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Introduction

quantum gravity + matter <= QFT on effective, k-dependent spacetime g,

Effective dressed metric g, only sensitive to three momenta of state of geometry W,
Ao == (Wo|A L 1w Ay = (Vo AL 3% |w As == (Vo A1 30w
0 1= (Vo h°m| o) 4= (Vo hom< [Wo), 6 1= (Vo hom? [Wo)
Because of mode-dependence of g, there is apparent Lorentz violation. The scale:

A
[3:74,1

3/ A2

B K 1if W, is sharply peaked. So (3 measures the “quantum nature” of the geometry.
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Classical Theory

Spacetime manifold: M = R x ¥. For simplicity in treating quantum fields, ¥ ~ T3.

The theory:

1 1
S[g,¢] = /d4X —8 |:ZR - Eguuap.(bauqﬁ - V(¢)]

Canonical analysis:

e geometry, gy — (Qab(x);ﬂab(x))
o K-G matter field, ¢ — (p(x); mg(x))

for each x € X. Choose coords on I splitting homogeneous isotropic part and the rest:
Gap = qu,) +0qap, ™= ﬂf’(f’) +om%t, ¢ =9 159, 7y = 7r( ) 4 6m,
where for instance
= /): d3x 6%Pq.p(x)  defines qi‘l)’) =a%b.p
so a general point v € I is given by
7= (a5, 025, 90, 86 s m, o7, 7, o)

Linearized gravity + matter: restrict attention to a neighborhood of sumbanifold
{70 (qab, , 09,0 ; TI'ab) 0, 7r( ,0)}, and solve constraints C =0 and C; =0 on it.
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Classical Theory

But first, a canonical transformation: Fourier mode expansion of inhomogeneities
5 (X) = Z [67; cos(k - X) + &y_psin(—k - )?)]
kec,
where £ is the “positive” sub-lattice of (277Z)3, details in [AD, Lewandowski, Puchta 2013].
For éq,p and 3P, we also decompose in scalar-, vector- and tensor-modes:

;= A (k) daq, p = AT (K) o7

q b,i("

m,

This mode expansion depends on coords in X, so e.g. K is not the physical momentum.
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Classical Theory

Plug the expansion in C(X), C5(X) and solve for momenta p%,p%p% pg and ﬂfpo).
= The corresponding “positions” are gauge parameters. We gauge-fix them:

_ 0) _
9y k19 5> 93,5090k = 0 ¢ =1

where 7 € R can be considered as the physical time.

Physical phase space in the neighborhood of homogeneous isotropic systems:
e homogeneous isotropic geometry — a, p
e tensor modes of geometry (graviton-to-be) — 95 72 96 1> pz, pz
e inhomogeneous modes of matter — 6@5;, 6#;

Physical Hamiltonian is 772?) expressed in physical dof’s:1

H-1
hohys = Hhom — Z hom [57 + (a4k2 + aem2) LYo 2;} + Hamiltonian for 95 k-

2 q6‘l?

K
where Hyom = ,/g ap. Dynamics of observables (any function F of physical dof’s):

d
dr
1From here on we depart from [Castello Gomar, Fernandez-Mendez, Mena Marugan, Olmedo 2013-14]
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Focus on the scalar part:

H = Hhom ® Hy
and quantum dynamics driven by Hamiltonian

A L1 . A .
h=Fhom @1 — EZ (Hho{n ® 672 + Q(k, m) ®5c‘>i>

where

h acts on a state |W(T,a,¢)) € H via Schroedinger equation:

d A
i —|W) = h|V
i=-1v) = hw)
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Test field approximation (Oth order B-O): geometry and matter are disentangled
[W(7,8,0)) = [Vo(T,2)) @ |(7, $))

Where
i H’O> *ﬂhom“‘0>
dr

Plugging this in the Schroedinger equation, and projecting on (W,|, gives

1

. d ~ . A A
i=10) = 537 [(Wol Ao [ Wo) 07 + (Wol2k, m)[Wo)007 | [¢)
k

Not surprising: a collection of harmonic oscillators. But the parameters of this h.o.
are expectation values of geometric operators on quantum state of geometry \I»'O(T7 a).
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Effective Metric

Let me change colors...

QFT on quantum spacetime sandwitched on |V,) € Hpom:
1

L 1) = 2 37 [(Wol Mk [Wo)# + (Wol2(k, m)[W)5] Ie)
k

QFT on classical Robertson-Walker spacetime?

Guvdxtdx” = —N23dr? + 32 (dx2 + dy2 + dzz)

= _
1 _ A
7‘90 > Z [ (a k% + a6m2)5¢>i} 1)
k
The comparison gives
N/z® = <I:l|:;n>

= Only one real and positive solution:

N = (A} )3°, 3= a(k/m)

2From here on we depart from [Agullo, Ashtekar, Nelson 2012]
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Effective Metric

Striking conclusion:
quantum gravity + matter <= QFT on effective k-dependent spacetime g,

The effective scale factor:

K2 )
— )2 uy +u_ — 32 if k < ko
a m =
2k2 L 14 2 K if k> k
——— COS | — arccos | — — —= 1
3m? 3 2k6 3m? =re
where
E I 52 Kk® (Wo|Q(k, m)|Ws)
Uy = A| = — +4/— — é, =
2  27mS 4 27mb m2(W, ‘Hhom|w )

Remark: if we start with massless field, m = 0, the solution is k-independent and was
first found in [Ashtekar, Kaminski, Lewandowski 2009]

(o Ak 34 W)

hom
(WolF ot 1Wo)

hom

This is consistent with the massless limit m < k of the massive solution (1).
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Effective Metric

What can we do with this g, (k/m)? First, we must identify the “low energy” metric,
i.e. the metric seen by modes Kk with k < m:

2
S (kymR 32 |14 2 (k/"")}:ai 1+*”’<P”
3 m 3 \m
where
> (WolFi k 36W,) (Wol Hpgry 3*1Wo)
a, = S R ) ﬁ: 1 A~ -1
(VolHpom| Vo) (Vol P, Vo) ® (Wol Aot 391Wo) 3

P = k/3, is physical momentum of k-mode seen by low-energy cosmological observer.

Parameter 3 encodes the quantum nature of spacetime
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Lorentz Violation

k-particle crosses the laboratory of the cosmological observer (4-velocity u*), who
therefore measures the physical energy

E =utk, = ko/ND
The particle satisfies the mass-shell relation wrt metric g,,.,(k/m):

2 —uv k2 k2 2 2 2p2
-m* =gz k;,k,,foJrf —f°E° +g°P

where

fi=— g =

ml‘ol

are the so-called rainbow functions, details in [Magueijo, Smolin 2004].
= Modified dispersion relation:
1
E? = = (&%P? + m?) = m* + (1 + B)P? + O(P?)

A very simple modification. However:
e this is just the first order correction for P < m

e parameter 3 depends on physical time 7 via |V,)
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Lorentz Violation

Lorentz dispersion relation is recovered in two independent limits:
e semiclassical matter, i.e. for modes with P < m

e semiclassical gravity, i.e. K1

Fix 3 and study the dependence on P:

E/m v
20

P/m

Dispersion relation E and speed v = dE/dP as functions of P.
blue = semiclassical spacetime (8 ~ 0), red = quantum spacetime (3 = 0.2), dashed = massless

remarks:
e 7- and P-dependent speed of light
o 3~1 (ie., |Wo) “very quantum”) = deviations from Lorentz for P ~ m < Ep,
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What was already known:
quantum gravity + matter <= QFT on effective spacetime g,

Comments:
e not restricted to loops (remember Guillermo's talk)
e not restricted to cosmology (remember Jorge's talk)
e applied in LQC predicts corrections to power spectrum (remember Ivan's talk)

What | showed today:
e ambiguity in the choice of effective metric g,,,, if the scalar field is massive
e (arguably) the simplest possibility produces a mode-dependent metric g, (k/m)
e Lorentz-deformation controlled by a single quantum-gravity parameter 3:

(VoA d* Vo)

A= r—1 3 r—1 z
(WolHpomlWo) 3 (Wo|H, 85| Wo) 3

hom

Only one parameter, in spite of the microscopic structure of quantum spacetime W,!
= compare with crystals’ refractive properties: described uniquely by refractive index n

What is still unknown:
e relation between choices of 3., in particular in comparison with Ivan's proposal
e if 3, depends on k, can we measure Lorentz-violation? Not today, since 8 < 1.
Maybe in early Universe? Recall that for 8 ~ 1 deviations appear at P ~ m
e Lifting the approximations involved: (1) linear gravity and (2) Born-Oppenheimer
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