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Introduction

quantum gravity + matter ⇐⇒ QFT on effective, k-dependent spacetime ḡµν

Effective dressed metric ḡµν only sensitive to three momenta of state of geometry Ψo

A0 := 〈Ψo |Ĥ−1
hom|Ψo〉, A4 := 〈Ψo |Ĥ−1

homâ4|Ψo〉, A6 := 〈Ψo |Ĥ−1
homâ6|Ψo〉

Because of mode-dependence of ḡµν , there is apparent Lorentz violation. The scale:

β =
A4

3
q

A0A2
6

− 1

β � 1 if Ψo is sharply peaked. So β measures the “quantum nature” of the geometry.
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Spacetime manifold: M = R× Σ. For simplicity in treating quantum fields, Σ ≈ T3.

The theory:

S[g , φ] =

Z
d4x
√
−g
»
1
2κ

R −
1
2
gµν∂µφ∂νφ− V (φ)

–
Canonical analysis:

• geometry, gµν → (qab(x);πab(x))

• K-G matter field, φ → (φ(x);πφ(x))

for each x ∈ Σ. Choose coords on Γ splitting homogeneous isotropic part and the rest:

qab = q(0)
ab + δqab, πab = πab

(0) + δπab, φ = φ(0) + δφ, πφ = π
(0)
φ + δπφ

where for instance

a2 :=

Z
Σ

d3x δabqab(x) defines q(0)
ab = a2δab

so a general point γ ∈ Γ is given by

γ =
“
q(0)
ab , δqab, φ

(0), δφ ;πab
(0), δπ

ab, π
(0)
φ , δπφ

”
Linearized gravity + matter: restrict attention to a neighborhood of sumbanifold
{γo = (q(0)

ab , 0, φ
(0), 0 ;πab

(0)
, 0, π(0)

φ , 0)}, and solve constraints C = 0 and Ca = 0 on it.
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But first, a canonical transformation: Fourier mode expansion of inhomogeneities

δγ(~x) =
X
~k∈L+

h
δγ~k cos(

~k · ~x) + δγ−~k sin(−~k · ~x)
i

where L+ is the “positive” sub-lattice of (2πZ)3, details in [AD, Lewandowski, Puchta 2013].

For δqab and δπab, we also decompose in scalar-, vector- and tensor-modes:

qm,~k = Aab
m (~k) δqab,~k , pm

~k
= Am

ab(~k) δπab
~k

This mode expansion depends on coords in Σ, so e.g. ~k is not the physical momentum.
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Plug the expansion in C(~x),Ca(~x) and solve for momenta p1
~k
, p2
~k
, p3
~k
, p4
~k
and π(0)

φ .
⇒ The corresponding “positions” are gauge parameters. We gauge-fix them:

q1,~k , q2,~k , q3,~k , q4,~k = 0, φ(0) = τ

where τ ∈ R can be considered as the physical time.

Physical phase space in the neighborhood of homogeneous isotropic systems:

• homogeneous isotropic geometry → a, p
• tensor modes of geometry (graviton-to-be) → q5,~k , q6,~k , p

5
~k
, p6
~k

• inhomogeneous modes of matter → δφ~k , δπ~k

Physical Hamiltonian is π(0)
φ expressed in physical dof’s:1

hphys = Hhom −
X
~k

H−1
hom
2

h
δπ2
~k

+
`
a4k2 + a6m2´ δφ2

~k

i
+ Hamiltonian for q5,~k , q6,~k

where Hhom =

r
κ

6
ap. Dynamics of observables (any function F of physical dof’s):

d
dτ

F = {F , hphys}

1From here on we depart from [Castello Gomar, Fernandez-Mendez, Mena Marugan, Olmedo 2013-14]
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Focus on the scalar part:

H = Hhom ⊗Hφ

and quantum dynamics driven by Hamiltonian

ĥ = Ĥhom ⊗ Î −
1
2

X
k

“
Ĥ−1

hom ⊗ δπ̂
2
k + Ω̂(k,m)⊗ δφ̂2

k

”
where

Ω̂(k,m) := k2Ĥ−1
homâ4 + m2Ĥ−1

homâ6

ĥ acts on a state |Ψ(τ, a, φ)〉 ∈ H via Schroedinger equation:

i
d
dτ
|Ψ〉 = ĥ|Ψ〉
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Test field approximation (0th order B-O): geometry and matter are disentangled

|Ψ(τ, a, φ)〉 = |Ψo(τ, a)〉 ⊗ |ϕ(τ, φ)〉

where
i

d
dτ
|Ψo〉 = Ĥhom|Ψo〉

Plugging this in the Schroedinger equation, and projecting on 〈Ψo |, gives

i
d
dτ
|ϕ〉 =

1
2

X
k

h
〈Ψo |Ĥ−1

hom|Ψo〉δπ̂2
k + 〈Ψo |Ω̂(k,m)|Ψo〉δφ̂2

k

i
|ϕ〉

Not surprising: a collection of harmonic oscillators. But the parameters of this h.o.
are expectation values of geometric operators on quantum state of geometry Ψo(τ, a).
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Let me change colors...

QFT on quantum spacetime sandwitched on |Ψo〉 ∈ Hhom:

i
d
dτ
|ϕ〉 =

1
2

X
k

h
〈Ψo |Ĥ−1

hom|Ψo〉δπ̂2
k + 〈Ψo |Ω̂(k,m)|Ψo〉δφ̂2

k

i
|ϕ〉

QFT on classical Robertson-Walker spacetime2

ḡµνdxµdxν = −N̄2dτ2 + ā2 `dx2 + dy2 + dz2´
⇒

i
d
dτ
|ϕ〉 =

1
2

X
k

»
N̄
ā3 δπ̂

2
k +

N̄
ā3

`
ā4k2 + ā6m2´δφ̂2

k

–
|ϕ〉

The comparison gives 8<: N̄/ā3 = 〈Ĥ−1
hom〉

N̄
`
ā4k2 + ā6m2´ /ā3 = 〈Ω̂(k,m)〉

⇒ Only one real and positive solution:

N̄ = 〈Ĥ−1
hom〉ā

3, ā = ā(k/m)

2From here on we depart from [Agullo, Ashtekar, Nelson 2012]
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Striking conclusion:

quantum gravity + matter ⇐⇒ QFT on effective k-dependent spacetime ḡµν

The effective scale factor:

ā(k/m)2 =

8>>><>>>:
u+ + u− −

k2

3m2 if k < ko

2k2

3m2 cos
»
1
3
arccos

„
−1 +

27m6

2k6 δ

«–
−

k2

3m2 if k ≥ ko

(1)

where

u± :=
3

vuut δ

2
−

k6

27m6 ±

s
δ2

4
−

k6

27m6 δ, δ :=
〈Ψo |Ω̂(k,m)|Ψo〉
m2〈Ψo |Ĥ−1

hom|Ψo〉

Remark: if we start with massless field, m = 0, the solution is k-independent and was
first found in [Ashtekar, Kaminski, Lewandowski 2009]

ā2
∞ =

vuut 〈Ψo |Ĥ−1
homâ4|Ψo〉

〈Ψo |Ĥ−1
hom|Ψo〉

This is consistent with the massless limit m� k of the massive solution (1).

13 / 20



Classical Theory
Quantization

Effective Metric
Lorentz Violation

What can we do with this ḡµν(k/m)? First, we must identify the “low energy” metric,
i.e. the metric seen by modes ~k with k � m:

ā (k/m)2 ≈ ā2
o

"
1 +

β

3

„
k/āo

m

«2
#

= ā2
o

"
1 +

β

3

„
P
m

«2
#

where

ā2
o = 3

vuut 〈Ψo |Ĥ−1
homâ6|Ψo〉

〈Ψo |Ĥ−1
hom|Ψo〉

, β :=
〈Ψo |Ĥ−1

homâ4|Ψo〉

〈Ψo |Ĥ−1
hom|Ψo〉

1
3 〈Ψo |Ĥ−1

homâ6|Ψo〉
2
3

− 1

P = k/āo is physical momentum of k-mode seen by low-energy cosmological observer.

Parameter β encodes the quantum nature of spacetime
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k-particle crosses the laboratory of the cosmological observer (4-velocity uµ), who
therefore measures the physical energy

E = uµkµ = k0/N̄o

The particle satisfies the mass-shell relation wrt metric ḡµν(k/m):

−m2 = ḡµνkµkν = −
k2
0

N̄2
+

k2

ā2 = −f 2E2 + g2P2

where

f :=
N̄o

N̄
, g :=

āo

ā
are the so-called rainbow functions, details in [Magueijo, Smolin 2004].

⇒ Modified dispersion relation:

E2 =
1
f 2

`
g2P2 + m2´ = m2 + (1 + β)P2 + O(P4)

A very simple modification. However:

• this is just the first order correction for P � m

• parameter β depends on physical time τ via |Ψo〉
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Lorentz dispersion relation is recovered in two independent limits:

• semiclassical matter, i.e. for modes with P � m

• semiclassical gravity, i.e. β � 1

Fix β and study the dependence on P:

0.0 0.5 1.0 1.5 2.0
P�m0.0

0.5

1.0

1.5

2.0
E�m

0 2 4 6 8 10
P�m0.0

0.2

0.4

0.6

0.8

1.0

v

Dispersion relation E and speed v = dE/dP as functions of P.
blue = semiclassical spacetime (β ≈ 0), red = quantum spacetime (β ≈ 0.2), dashed = massless

remarks:
• τ - and P-dependent speed of light
• β ∼ 1 (i.e., |Ψo〉 “very quantum”) ⇒ deviations from Lorentz for P ∼ m� EPl
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What was already known:

quantum gravity + matter ⇐⇒ QFT on effective spacetime ḡµν

Comments:
• not restricted to loops (remember Guillermo’s talk)
• not restricted to cosmology (remember Jorge’s talk)
• applied in LQC predicts corrections to power spectrum (remember Ivan’s talk)

What I showed today:
• ambiguity in the choice of effective metric ḡµν if the scalar field is massive
• (arguably) the simplest possibility produces a mode-dependent metric ḡµν(k/m)
• Lorentz-deformation controlled by a single quantum-gravity parameter β:

β =
〈Ψo |Ĥ−1

homâ4|Ψo〉

〈Ψo |Ĥ−1
hom|Ψo〉

1
3 〈Ψo |Ĥ−1

homâ6|Ψo〉
2
3

− 1

Only one parameter, in spite of the microscopic structure of quantum spacetime Ψo !
⇒ compare with crystals’ refractive properties: described uniquely by refractive index n

What is still unknown:
• relation between choices of ḡµν , in particular in comparison with Ivan’s proposal
• if ḡµν depends on k, can we measure Lorentz-violation? Not today, since β � 1.

Maybe in early Universe? Recall that for β ∼ 1 deviations appear at P ∼ m
• Lifting the approximations involved: (1) linear gravity and (2) Born-Oppenheimer
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thank you
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