
done to introduce notation, and to show how not to do in our framework.

Cauchy surface T = T?, fiducial coordinates (x*) € [0, 1)*. We consider the sector

M =19 xrP =1 c IgxTrxTy

where
. F(O) consists of (q((l)f,n(o)) with
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We perform here the full reduction to homogeneous and isotropic sector. This is
done to introduce notation, and to show how not to do in our framework.

Cauchy surface T = T?, fiducial coordinates (x*) € [0, 1)*. We consider the sector
M =19 xrP =1 c IgxTrxTy
where
. Fg)) consists of (qgl)f,nm)) with

ﬂ'(y

0 2 b
a0 = %6y,  THX) = T

o I is parametrized by hom. scalar field and its momentum, (T®, p'”).
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full reduction: kinematics

We perform here the full reduction to homogeneous and isotropic sector. This is
done to introduce notation, and to show how not to do in our framework.

Cauchy surface T = T?, fiducial coordinates (x*) € [0, 1)*. We consider the sector

M =19 xrP =1 c IgxTrxTy

where
(0) : (0) :
o I, consists of (qab,n(o)) with
(0) 2 b o€
ab ()C) =e ”6111” n’?()))( ) = T(sa
o I is parametrized by hom. scalar field and its momentum, (T®, p'”).

o ¢is test field, i.e. at Oth order vanishes: ¢ = 0,7}’ = 0= T}’ = (0,0).



full reduction: dynamics

Only non-vanishing constraint is the homogeneous part of C:

COW) = f PN CO(x) = e_3"[%(p(To))2 - 1—"2n§] f PN ()
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full reduction: dynamics

Only non-vanishing constraint is the homogeneous part of C:
1 2
CO(N) = f dxNx)CO(x) = e [5@;0))2 - Tkzﬂl f d’xN(x)

The intersection I” N T'¢ consists of points representing ST of the FRW type

g/(‘?,)dx“dxv = —di* + 06 pdxdxb

filled with a homogeneous scalar field T = TO(z).
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- Only non-vanishing constraint is the homogeneous part of C:

full reduction

gain fu — l 2
aga 1l C(())(N) — fd3xN(x)C(())(x) —e 3a [5@(7(_)))2 _ TKZH;] fdng(X)

constraints to
Ist order

The intersection I” N T'¢ consists of points representing ST of the FRW type

physical
phase space

g/(f",)dx“dxv = —di* + 06 pdxdxb

filled with a homogeneous scalar field T = TO(z).
Hamilton eq. with C”(0) = ¢-dependence:

@ = —Kedog,

- _ 3 ,-3a(,, 02 K =32
7'.1'(, = ;€ E)[’T )= 1€ T,
T(()) — 6730/,)(7_)

50 _

pr = 0

In other words: gf,ov) satisfies Einstein eq sourced by a homogeneous field 7, which
satisfies K-G eq on a spacetime of the FRW type gf,ov)
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the programme
In our framework, we consider the full phase space, with coordinates defined as

a = 1 (%6‘”’ f: d3xqab)
Ty = 25, fz dxm®
TO = [T

P(TO) = fy_ dxpr
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the programme

In our framework, we consider the full phase space, with coordinates defined as

and

(0%
o

TO

(0)
Pr

6qab (x)
on? (x)
oT(x)
opr(x)
0¢(x)
Omy(x)

1ln (%6‘”’ k d3xqab)
2626, fz dxn®
&xT

f_ Bxpr

qab(x) - eza6ub
ﬂab(x) _ ﬂ?ae—Zaaab

TG) — TO
prx) = pY
#(x)
7r¢(x)
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the programme
In our framework, we consider the full phase space, with coordinates defined as

@ = %ln(%é"bf:dz'xqab)
Ty = 25, f2d3x7r“b
TO |, d*xT
0 = f Bx
T s Pt
and
6qab(x) = qab(x) - eZa‘sub
ont(x) = n%>x) - ”?”e‘z"‘é“b
oT(x) = Tkx) - TO
oprx) = prx) - py’
op(x) = o)
omy(x) = my(x)

In this coordinates we:
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the programme

In our framework, we consider the full phase space, with coordinates defined as

@ = i (gﬁab £ d3xq[,b)
Ty = 2%, fz dPxn®
TO = [T
P(TO) = fz &xpr
and
6qab(x) = qab(x) - ezléah
(571”b(x) — ﬂ.ab(x) _ %e—er(Sab
oT(x) = Tkx) - TO
oprx) = prx) - py
op(x) = Hx)
omy(x) = me(x)

In this coordinates we:
© solve the full constraints of the theory
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the programme

In our framework, we consider the full phase space, with coordinates defined as

a = %ln (%5"” fz d3xq[,b)
Ty = 2%, fz dPxn®
TO = [T
P(TO) = fz &xpr
and
6qa(X) = qu(x) — €64
(571”b(x) — ﬂ.ab(x) _ %e—er(Sab
0T (x) = Tkx) - TO
oprx) = prx) - py
op(x) = Hx)
omy(x) = me(x)

In this coordinates we:
© solve the full constraints of the theory
® reduce to the constraint surface I'¢
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motivation _ l l ab 3
full theory, @ - 2 In ( 3 é L d x‘lab)
full reduction Ty — 2e% Sup L A3
again full T(O) — f dKXT
s

constraints to (0) _ 3
Ist n‘nlm' ' Pr = f): d’xpr
physical and
phase space

6‘](1/7 (X) = %h(x) - (32”611}7

(57r”b(x) — ﬂ.ab(x) _ 7% e—Zaéab

oT(x) = T - TO

0

spr(x) = pre - py

6px) = P

omy(x) = my(x)

In this coordinates we:
© solve the full constraints of the theory
® reduce to the constraint surface I'¢
© study the gauge transformations generated by the constraints and restrict to I'p
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In our framework, we consider the full phase space, with coordinates defined as
motivation _ l l ab 3
full theory, @ - zln ( 3 é L d x‘lab)
full reduction Ty — zehéah L A3
again full T(O) — f dKXT
s

constraints to o _ 3
Ist n‘nlm‘ ' Pr = f): d’xpr
physical and
phase space

6‘](1/7 (X) = da (X) - (32”611}7

(57r”b(x) — ﬂ.ab(x) _ 7% e—2a§ab

oT(x) = T - TO

0

spr(x) = pre - py

6px) = P

omy(x) = my(x)

In this coordinates we:
© solve the full constraints of the theory
® reduce to the constraint surface I'¢
© study the gauge transformations generated by the constraints and restrict to I'p
@ construct the algebra of basic Dirac observables
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the programme

In our framework, we consider the full phase space, with coordinates defined as

a = %ln (%(5“” fz d3xqab)
Ty = 2%, fz dPxn®
TO = [T
pfl(,)) = fz dxpr
and
6‘](1/7 (X) = qab (X) - (32”60#7
(57r”b(x) — ﬂ.ab(x) _ 7% e—Zaé‘ab
oT(x) = Tkx) - TO
oprx) = prx) - py
op(x) = Hx)
omy(x) = my(x)

In this coordinates we:
© solve the full constraints of the theory
® reduce to the constraint surface I'¢
© study the gauge transformations generated by the constraints and restrict to I'p
@ construct the algebra of basic Dirac observables
© study the 1-dimensional group of automorphisms on it parametrized by 7©



QFT on
quantum
spacetime

AD, JL, JP

motivation

full theory,
full reduction

again full

constraints to
Ist order

physical

phase space

the programme
In our framework, we consider the full phase space, with coordinates defined as

a = %ln (%(5“” fz d3xqab)
Ty = 2%, fz dPxn®
TO = [T
P;Q) = fz d*xpr
and
6‘]11/7 (X) = qab (X) - (32”60#7
(57r”b(x) — ﬂ.ab(x) _ 7% e—Zué‘ab
oT(x) = Tkx) - TO
oprx) = prx) - py
op(x) = Hx)
omp(x) = my(x)

In this coordinates we:
© solve the full constraints of the theory
® reduce to the constraint surface I'¢
© study the gauge transformations generated by the constraints and restrict to I'p
@ construct the algebra of basic Dirac observables
© study the 1-dimensional group of automorphisms on it parametrized by 7©
O find the physical Hamiltonian (generator of such group)
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the programme
In our framework, we consider the full phase space, with coordinates defined as

a = %ln (%(5“” fz d3xqab)
Ty = 2%, fz dPxn®
TO = [T
P;Q) = fz d*xpr
and
6‘]11/7 (X) = qab (X) - (32”60#7
(57r”b(x) — ﬂ.ab(x) _ 7% e—Zué‘ab
oT(x) = Tkx) - TO
oprx) = prx) - py
op(x) = Hx)
omp(x) = my(x)

In this coordinates we:
© solve the full constraints of the theory
® reduce to the constraint surface I'¢
© study the gauge transformations generated by the constraints and restrict to I'p
@ construct the algebra of basic Dirac observables
© study the 1-dimensional group of automorphisms on it parametrized by 7©
O find the physical Hamiltonian (generator of such group)
@ go home and find a real job
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results of the calculations up to the 1st order only.
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full theory
full reduction

g il ... we do it up to linear order.

constraints to

1st order

_— More precisely: in order to see explicit expressions, we implement the canonical
phase space programme expanding the full constraints in 6y and keeping track of the
results of the calculations up to the 1st order only.

= background variables a, 7,, T, p” do obey the Oth order dynamics, as in the
standard framework.
However, our framework

o allows to continue to higher orders

o shows that the usual gauge-invariant dof’s are observables only up to 1st order
and have non-trivial Poisson algebra with the background



first thing to do: Fourier-transform
Flying over the subtleties, we associate to each field y(x) a real Fourier transformed
field y(k) where k € £ = (27Z)>.
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k = 0 components comprise the homogeneous dof’s:

T70) =1, pr(0) =p}
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first thing to do: Fourier-transform
Flying over the subtleties, we associate to each field y(x) a real Fourier transformed
field y(k) where k € L = (2nZ)>.
k = 0 components comprise the homogeneous dof’s:
T0) =T, pr(0) = py’
As for the metric dof’s, we separate the isotropic part from the rest:

@ T 6Gu(0), 672°(0)

such that §6G,,(0) = 6,4,07°°(0) = 0.
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first thing to do: Fourier-transform
Flying over the subtleties, we associate to each field y(x) a real Fourier transformed

field y(k) where k € L = (2nZ)>.

k = 0 components comprise the homogeneous dof’s:
10) =19, pr(0) =py

As for the metric dof’s, we separate the isotropic part from the rest:
@ T 8Gup(0), 67°(0)

such that §6G,,(0) = 6,4,07°°(0) = 0.
k # 0 components of 5§, and 7% are traceless symmetric 3 X 3 matrices:
expanding them on the basis {A”) } withm = 1,2,...,6, we get

gu(k) := AL (K)SGap(k), p" (k) := ALl (k)R (k)

m
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Flying over the subtleties, we associate to each field y(x) a real Fourier transformed

s field y(k) where k € £ = (2Z)°.

full theory,
full reduction

k = 0 components comprise the homogeneous dof’s:

again full

constraints to SOy — 7O % ()

atorder 1) =T, pr(0) = p}

physical . N . .

Dhace space As for the metric dof’s, we separate the isotropic part from the rest:

@ T 6Gu(0), 672°(0)

such that §6G,,(0) = 6,4,07°°(0) = 0.
k # 0 components of 5§, and 7% are traceless symmetric 3 X 3 matrices:
expanding them on the basis {A”) } withm = 1,2,...,6, we get

gu(k) := AL (K)SGap(k), p" (k) := ALl (k)R (k)

Canonical Poisson algebra induces the following algebra on the new variables:

fema} =1, (TOpPY =1, {6Ga(0),678(0)} = 6,09 — $6“0us

(gm0, p" (K = Ghbises  AST(), 6Pr(K)} = Gaes 6P(K), 675(K)} = S
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linearized constraints

Replace the splitting y = y© + §y in the constraints, and expand for small 5y:
Cx) =CO20) +CV(x) + CP) + ...,

Co(x) = CO) + CP(x) + CP(x) + ..
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motivation
full theory, o . .
fiedacion  Replace the splitting y = ¥ + §y in the constraints, and expand for small &y:
again full
constraints o Cx) = CP0) +CP@W) + CPW) + ... Cu) = CP () + CP () + CP0) + ...
Ist order

e Now, make a real Fourier-transform of the constraints. Using some facts, we get
phase space

CO)=C"+ [dxCP() + 06y"),  Cu(0) = 06y
. i(1-sgn(k))/2 . X

Ck) = [dx (e + sgne ™) [CV@) + 0]
i(l—sgn(k))/Z

" S dx (e + sgntye ) [C(x) + O]

Cu(k) =

u]

]
I
w

i
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full reduction Replace the splitting y = ¥ + §y in the constraints, and expand for small 5y:

again full
constrints to C) = CP0) +CW) + CPW) + .y Cal) = CP(0) + C () + CP @) + ...
1st order

Now, make a real Fourier-transform of the constraints. Using some facts, we get

physical
phase space

C(0) = CO + [dxCO(x) + Oy, C.(0) = 0(6y?)

. j(1-sen()/2 _ ,
Clk) = ——=— [dx (e + sgn(k)e™) [ V@) + 0@y
. j(-sen()/2 . .

Calk) = ——— [ dx (™ + sgn(k)e ™) [ " (x) + 0(67%)]

V2

= at Ist order we only have
C?, E(k):=CVk), M) :=k'C k), Vk) :=vwCP k), Wk):=w'CP(k)

where (k, v, w) form an orthogonal basis for the momentum space R.
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Explicitely:

analysis of true dof’s
c® — —3a[ (0))2 12 a]
Ekh) = -** ( +<p“”)2)q1(k> 12q1(K) + 52 qa(k)—
~p (k) + e p pr (k)
Mk) 2o g1k) — Zee (k) — 257! (k) = 262 P (K) + 6T (k)
vk = q3(k) +2¢*p (k)
W (k) qa(k) + 2> (k)
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Explicitely:

analysis of true dof’s
cO = 3 [ (0))2 £ a]
B0 = (0 P) 0 - S0 + SR 0-
~p (k) + e p pr (k)
Mk) (k) — 29 g (k) — 257 pl (k) — 2> p2 (k) + pY6T (k)
Vi = q3(k) + 2627p (k)
W) = Z—quk) +2¢*p(k)
So:
o k=0 sector (a,7,, T, p,

84a(0), 67%(0)) is constrained by C©

«O> «Fr o«
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v
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motivation

full theory,
full reduction

again full

constraints to
1st order

physical
phase space

Explicitely:

cO

E(k)

M(k)

V(k)

W (k)
So:

analysis of true dof’s

730[ (p(O))z % n]

—”f“( PP )i — SRR + SR (0

T pl (k) + e pSpr(k)

2 g1 (k) - 2o o (k) - 257 p' (k) = 2¢2pA(K) + Pl T (k)
22 430 + 267 (K)

e ga (k) + 262 p* (k)

o k= 0sector (@, 74, T, p, 53.5(0), 57 (0)) is constrained by C®
e E and M constraint the scalar sector (5T, 5pr, 8¢, 674, q1,p", 42, p%)

u]
]
I
w
i




QFT on
quantum

spacctime analysis of true dof’s
AD, JL, JP
Explicitely:
full theory _ —3a 0 K
i O = e [LeP)Y - )
again full
—5a
— Ek) = —”T( PP ) i) - SR + SR a0
physical o
phase space kﬂ,,( oD (k) + e_"mp(())de(k)
M) = =g K) - 2 o) - 257 pl(0) - 262 p2(K) + p 6T (k)
V() = g5k +26p (k)
Wk = 5 gy k) + 22 p* (k)
So:

o k= 0sector (@, 74, T, p, 53.5(0), 57 (0)) is constrained by C®
e E and M constraint the scalar sector (5T, 5pr, 8¢, 674, q1,p", 42, p%)
e V and W constraint the vector sector (3, p*, qs, p*)

u]

]
I
w
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QFT on
quantum

spacetime analysis of true dof’s
AD, JL, JP
Explicitely:
full theory = o © £
i O = e [30py - ]
again full
—5a
consrins Ek) = —367( + (p«)))z)ql(k) Kqi(k) + S-k*q2(k)—
physical
phase space _ Knge nrp (k) + e_"ap((»(spj‘(k)
M) = =g K) - 2 o) - 257 pl(0) - 262 p2(K) + p 6T (k)
V) = (k) + 262 p (k)
Wk = Z5—quk) +22p*(k)
So:

o k= 0sector (@, 74, T, p, 53.5(0), 57 (0)) is constrained by C®
e E and M constraint the scalar sector (5T, 5pr, 8¢, 674, q1,p", 42, p%)
e Vand W constraint the vector sector (g3, p*, qa, p*)

o the tensor sector (gs, p°, g¢, p°) is unconstrained

u]

]
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Example:

gauge_ﬁxing

=06y = pY= \/gﬂa o
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Example:

gauge_ﬁxing

=06y = pY= \/gﬂa o
G-fixing: T® —r =0 for7 e R.
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Example:

gauge-fixing
c¥=06y) = pf= \@na +0(7")
G-fixing: T® —r =0 for7 e R.
Similarly:
E(k) ~0,M(k)~0 = pl ('yfree)7p2 =p2(7free)
V) ~0,Wk) ~0 = p*=p’

(7free)vp4 = p4(’yfree)
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Example:

gauge-fixing

c¥=06y) = pf= \@na +0(7")
G-fixing: T® —r =0 for7 e R.

Similarly:

E()~0,MK)~0 = p'=p'Wpee)P* = P*Vpree)
G-fixing: g,

2 _ 2
V) = 0,Wk) =0 = p*=p*Gpee) P = P pree)
=2=93=qs=0
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QFT on
quantum
spacetime

AD, JL, JP

motivation

full theory,
full reduction

again full

constraints to
1st order

physical
phase space

gauge-fixing
Example:

CO=0©y) = pY==+ \/gm, +0(5y%)

G-fixing: T® —r =0 for7 e R.

Similarly:
pl = p] (7}%{%{1)’ 172 = pz(yfree)

E(k) ~ 0, M(k) ~ 0
p3 = p3(7free)vp4 = p4(7ﬁ'ee)

V(k) = 0, W(k) ~ 0
G-fixing: ¢1 = ¢» = g3 = ¢4 = 0.

=
=

So we have a 7-dependent embedding of the physical phase space I'p inI'c C T

I'p—>I,clccT

u]
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QFT on
quantum

spacetime :
auge-fixin
AD, JL, JP g g g
Example:
motivation
0 2 0 K 2
C¥=06y) = pf=x \Em +067")
full reduction
again full G-fixing: T® — 7 =0 for r € R.
constraints to
Ist order Similarly:
physical
E() ~0.MI)~0 = p' =p'(pe).p® = P2 Ojec)

=
V(k) ~ 0, W(k) ~0 = p3 = p3(7free)vp4 = p4(7ﬁ'ee)
G-fixing: ¢1 = ¢» = g3 = ¢4 = 0.
So we have a 7-dependent embedding of the physical phase space I'p inI'c C T
I'p—>I,clccT
I’} is parametrized by

Vpee) = (@ 7, 6 (0), 67(0), 6T (k), 67 (k), 64K, 6724k, g5 (K), p* (k), g6 (), p° (k)
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quantum
spacetime

AD, JL, JP

motivation

full theory,
full reduction

again full

constraints to
1st order

physical
phase space

gauge-fixing
Example:
CV=06y) = pP == \/gm, +0(67%)

G-fixing: T® —r =0 for7 e R.

Similarly:

E(k) ~ 0, M(k) ~0 = pl = p](yf%(le)’pz = pz(yfree)
V(k) ~ 0, W(k) ~0 = p3 = p3(7free)vp4 = p4(7ﬁ'ee)

G-fixing: q1 = ¢ =¢q3 = q4 = 0.

So we have a 7-dependent embedding of the physical phase space I'p inI'c C T
I'p—>I,clccT
I’} is parametrized by
Vpee) = (@ 7, 6 (0), 67(0), 6T (k), 67 (k), 64K, 6724k, g5 (K), p* (k), g6 (), p° (k)
simplicity of g-fixings = symplectic structure reduced to I'}, is simple:
{o.m) =1, {64a(0),67°(0)} = 6,67 — 56“6u, (66K, 67t5(K)} = ip0

{gs(0), P’ (KD} = Gkpes g6k, p° (k)Y = Sppes ST (R), 6pr(K)) = S
[m] = = =




outline
@ motivation

@ full theory, full reduction

© again full

@ constraints up to 1st order (aka no longer full)

@ physical phase space
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observables and dynamics

Pull-back (y.) from I';, C T to the physical phase space I'p along the 7-dependent
embedding

«Or «Fr <

it
v
a

DA



observables and dynamics

Pull-back (y.) from I';, C T to the physical phase space I'p along the 7-dependent
embedding

= t-dependent coordinates (y;ree) for I'p, satisfying canonical Poisson algebra
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AD, JL, JP

motivation

full theory,
full reduction

again full

constraints to
Ist order

physical
phase space

observables and dynamics

Pull-back (¥j.) from I, C T  to the physical phase space I'p along the 7-dependent
embedding
= t-dependent coordinates (y;w) for I'p, satisfying canonical Poisson algebra

Purpose of dynamics: find a function on I'p that generates this change

d
Jp Ve = {y},.ee,hia}
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motivation

full theory,
full reduction

again full

constraints to
Ist order

physical
phase space

observables and dynamics

Pull-back (¥j.) from I, C T  to the physical phase space I'p along the 7-dependent
embedding
= t-dependent coordinates (y;w) for I'p, satisfying canonical Poisson algebra
Purpose of dynamics: find a function on I'p that generates this change

d T T T

di_r’yfree = {yﬁ‘ee’hP}

We call such a function hj, the physical Hamiltonian.
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motivation

full theory,
full reduction

again full

constraints to

Ist order

physical
phase space

observables and dynamics

Pull-back (¥j.) from I, C T  to the physical phase space I'p along the 7-dependent
embedding
= t-dependent coordinates (y;w) for I'p, satisfying canonical Poisson algebra
Purpose of dynamics: find a function on I'p that generates this change

d T T T

di_r’yfree = {yﬁ‘ee’hP}

We call such a function hj, the physical Hamiltonian.

Relational observables: f — Oy. In particular Oy;m
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motivation

full theory,
full reduction

again full

constraints to
Ist order

physical
phase space

observables and dynamics

Pull-back (¥j.) from I, C T  to the physical phase space I'p along the 7-dependent
embedding
= t-dependent coordinates (y;w) for I'p, satisfying canonical Poisson algebra
Purpose of dynamics: find a function on I'p that generates this change

d T T T

di_r’yfree = {yﬁ‘ee’hP}

We call such a function hj, the physical Hamiltonian.

Relational observables: f — Oy. In particular Oy;m
IfH = p<T°) — h, then

d 0
EOW//YW == T OY/T,P,, = _{07;.,,‘,’17(0)} = _{Oy

r
-,
free



observables and dynamics

d
EOY}'M = _O(Yf’m,hp)
where

hp o) = 1 (Ve @ = 0.7 = 739" = p"(¥},,). P
and H = pg)) -h

0 0
2 = 0e)
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observables and dynamics

d
EOY}'M = _O(Yf’m,hp)
where

hp o) = 1 (Ve @ = 0.7 = 739" = p"(¥},,). P
and H = pg)) -h

0 0
2 = 0e)

H = [dx[N()CE) + N(0)C,(x)] with C(x) = (pr(x) + h(0))(pr(x) — h(x))/2 vg

«O>» «F»r» « >

«E)>
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observables and dynamics

d
Eoy}'m = _Ofyfme,hp)
where

h.

hp ) = 1 (Ve @0 = 0.7 = 73p" = p"(y}, ). P =
and H = p¥ -

PO (yﬁee))

H = [ @x[N@)C(x) + N(x)C,(x)] with C(x) = (pr(x) + h(x)(pr(x) — h(x))/2 G
= N(x) = 2+/q(x)/(pr(x) + h(x)) and N*(x) = 0 gives

H= f dxpr(x) - f d*xh(x) = p(o)

«4O0>» «F» «E)>» « >
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observables and dynamics
Explicitely:
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observables and dynamics
Explicitely:

hp = Hyom + Hico + Z Hmk+ZHk +ZHM
k#0,m=5,6

k#0
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observables and dynamics
Explicitely:

hP = Hhom + Hk=0 + Z

L+ Z H + Z "
k#0,m=5,6

k#0

with

T2
Hyom = \' K(ﬂg d
G —
Hm’

6 ng
P |2Ke

HT

(e + 25

T K(mg)"e
gutlr) + 3 (ST
—\/# 3 (oprthor =

i %)(q,,,(kr)z]
6T(k)’) + L R GT 7|
— i [36RE + 1R 6p (k)|

can be thought of as various Hamiltonians for the different sectors
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comment on M-S variables
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comment on M-S variables
Define

ok) = 6T(k), P(k) := 6pr(k) — %ﬁ(k)
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motivation

full theory,
full reduction

again full

constraints to
Ist order

physical
phase space

comment on M-S variables

Define P
Q) := 6T(k), P(k) := 6pr(k) — 7"5T(k)

In terms of these variables, HkT looks like

6
H =]
g K(n%)?

Q and P are nothing but M-S variables: commute with linearized constraints
E,M,V,W = are called the gauge-invariant dof’s of the scalar sector.

1 2 1 4a" 7.2 2
S PO + S Q)
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comment on M-S variables

Define P
O(k) := 6T(k),  P(k) := pr(k) — 7"6%

In terms of these variables, HkT looks like

6
H =]
g K(n%)?

Q and P are nothing but M-S variables: commute with linearized constraints
E,M,V,W = are called the gauge-invariant dof’s of the scalar sector.

1 2 1 4a" 7.2 2
S PO + S Q)

But:
e as soon as you consider higher orders, they stop being D-obs

e canonical pair only restricted to perturbations phase space:
{a, P(k)} = —50(k) # 0



QFT on
quantum

s comment on M-S variables
AD, JL, JP

- }k ; Define

ATy . KTy s

full reduction (k) := 6T (k), P(k) := opr(k) — 76T(k)

again full
constraints to In terms of these variables, HkT looks like
Ist order

physical
phase space T 6
k 7)2
K(m?)

1 2 1 4a" 7.2 2
S PO + S Q)

Q and P are nothing but M-S variables: commute with linearized constraints
E,M,V,W = are called the gauge-invariant dof’s of the scalar sector.

But:
e as soon as you consider higher orders, they stop being D-obs

e canonical pair only restricted to perturbations phase space:

{a, P(k)} = =50(k) # 0
nice dynamics = non-canonical kinematics, nice kinematics = non-h.o. dynamics
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conclusions

e new framework for cosmological perturbations

o at least as good as the standard one in the classical background case
e arguably better in the quantum background case
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e conclusions
AD,JL, JP

motivation
full theory,
full reduction
again full
constraints to ¢ new framework for cosmological perturbations
Ist orde . .
L o atleast as good as the standard one in the classical background case
il o arguably better in the quantum background case

phase space

® next steps:
e quantization of perturbations and background
e generalization to other matter fields (inflaton, maxwell, ...)
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conclusions

e new framework for cosmological perturbations
e atleast as good as the standard one in the classical background case
o arguably better in the quantum background case

® next steps:
e quantization of perturbations and background
e generalization to other matter fields (inflaton, maxwell, ...)

e more technical points:
e role of the 2nd order diffeomorphism constraint (relation to global symmetries?)
e meaning of the gauge-fixing q1 = g2 = g3 =q4 =0
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