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Overview

Motivation.

How to construct continuum physical theory with refining time evolution.

As an exercise construct BF vacuum:  dualize the Ashtekar-Lewandowski construction.

Need to dualize everything!

BF refinement and BF cylindrical consistent observables.

Holonomies and integrated fluxes

BF measure and cylindrically consistent inner product.

Compactification /discretization of excitations via inductive limit construction.

Remarks on diffeomorphism symmetry and (full) dynamics.

Simplicity constraints again Conclusion and outlook



How to construct (continuum) physical 
vacuum.

[Bahr: cylindrical consistent path integral measure]
[BD,12: dynamical cylindrical consistency]

[BD, Steinhaus 13: Refining by time evolution]



What is vacuum?
(Hartle-Hawking) wave function
associated to closed boundary

of space time, 
given by amplitude for basic space time 

building block

[Oeckl: generalized boundary proposal]
[Conrady, Rovelli et al 03]

...

[Hoehn: discrete generalized boundary proposal 14]

coarse representation of vacuum

finer representation of vacuum

Refined vacuum wave function
by evolving i.e. with refining

Pachner moves.

[BD, Steinhaus 13: Refining by time evolution]



Refining: adding degrees of freedom in 
(interpolating) vacuum state

Interpretation within D − 1 hypersurface: D − 1 Pachner
moves

3D Example: gluing of tetrahedron onto single triangle

3D perspective: −→

2D perspective:

Σk

−→
Σk+1

⇒ 1–3 Pachner move (other Pachner moves in 3D and 4D similarly)
⇒ Pachner moves [Pachner ’86] are ergodic and topology preserving
⇒ T = I × Σ (as in canon. GR)

P. Höhn (ITF Utrecht) A canonical formalism for simplicial gravity 9 / 32
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Same refining can be applied to a general state:

general state refined state

[BD, Hoehn, Steinhaus, ...]

fits nicely the heuristics
of tensor network
renormalization

[BD 12]



Lesson: think about refining with Pachner moves. 

Can we use this to construct continuum limit

in the same way standard LQG is based on

(dual) graph refinements?

[BD, Steinhaus 13: Refining by time evolution, Read this!]



As we will see this makes sense for topological theories and 
allows the construction of the continuum theory via 
inductive/projective limit used in LQG.

This limit does not only describe the topological theory but also  excitations!

In fact we obtain a representation (of gauge invariant projection) of the 

(modified) holonomy flux algebra.

Thus the space of `refining Dirac observables’ = cylindrically consistent observables

 is (unexpectedly) large.



(discretized)

topological field

theory

vacuum

state

(dynamics)

excitations

‘inductive limit’ 
construction

 

continuum

Hilbert space 

for excitations

determine observables stable 
under refining time evolution

 

Excitations and vacuum (general)



From AL to BF: Dualize everything!

 Ashtekar Lewandowski 

Hilbert space

cylindrical functions over A

`BF’ 

Hilbert space

cylindrical functions over E



Main lesson:  dualize everything!

(new insight: BF refining needs triangulation)

[Baratin, Oriti & Baratin, BD, Oriti, Tambornini 10 ]

Non-commutative flux representation of LQG.

[ BD, Guedes, Oriti 12]

LQG in terms of E-bar instead of A-bar?

Problem: Usual refining is not consistent with E-bar!

[Gambini, Griego, Pullin 97, 

Bobienski, Lewandowski, Mroczek 01: A two-surface 
quantization of Lorentzian gravity]

[Bianchi 09 ]

LQG as theory of curvature defects.

[Freidel, Geiller, Ziprick 11]

LQG continuum phase space with BF gauge fixing.

[LOST-F  05/04]

Uniqueness theorem for AL 
vacuum.

Can there be another vacuum?



Loop quantum gravity vacua

Ashtekar - Lewandowski vacuum (90’s)

geometric variables:

j = 5
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connection flux: spatial geometry
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28
peaked on degenerate (spatial) geometry

maximal uncertainty in connection

excitations: 
spin network states supported on graphs

BF (topological) theory vacuum

ψvac(EGauss) ≡ 1 , F (A) ≡ 0

29

peaked on flat connections
maximal uncertainty in spatial geometry

excitations: 
flux states supported on (d-1)D-surfaces

[Koslowski: vacuum with shifted E] shift connection to homogeneous curvature?

(representation) 
labels for edges

(group) labels 
 for faces

condense



What a vacuum needs to deliver

a) The vacuum state itself. 

b) The vacuum defines how to refine an arbitrary state.

c) The vacuum is cyclic: obtain entire Hilbert space by applying cylindrically consistent

   observables to the vacuum.

d) Via vacuum measure defines inner product on Hilbert state.

Need in particular define refinement and find cylindrically 
consistent observables with respect to this refinement.



Loop quantum gravity with AL vacuum
•based on dual graphs: carry excitations (spin networks = functional of holonomies labelled by spins)

•refining operations on this graph: matches composition of holonomies

•cylindrically consistent holonomy and flux observables: commute with this refining

•allows the construction of a cylindrically consistent measure 

 and inner product and the definition of  the continuum Hilbert space via a so-called inductive limit

Class. Quantum Grav. 30 (2013) 055008 B Dittrich et al

Figure 1. The three elementary moves on graphs.

The pullback of these defines the elementary injections for Hγ :

add := p∗
add : He → He,e′; f (g) $→ (add · f )(g, g′) = f (g)

sub := p∗
sub : He → He1,e2; f (g) $→ (sub · f )(g1, g2) = f (g1g2)

inv := p∗
inv : He → He; f (g) $→ (inv · f )(g) = f (g−1),

which determines the basic elements in H0 in the same equivalence class, i.e. [ f ]∼ =
{ f , add · f , sub · f , inv · f , add · sub · f , add · inv · f , . . .}. Since p∗

γ γ ′ : Hγ → Hγ ′ go
from a smaller graph to a bigger graph and satisfy

p∗
γ ′γ ′′ ◦ p∗

γ γ ′ = p∗
γ γ ′′ , ∀γ ≺ γ ′ ≺ γ ′′,

we have a direct (or inductive) system of objects and homomorphisms.
Let us check that the pointwise product in H0 is indeed cylindrically consistent. Let

f , f ′ ∈ H0. By definition, we find graphs γ , γ ′ and representatives fγ ∈ Hγ , f ′
γ ′ ∈ Hγ ′ such

that f = [ fγ ]∼, f ′ = [ f ′
γ ′]∼. Embed γ , γ ′ in the common larger graph γ ′′, that is, γ , γ ′ ≺ γ ′′.

Then, fγ ′′ = p∗
γ γ ′′ fγ , f ′

γ ′′ = p∗
γ ′γ ′′ f ′

γ ′ , and p∗
γ γ ′′ fγ = p∗

γ ′γ ′′ fγ ′ , p∗
γ γ ′′ f ′

γ = p∗
γ ′γ ′′ f ′

γ ′ . Thus,

p∗
γ γ ′′ ( fγ f ′

γ ) = p∗
γ γ ′′ ( fγ )p∗

γ γ ′′ ( f ′
γ ) = p∗

γ ′γ ′′ ( fγ ′ )p∗
γ ′γ ′′ ( f ′

γ ′ ) = p∗
γ ′γ ′′ ( fγ ′ f ′

γ ′ ),

i.e. fγ f ′
γ ∼ fγ ′ f ′

γ ′ , and the pointwise product does not depend on the representative chosen.
In terms of add, sub, inv, this amounts to

add · ( f f ′) = (add · f )(add · f ′)

sub · ( f f ′) = (sub · f )(sub · f ′)

inv · ( f f ′) = (inv · f )(inv · f ′), (4)

for f , f ′ ∈ He.
For a beautiful account on the structure of the space of generalized connections, refer to

the article [36].

6
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Figure 2. Consistency conditions for fluxes across surfaces associated with the three elementary
moves on graphs.

agrees with the Pontryagin dual E = Â = ̂Hom(P, U(1)) = Hom(Hom(P, U(1)), C). The
important point here is not the explicit form, which is not very enlightening, but the fact that
it can be defined consistently as an inductive limit and, above all, the gluing conditions (10)
from which it arises.

To finish this section, we define the corresponding space of functions. The pullback of the
embeddings (10) gives the following projections:

( p̂∗
add · u)(x) = u(x, 0),

( p̂∗
sub · u)(x) = u(x, x),

( p̂∗
inv · u)(x) = u(−x), (11)

which give the consistency conditions to define the projective limit of the C∗-algebras C0(Xγ )

for Xγ = Z|γ |. Note that the partial order for Xγ induces the same partial order for C0(Xγ ). An
element (uγ )γ of the projective limit is an element of the product ×γC0(Z|γ |) subject to the
conditions p̂∗

γ γ ′ (uγ ′ ) = uγ for γ ≺ γ ′, and so a quite complicated object.
A projective limit of C∗-algebras goes by the name pro-C∗-algebra (also known as LMC∗-

algebra, locally C∗-algebra or σ -C∗-algebra). The Gelfand duality theorem can be extended
to commutative pro-C∗-algebras and from the perspective of non-commutative geometry,
pro-C∗-algebras can be seen as non-commutative k-spaces [44]. Let us also remark that pro-
C∗-algebras are in general not Hilbert spaces although they might contain Hilbert subspaces.
Therefore, they possess much more information than usual Hilbert spaces, as we detail in the
next subsection.

Let us, at this point, emphasize that in the U(1) case, the fluxes can be identified with
the charge network basis since in a sense their only relevant component is the modulus which
corresponds to the charge. However, their modulus remains valued in the real numbers, as
opposed to what we would have would the flux representation and charge network basis be
exactly the same. What happens next, due to the sampling mentioned in the beginning of
section 3.2, is that the functions are fully specified by the evaluation on the integers and,

13

[ BD, Guedes, Oriti 12]Refinement operation on holonomies and fluxes.

[ ... Ashtekar, Isham, Lewandowski 93]

 [Thiemann 00, QSD7]



BF refinement and BF cylindrically consistent

observables
[ BD, Geiller 14]

Change to triangulation for refinement is essential!

Exercise: come up with a refinement rule in dual for BF vacuum plus excitations!



Set-up for BF vacuum

•simplicial version  of LQG, see also [Thiemann 00, QSD7]

•instead of embedding dual graph, embed triangulation (vertices)

•refining given by operation on triangulation (and not on dual graph)

•classical phase space: projective limit of phase spaces as in [Thiemann 00, QSD7]

•however change AL embedding to BF embedding

•gauge group: discrete or Lie group

More (regular) structure than just dual 
graph!

[Bonzom, Smerlak 12: needed for BF quantization]

[Gurau: colored triangulation]



Set-up

•manifold with auxiliary metric

•set of embedded triangulations

•embedded vertices: carry coordinate labels

•edges: geodesics with respect to auxiliary metric (replaces piecewise linear)

•triangles, tetrahedra:  given by minimal surfaces

•dual complex (for instance barycentric, however details do not matter)

  with a root node (fixing a reference frame)

•refining operations given by refining Alexander moves 

  (alternative: set of refining Pachner moves)

•equips the set of triangulations with a partial (directed)* order



Alexander moves, d=2
subdividing (sub) simplices

In d=2:       subdividing a triangle 

 subdividing an edge



Alexander moves, d=3
  subdividing (sub) simplices

In d=3:       subdividing a tetrahedron: 

 subdividing a triangle:

 subdividing an edge:

(there are infinitely many of those moves)



Phase spaces

•for now fix triangulation and a root node

•specify a set of point separating functions

•gauge invariance: we consider phase space functions invariant under gauge  
transformations at all nodes except at the root 

 -closed holonomies with source at root

 -integrated (simplicial) fluxes transported to the root 

  (can understand these as vector fields acting on functions of holonomies)

   d=2:                    d=3:                       (+transport to root (tree), + tree on    )

-Poisson brackets deducible from basic (standard) Poisson brackets:

ψvac(EGauss) ≡ 1 , F (A) ≡ 0

∫
dT e−S(T ) (0.168)
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Xπ , Xσ (0.170)

29
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hγ (0.169)

Xπ , Xσ (0.170)

{Xk
e , ge} = geT

k (0.171)
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 [Thiemann 00, QSD7]



Integrated simplicial fluxes, d=2
(with an almost canonical choice of parallel transport): 

[Husain 91]

[Thiemann 00, QSD7]

[Freidel, Louapre 04 ]
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FIG. 3: Local change of the graph Γ to Γ′ under the action
of a 2–2 move, with the example of a path γ changed to γ′.

The last replacement rule in (5) is redundant since it
follows from the first three ones. For a gauge–invariant
wave function we can again use a gauge fixing. Since
there are two vertices, vA and vB, we can gauge fix two
variables, e.g. g

2
= g−1

2′ and g
3

= I. Then the new wave
function ψ′ after the 2–2 Pachner move becomes

ψ′(g
1′ , . . . , g5′ , . . . ) (6)

= ψ(g
1
, . . . , g

5
, . . . )˛

˛

˛

˛

˛

˛

˛

g
1

= g−1

1
′

g−1

3
′

g
2

= g−1

2
′

g
3

= I

˛

˛

˛

˛

˛

g
4

= g−1

4
′

g−1

3
′

g
5

= g−1

5
′

.

By construction, the action of the 2–2 Pachner moves
does therefore commute with closed holonomy operators.

If r = vA or r = vB is a root vertex, we need to choose,
in agreement with the gauge fixing in (6), r′ = vD as the
new root.

Note that one can use the Peter–Weyl transform to
write the Pachner moves in the holonomy representation
into the spin representation, in which the moves appear
as the gluing to the hypersurface of Ponzano–Regge [20]
amplitudes corresponding to a tetrahedron. The holon-
omy operators appear as a so–called tent move in the
spin representation [21], and the closed holonomies and
Pachner moves commute due to the Biedenharn–Elliot
identity [18].

4. Cylindrical consistency of integrated
simplicial flux operators

Let us now discuss the cylindrical consistency of the
flux operators. First, not that the fluxes are elements of
the Lie algebra, and as such act as derivative operators
(the left or right multiplication on the group can be used
to establish an isomorphism between the Lie algebra and
vector fields). It may therefore seem that G is required
to be a Lie group in order for the construction to make
sense. However, we are going to use exponentiated flux
operators, which act as shifts on the group variables, and
can hence also be defined for finite groups.

Since we are considering a triangulation and its dual
graph Γ, we will be interested in the so–called “simpli-
cial” or “geometrical” fluxes [12, 15, 17, 22], as opposed
to the standard fluxes of LQG [3]. Let us define these

simplicial fluxes in the case where G = SU(2) and in
(2+1) dimensions. Let e∗ ∈ ∆∗ be the oriented edge dual
to e ∈ ∆. We assume that the pair (e, e∗) is positively
oriented. Given the continuum triad field E = Ei

aτidxa

(where τi is a basis of su(2) and a = 1, 2 a spatial one–
form index), the fluxes are defined by

Xe =

∫

e∗

h
e∗(t),e(0)

Ea

(
e∗(t)

)
(ė∗)a(t)h−1

e∗(t),e(0)
dt, (7)

where t ∈ [0, 1] is a parametrization of the edge e∗ such
that e and e∗ intersect at t = 1/2, and he∗(t),e(0) is the
parallel transport from the point e∗(t) to the source ver-
tex e(0) of e. This holonomy starts at t ∈ e∗, goes along
e∗ until it reaches the point e ∩ e∗, and then goes along
e until its source e(0).

The advantage of using these fluxes is that under a
gauge transformation or an orientation reversal of the
edge they transform as

Xe #→ g(e(0))Xe

(
g(e(0)

)−1
, Xe−1 = −g

e
Xeg

−1
e

. (8)

These properties and definitions can be generalized to
other (Lie) groups, such as SL(2, C) [23].

The action of the fluxes leaves the space of functions
ψ : G|E| → C over a fixed dual graph (with |E| edges)
invariant. This action is defined as

X i
e # ψ = i!

(
Ri

eψ
)
, (9)

where Ri
e is the left invariant vector field acting on func-

tions ψ on the group as the right–derivative

(
Riψ

)
(g) =

d

dt
ψ
(
getT i

)∣∣∣∣
t=0

. (10)

Here {T i} is a choice of basis of generators of the Lie
group G, and we have used the left multiplication to iden-
tify the Lie algebra and the derivative operators.

Geometrically, a flux variable expresses the vector de-
scribing the edge e∗ in the reference frame given by the
source vertex of e. Since a 2–2 move replaces an edge of
∆∗ by a transversal edge, we see that a flux variable in
itself cannot be cylindrically consistent.

The way around this issue is to introduce “integrated”
flux observables Xπ∗ associated to paths π∗ in the one–
skeleton Γ∗ of the triangulation ∆∗ [24]. Essentially,
these flux observables are defined as the sum of the indi-
vidual fluxes Xe associated to the various edges e dual to
the elements e∗ constituting the path π∗, and possibly in-
verted in order to have the same orientation. In order to
make this construction consistent and well–defined, the
individual fluxes have to be transported (with the adjoint
action) to a common reference point, which we define as
the source π(0) of the path π (i.e. the source of the first
edge of π). The integrated flux observables are therefore
defined as

Xπ∗ :=
∑

e⊂π

h
e(0),π(0)

Xeh
−1
e(0),π(0)

, (11)

for one edge:

 root

 parallel transport

for a path in the triangulation:

 path 

ψvac(EGauss) ≡ 1 , F (A) ≡ 0

∫
dT e−S(T ) (0.168)

hγ (0.169)

Xπ , Xσ (0.170)

{Xk
e , ge} = geT

k (0.171)

{Xk
e ,X l

e} = fklmXm
e (0.172)

29

Interpretation: vector from source vertex to target vertex of path.

In (2+1) gravity closed paths give Dirac observables - but here we allow open paths!



Composition of integrated simplicial fluxes, d=2
replaces composition of holonomies in AL embedding

There is one subtlety however: we will work with the space of gauge invariant states. The integrated
flux observables introduce a gauge covariance at ⇡(0). Thus we have either to assume that ⇡(0) is not
a↵ected by the refinement step in question. Alternatively, there is a gauge fixing involved in the definition
of the refinement moves, and this gauge fixing can be chosen such that one can identify reference systems
before and after the move. Have to check whether we can make definitions such that it coincides with
conventions for source vertex. However might not be possible to have that for all paths consistently -
consider for instance 1� 3.

Thus we might go with one additional information for the path, namely the starting
node and possibly a dual path � to this node. We could even fix a tree. Actually we might
just go for that.

5 Cylindrical consistent observables in d = 3

5.1 Integrated fluxes

The continuum observable is based on the embedding of a triangulated surface � (open, with boundary).
This needs to be endowed with a system of paths. Let us choose this system as a tree T (�) with respect
to the dual graph of the triangulated surface. Thus we have also to specify a root, i.e. node ⌫(�), giving
the reference system in which the integrated flux is expressed in.

Again we can chose an adapted triangulation �, so that the simplices of the triangulation (or a
refinement of it) of � are simplices of the triangulation �. We then define the parallel transport according
to the system of paths on the surface to take place below (but as close as possible) the surface �, i.e.
crossing the tetrahedra which share either one of the triangles or one of the edges of �.

Under refinement we have to specify how the surface � and the tree T (�) changes. The definition
for the surface itself is straightforward, as the refinement just subdivides triangles and edges. We can
specify for each refinement step a way to change the tree have to check whether this makes sense, where
in general we will have several possibilities. However, again this will not matter for the evaluation of the
observable.

The same remarks concerning the root and gauge variance of the integrated flux apply as in d = 2.

We consider integrated fluxes transported to the root node ⇢. To this end lets fix a maximal tree in the
one–skeleton of the dual complex, which visits all nodes and has its root at ⇢.

Composition of fluxes: Fluxes are associated to a directed path ⇡ in the one–skeleton of the trian-
gulation. The main point is that the emphasis is now on the compassion of fluxes and a composition of
these paths. There is however a complication, related to the fact that we have to transport all fluxes to
a common reference frame. In d = 2 there is however a canonical way to do that.

Denote by `⇡2�⇡1 the holonomy loop that starts at the root and goes along the tree to the source node
of X⇡1 (i.e. the reference frame in which the first edge is expressed in), than goes along ⇡

1

( as near as
possible to the right of the path ⇡

1

) to the source node of X⇡2 and then returns via (the inverse edges
of) the tree to the root ⇢.

With this we have the composition rule

X⇡2 �X⇡1 = `�1

⇡2�⇡1
X⇡2`⇡2�⇡1 + X⇡1 . (1)

6 Remark on gauge variance of holonomies and fluxes

Actually we should probably just consider holonomies and fluxes transported to the root, i.e. via a tree.
Any other choice of transport can be generated by one system of fluxes based on a given tree, together
with the set of closed holonomy observables.

Indeed, if we are going to discuss projective limit of phase spaces, we can select a set of observ-
ables which parametrize the phase space (with the other observables obtained by finite polynomials/
combinations. This could even reduce the set of fluxes to fluxes associated to leaves of a tree.
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Integrated simplicial fluxes, d=3
(need a surface tree for parallel transport): 

black arrows: elementary fluxes

blue: piece of a surface

red: bonsai tree for piece of surface

parallel transport (dashed red) takes place

in tetrahedra `below’ the surface 

For composition of integrated fluxes need to specify a `bridge’ edge 

(which connects the two surface trees).

Choice does not matter for BF refinement.



Continuum phase space
Can be defined as a projected limit 

of phase spaces associated to fixed triangulations.
[Thiemann 00, QSD7:  for AL embedding]

The discussion needed for that is exactly the same as for 

cylindrically consistency of the quantum observables.

AL embedding
BF

embedding

holonomies compose stay constant

fluxes stay constant compose



Quantum theory



Refining for (holonomy) wave functions

We glue this dual complex 

to the spatial hypersurface:

integrate over red edges.

Impose flat holonomies.

Indeed, if we are going to discuss projective limit of phase spaces, we can select a set of observ-
ables which parametrize the phase space (with the other observables obtained by finite polynomials/
combinations. This could even reduce the set of fluxes to fluxes associated to leaves of a tree.

Thus we could consider the question whether we can define uniquely refinement of trees. Indeed this
might be the case for Alexander moves. But special declarations for the root will be necessary.
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or stick to  0 notation ...
We can solve the first three delta functions say for g
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choice of gauge fixing we can determine the behaviour of a possible root at A or B under refinement, see
figure ??.
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By constructions gauge invariant functions f(h�) of closed holonomies h� (adapted to the triangulation
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To this end we have to describe how to replace a path � by a refined path R(�) = �0. This can
be obtained by lifting a given path � to a path �0 under gluing of the dual complex ⌥e. This lifting
is not unique, however the di↵erent choices lead to the same result. Thus we can choose the following
description give examples and write some explicit formula again this is similar to what happens to the
flux in the AL embedding can let start holonomies at vertex A, remark that this also defines Re(�)
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Note that also holonomies starting or ending at the node A or B are cylindrically consistent. To this
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replacement rules (5) (which involve a gauge fixing). Thus a function  0 coming from a function  being
gauge covariant at node A will be gauge covariant at node R(A). Indeed we have
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we could make up some convention for gauge fixing / behaviour of root. For instance
could make that deponent on orientation of the new dual edges... need then to adjust the
formulas! (or just invert the edge 80)

8.2.2 Integrated fluxes

Consider integrated fluxes transported to root. Need to slightly redefine composition of fluxes as
now fluxes are transported to root and we have to undo this transport.

Note the following: With X = XkT k denoting flux components we have the basic Poisson brackets
{Xk, g} = gT k. We then have for a transported flux (h�1Xh)i

{[h�1T kXkh]i , g} = g hT ih�1 . (9)

If we exponentiate the flow of the transported flux, we will obtain a right translation by H =
h exp(↵iT

i)h�1.

exp(↵i{[h�1Xh]i, ·}) = Rh exp(↵iT i
)h�1 (10)

With a slight abuse of notation we identity ↵ = exp(↵iT
i).

Let us denote the action of the exponentiated (and integrated) flux by X↵.

To show cylindrical consistency of flux (example):
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By constructions gauge invariant functions f(h�) of closed holonomies h� (adapted to the triangulation
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To this end we have to describe how to replace a path � by a refined path R(�) = �0. This can
be obtained by lifting a given path � to a path �0 under gluing of the dual complex ⌥e. This lifting
is not unique, however the di↵erent choices lead to the same result. Thus we can choose the following
description give examples and write some explicit formula again this is similar to what happens to the
flux in the AL embedding can let start holonomies at vertex A, remark that this also defines Re(�)
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formulas! (or just invert the edge 80)

8.2.2 Integrated fluxes
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Consider integrated fluxes transported to root. Need to slightly redefine composition of fluxes as
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Note the following: With X = XkT k denoting flux components we have the basic Poisson brackets
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is not unique, however the di↵erent choices lead to the same result. Thus we can choose the following
description give examples and write some explicit formula again this is similar to what happens to the
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Note that also holonomies starting or ending at the node A or B are cylindrically consistent. To this
end the refined holonomy has to start at the corresponding nodes A0 and B0 and we have to apply the
replacement rules (5) (which involve a gauge fixing). Thus a function  0 coming from a function  being
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we could make up some convention for gauge fixing / behaviour of root. For instance
could make that deponent on orientation of the new dual edges... need then to adjust the
formulas! (or just invert the edge 80)

8.2.2 Integrated fluxes

Consider integrated fluxes transported to root. Need to slightly redefine composition of fluxes as
now fluxes are transported to root and we have to undo this transport.
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i).
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To show cylindrical consistency of flux (example):
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We will need exponentiated fluxes.



Integrated (exponentiated) fluxes: consistency

ψvac(EGauss) ≡ 1 , F (A) ≡ 0

∫
dT e−S(T ) (0.168)

hγ (0.169)

Xπ , Xσ (0.170)

{Xk
e , ge} = geT

k (0.171)

{Xk
e ,X l

e} = fklmXm
e (0.172)

π E(π)

29

ψvac(EGauss) ≡ 1 , F (A) ≡ 0

∫
dT e−S(T ) (0.168)

hγ (0.169)

Xπ , Xσ (0.170)

{Xk
e , ge} = geT

k (0.171)

{Xk
e ,X l

e} = fklmXm
e (0.172)

π E(π)

29

Basically follows from Gauss constraints and the 
fact that we add a flat (Gauss-closed) piece of 
geometry.  

Thus a vector pointing from one vertex to the 
next vertex stays invariant after subdividing (in a 
flat manner).
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8.3 2� 2 move

Should we mention that? Just give the result?

9 On inductive/ projective limit

Okolov considers an inductive/projective limit construction for non–compact configuration spaces. Inter-
estingly he also ends up with Bohr compactification. However so far he has certain linearity assumptions
(basically configuration spaces seem to be RN ).
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Same mechanism in (3+1)D

Subdividing a 
tetrahedron.

(Gluing a 4-simplex) 

Subdividing a triangle.



The measure: dualize AL measure 

ψvac(EGauss) ≡ 1 , F (A) ≡ 0

∫
dT e−S(T ) (0.168)

hγ (0.169)

Xπ , Xσ (0.170)

{Xk
e , ge} = geT

k (0.171)

{Xk
e ,X l

e} = fklmXm
e (0.172)

π E(π)

ηAL(A) ≡ 1

ψ{j}(A) = ψ{j}(A) · ηAL(A)

µ(ψ{j}) = δ{j},

29
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next section. Details on the Poisson algebra of these
fluxes and holonomies will be discussed in [18].

π∗(0) π∗(1)
X3

g−1

2g1

g3

X3

π∗(0) π∗(1)

X2

FIG. 5: Replacement under a 2–2 move of an integrated flux
by another flux that defines the same displacement vector in
the triangulation but goes along a different path.

5. Measure

The AL measure can be characterized by the evalu-
ations of the positive linear functional µAL on a spin
network basis, which itself can be generated by the ap-
plication of holonomy observables ψ{j}({g}) to the AL
vacuum state ηAL({ge}) ≡ 1. The holonomies ψ{j}({g}),
with {j} denoting the set of representations labeling the
edges, are multiplication operators and lead to the spin
network basis. More precisely, the functional µAL is de-
fined on this basis as µAL(ψ{j}) = δ∅,{j}, which is non–
vanishing if and only if all representation labels are triv-
ial.

To construct the new measure we will proceed sim-
ilarly, but however dualizing every ingredient. Instead
of a constant function in the holonomy representation,
we consider a constant2 function in the flux representa-
tion. Furthermore, the spin network basis generated by
holonomies is replaced by a dual basis, which is gener-
ated by exponentiated (integrated) flux observables. All
this is easier to consider with a choice of gauge fixing.

2 This applies in the gauge–fixed version. In the gauge–variant
version, the constant function is replaced by a function which
has only support on the solution of the Gauss constraints and is
otherwise constant.

We will also consider for now a fixed triangulation and
its dual triangulation.

A gauge fixing can be introduced by choosing a maxi-
mal tree T in Γ with root r. Group elements associated
to edges t of the tree can be gauge–fixed to the iden-
tity. Edges which are not included in the tree are called
leaves $ and are in one–to–one correspondence with the
fundamental cycles of Γ. We define the cycle c! associ-
ated to the leave $ by choosing the same starting vertex
and orientation for the cycle as for the leave (edge) $.
Apart from $, all other edges in the cycle are elements
t of the tree. We will denote the holonomy associate to
the cycle c! by C!. A BF vacuum state that is peaked on
a locally and globally flat connection for Γ is given in the
holonomy representation by ηBF =

∏
! δ(C!) =̇

∏
! δ(g!),

where =̇ denotes the gauge–fixed expression and g! is the
group element associated to the leave $.

We can now consider the exponentiated integrated flux
observables associated to the leaves $ and transported
to the root r. These act as right translations by group
elements Adt!

(h!). We will therefore denote the expo-
nentiated flux observables by R{Adt!

(h!)}, where t! is the
holonomy associated to the unique path going from the
source vertex of the leave $ to the root r, and we have
defined Adg(h) = ghg−1. The action on the vacuum is

R{Adt!
(h!)}ηBF =̇

∏

!

δ(g!h!). (15)

For non–Abelian groups, this results in general in a
gauge–covariant function at the root r. For Abelian
groups, R{h!}ηBF can be understood as the dual of the
(gauge–invariant) spin network basis, labelled by group
elements {h!} instead of representation labels.

Abelian groups. To define a measure in analogy
with the AL one, let us switch to the “spin representa-
tion”. First, we restrict to Abelian groups and formally
define the duality between group and spin representa-
tion by 〈g|j〉 = χj(g), with χj a character of G and j
an element of the Pontryagin dual. For the gauge–fixed
functions, the change to the spin representation leads to
functions ψ̃({j!}), the vacuum is represented by η̃BF ≡̇ 1,
and the right translations act as multiplication operators
in the following way:

R{h!}ψ̃({j!}) =̇

(
∏

!

χj!
(h!)

)

ψ̃({j!}). (16)

Therefore, χ̃{h!}({j!}) :=
∏

! χj!
(h!) is a (possibly non–

normalizable) basis for the space of functions on the space
of fluxes, with the property χ̃{h!}({j!})χ̃{h′

!
}({j!}) =

χ̃{h!h′

!
}({j!}). We can now define a measure on this space

of functions by

µBF(χ̃{h!}) =
∏

!

δ̃(h!). (17)

AL-vacuum
Excitations via

holonomy observables
Spin network basis

AL measure



BF vacuum and excitations 

First consider fixed triangulation. Gauge fix with maximal tree. 

Leafs are in one-to-one correspondence with fundamental 
cycles        . 

BF vacuum (does not depend on tree): constant in (Gauss-) fluxes.
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holonomies is replaced by a dual basis, which is gener-
ated by exponentiated (integrated) flux observables. All
this is easier to consider with a choice of gauge fixing.

2 This applies in the gauge–fixed version. In the gauge–variant
version, the constant function is replaced by a function which
has only support on the solution of the Gauss constraints and is
otherwise constant.

We will also consider for now a fixed triangulation and
its dual triangulation.

A gauge fixing can be introduced by choosing a maxi-
mal tree T in Γ with root r. Group elements associated
to edges t of the tree can be gauge–fixed to the iden-
tity. Edges which are not included in the tree are called
leaves $ and are in one–to–one correspondence with the
fundamental cycles of Γ. We define the cycle c! associ-
ated to the leave $ by choosing the same starting vertex
and orientation for the cycle as for the leave (edge) $.
Apart from $, all other edges in the cycle are elements
t of the tree. We will denote the holonomy associate to
the cycle c! by C!. A BF vacuum state that is peaked on
a locally and globally flat connection for Γ is given in the
holonomy representation by ηBF =

∏
! δ(C!) =̇

∏
! δ(g!),

where =̇ denotes the gauge–fixed expression and g! is the
group element associated to the leave $.

We can now consider the exponentiated integrated flux
observables associated to the leaves $ and transported
to the root r. These act as right translations by group
elements Adt!

(h!). We will therefore denote the expo-
nentiated flux observables by R{Adt!

(h!)}, where t! is the
holonomy associated to the unique path going from the
source vertex of the leave $ to the root r, and we have
defined Adg(h) = ghg−1. The action on the vacuum is

R{Adt!
(h!)}ηBF =̇

∏

!

δ(g!h!). (15)

For non–Abelian groups, this results in general in a
gauge–covariant function at the root r. For Abelian
groups, R{h!}ηBF can be understood as the dual of the
(gauge–invariant) spin network basis, labelled by group
elements {h!} instead of representation labels.

Abelian groups. To define a measure in analogy
with the AL one, let us switch to the “spin representa-
tion”. First, we restrict to Abelian groups and formally
define the duality between group and spin representa-
tion by 〈g|j〉 = χj(g), with χj a character of G and j
an element of the Pontryagin dual. For the gauge–fixed
functions, the change to the spin representation leads to
functions ψ̃({j!}), the vacuum is represented by η̃BF ≡̇ 1,
and the right translations act as multiplication operators
in the following way:

R{h!}ψ̃({j!}) =̇

(
∏

!

χj!
(h!)

)

ψ̃({j!}). (16)

Therefore, χ̃{h!}({j!}) :=
∏

! χj!
(h!) is a (possibly non–

normalizable) basis for the space of functions on the space
of fluxes, with the property χ̃{h!}({j!})χ̃{h′

!
}({j!}) =

χ̃{h!h′

!
}({j!}). We can now define a measure on this space

of functions by

µBF(χ̃{h!}) =
∏

!

δ̃(h!). (17)
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next section. Details on the Poisson algebra of these
fluxes and holonomies will be discussed in [18].
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FIG. 5: Replacement under a 2–2 move of an integrated flux
by another flux that defines the same displacement vector in
the triangulation but goes along a different path.
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The AL measure can be characterized by the evalu-
ations of the positive linear functional µAL on a spin
network basis, which itself can be generated by the ap-
plication of holonomy observables ψ{j}({g}) to the AL
vacuum state ηAL({ge}) ≡ 1. The holonomies ψ{j}({g}),
with {j} denoting the set of representations labeling the
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fined on this basis as µAL(ψ{j}) = δ∅,{j}, which is non–
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tion. Furthermore, the spin network basis generated by
holonomies is replaced by a dual basis, which is gener-
ated by exponentiated (integrated) flux observables. All
this is easier to consider with a choice of gauge fixing.
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version, the constant function is replaced by a function which
has only support on the solution of the Gauss constraints and is
otherwise constant.
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fundamental cycles of Γ. We define the cycle c! associ-
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Apart from $, all other edges in the cycle are elements
t of the tree. We will denote the holonomy associate to
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a locally and globally flat connection for Γ is given in the
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where =̇ denotes the gauge–fixed expression and g! is the
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elements Adt!

(h!). We will therefore denote the expo-
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For non–Abelian groups, this results in general in a
gauge–covariant function at the root r. For Abelian
groups, R{h!}ηBF can be understood as the dual of the
(gauge–invariant) spin network basis, labelled by group
elements {h!} instead of representation labels.

Abelian groups. To define a measure in analogy
with the AL one, let us switch to the “spin representa-
tion”. First, we restrict to Abelian groups and formally
define the duality between group and spin representa-
tion by 〈g|j〉 = χj(g), with χj a character of G and j
an element of the Pontryagin dual. For the gauge–fixed
functions, the change to the spin representation leads to
functions ψ̃({j!}), the vacuum is represented by η̃BF ≡̇ 1,
and the right translations act as multiplication operators
in the following way:
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)

ψ̃({j!}). (16)

Therefore, χ̃{h!}({j!}) :=
∏
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normalizable) basis for the space of functions on the space
of fluxes, with the property χ̃{h!}({j!})χ̃{h′

!
}({j!}) =

χ̃{h!h′

!
}({j!}). We can now define a measure on this space

of functions by
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∏
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Obtain basis of excitations by action of exponentiated 
(integrated) fluxes:
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next section. Details on the Poisson algebra of these
fluxes and holonomies will be discussed in [18].
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vacuum state ηAL({ge}) ≡ 1. The holonomies ψ{j}({g}),
with {j} denoting the set of representations labeling the
edges, are multiplication operators and lead to the spin
network basis. More precisely, the functional µAL is de-
fined on this basis as µAL(ψ{j}) = δ∅,{j}, which is non–
vanishing if and only if all representation labels are triv-
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ilarly, but however dualizing every ingredient. Instead
of a constant function in the holonomy representation,
we consider a constant2 function in the flux representa-
tion. Furthermore, the spin network basis generated by
holonomies is replaced by a dual basis, which is gener-
ated by exponentiated (integrated) flux observables. All
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a locally and globally flat connection for Γ is given in the
holonomy representation by ηBF =

∏
! δ(C!) =̇

∏
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where =̇ denotes the gauge–fixed expression and g! is the
group element associated to the leave $.
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elements Adt!
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nentiated flux observables by R{Adt!

(h!)}, where t! is the
holonomy associated to the unique path going from the
source vertex of the leave $ to the root r, and we have
defined Adg(h) = ghg−1. The action on the vacuum is
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(h!)}ηBF =̇
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δ(g!h!). (15)

For non–Abelian groups, this results in general in a
gauge–covariant function at the root r. For Abelian
groups, R{h!}ηBF can be understood as the dual of the
(gauge–invariant) spin network basis, labelled by group
elements {h!} instead of representation labels.

Abelian groups. To define a measure in analogy
with the AL one, let us switch to the “spin representa-
tion”. First, we restrict to Abelian groups and formally
define the duality between group and spin representa-
tion by 〈g|j〉 = χj(g), with χj a character of G and j
an element of the Pontryagin dual. For the gauge–fixed
functions, the change to the spin representation leads to
functions ψ̃({j!}), the vacuum is represented by η̃BF ≡̇ 1,
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R{h!}ψ̃({j!}) =̇

(
∏

!

χj!
(h!)

)

ψ̃({j!}). (16)
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Measure 
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Basis of excitations labelled by group elements.

Define measure in the 
same way as the AL 
measure:

Choice as formal Kronecker Delta: 

Bohr compactification of the dual to the group

(heuristically similar to SU(2) quantum group)

(For G=U(1) leads to compactification of Z)

Choice as group delta: 

Same inner product on fixed graph 

as with Haar measure:
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Can now attempt to construct the continuum limit as

an inductive limit of Hilbert spaces in the same way as in standard LQG.

Need to make sure that inner product is cylindrically consistent, i.e. does not 
depend on the choice of triangulation it is computed on.

For the Bohr compactification this is the case.

Bohr compactification of the dual to a group

[Soltan 06]  Bohr compactifications of quantum groups

                   C^* algebraic framework

                   Dual of a group formulated as a quantum group

Useful for C^* algebraic construction of Hilbert space.



Compactification of excitations 
If we choose group delta, we need to modify the inner product to make it cylindrically consistent. 
With some regulated group delta function:

7

For finite groups, δ̃ is defined to be the Kronecker symbol.
For Lie groups, we have two possibilities for specifying δ̃.
First, we can choose δ̃ to coincide with the group delta
function. As we will show below, in this case the resulting
inner product coincides with the one of square integrable
functions L2

(
G|E|,d|E|g

)
with the Haar measure on G.

Another possibility is to formally define δ̃ to be δ̃(h) = 1
if h = I and to be vanishing otherwise. For G = U(1),
this leads to a Bohr compactification of the dual Z to
U(1) [26], which turns the vacuum into a normalizable
state.

To proof the above statement, we compute the
L2

(
G|E|,d|E|g

)
inner product between two states

R{h!}ηBF and R{h′

!
}ηBF which via the functional (17) is

given by
∏

! δ̃
(
h′−1

! h!

)
:

∫
R{h!}ηBF R{h′

!
}ηBF d|E|ge

=

∫
R{h′−1

!
h!}

∏

!

δ(g!)
∏

!′

δ(g!′) d|L|g! (18)

=
∏

!

δ
(
h′−1

! h!

)
,

where we applied the gauge fixing to go from the first
to the second line, and |L| denotes the number of
leaves. Thus, if the δ̃ are chosen to be the group delta
functions, the inner product defined via the functional
(17) coincides on a fixed graph with the inner product
defined via the Haar measure.

Non–Abelian groups. The case for non–Abelian
groups works in a similar way. However, in contrast to
the Abelian case, the space of gauge–invariant functions
is not parametrized by G|L| but by G|L|/AdG, where AdG

denotes the remaining action of the gauge group at the
root r on the space of gauge–fixed functions. We now
have shift operators R{Adt!

(h!)} which with the BF vac-
uum defined as before lead to basis states

χ̃{h!} := R{Adt!
(h!)}ηBF (19)

that are gauge–variant at the root r. This can be cured
by a group averaging, leading to gauge–invariant states

G(χ̃{h!}) :=

∫
R{Adt!

(h!)}ηBF dg. (20)

To reproduce the inner product of L2(G|E|,d|E|g), we
have to define the product between two such states to be

〈G(χ̃{h!}) , G(χ̃{h′

!
})〉 :=

∫ ∏

!

δ
(
h′−1

! gh!g
−1
)

dg. (21)

A measure leading to this inner product, i.e. satisfying
〈G(χ̃{h!}) , G(χ̃{h′

!
})〉 = µBF

(
G(χ̃{h!})G(χ̃{h′

!
})
)

is given
by

µBF

(
G(χ̃{h!})

)
=
∏

!

δ(h!). (22)

As with the Abelian groups, one could also consider
some compactification of the dual of G, or rather of the
dual of the maximal torus of G. We leave this question
for future explorations. This construction of the measure
is independent of the choice of tree as long as the delta
functions on the right hand side of (17) and (22) are with
respect to group translation invariant measures.

6. On the projective limit and
spatial diffeomorphisms

So far we discussed the inner product on a fixed trian-
gulation. To compare two states on two different trian-
gulations, we need to consider a common refinement of
these triangulations3. To this end, the measure or inner
product has to be cylindrically consistent, so that it does
not depend on the precise choice of common refinement.

This is the case here since the construction of the in-
ner product only involves cylindrically consistent observ-
ables. Thus, one can expect independence of the choice
of refinement. However, if we choose in (17) and (22)
the group delta functions on the right hand side, we see
that 1–3 moves will lead to additional factors of δ(I) for
the measure and the inner product. To cure these di-
vergencies for the inner product we can choose a (heat
kernel) regularization for the delta functions, and divide
the inner product of two states by the norm of a reference
state (in this case the BF vacuum). That is, we define a
modified inner product as (see also [14])

〈ψ1,ψ2〉
′ = lim

ε→0

〈ψ1,ψ2〉ε
〈ηBF, ηBF〉ε

, (23)

where ε indicates the regulator.
Let us also mention a notion of spatial diffeomorphism

invariance for the vacuum. Consider a triangle subdi-
vided by a 1–3 move but with the inner vertex placed at
two different positions leading to two states ψ1 and ψ2.
Figure 1 shows that there exists a common refinement
and indeed the two different ways to obtain this refine-
ment starting with the triangle via ψ1 and ψ2 lead to the
same state. Thus the inner product identifies the two
states which differ by a vertex translation. This nicely
reflects the notion of vertex translations as a diffeomor-
phism symmetry [27] (see also [28] for a similar mecha-
nism for the physical inner product of (2 + 1) gravity).

The AL projective limit construction [4] leads to the
notion of a configuration space A as an (quantum) ex-
tension of the space of connections. Similarly we expect

3 Thus, the set of triangulations which we consider should be di-
rected, i.e. for any pair of triangulations there should exist a
common refinement. This is for instance the case for geometric
triangulations [19].

Heuristically equivalent to a Bohr compactification.  Need exponentiated fluxes.

[Bahr, Fleischhack, hopefully to appear very soon]

with pure BF, dual refinements

Lesson: Inductive Hilbert space construction puts discrete topology on excitations.

For AL: dual graphs with discrete labels. For BF:  (d-2) objects in triangulations with group labels. 

[Okolow 13] Constructs (inductive Hilbert space) continuum limit 

for non-compact configuration spaces R^N

via a projective limit of density matrices (i.e. functionals).

Results also in a Bohr compactification / almost periodic functions.



Deformations/ Generalizations

Dualising the Koslowski shift (introduction of background triad):

leads to shift of background connection.

A homogeneous curvature requires flux dependent background connection,

which requires change in (group) measure to keep holonomies as unitary operators. 

Thus one expects a deformation of the symmetry group. Derivation of quantum group?

Can we use non-commutative flux representation and compactify this space?

Bohr compactification is expected to lead to appearance of quantum group.



(Spatial) Diffeomorphism symmetry
2

The setup in this work will be a simplicial version of
LQG (see also [17]). This is needed in order to implement
Pachner moves as refinement. To make the notion of a
BF vacuum for LQG concrete, we have to (a) define the
vacuum state, and (b) define a notion of refinement. For
point (c), we first have to specify a cylindrically consis-
tent observable algebra (i.e. one that is consistent with
the notion (b) of refinement). This latter will be different
from the standard holonomy–flux algebra of LQG, which
allows us to evade the uniqueness theorems. We will then
show that the Hilbert space of gauge–invariant functions
can be generated from the new vacuum by (exponenti-
ated) flux observables.

We will restrict ourselves to (2 + 1)–dimensional grav-
ity, for which the BF state is indeed the physical vacuum,
and hence implement the ideas of [1]. The extension to
the (3 + 1)–dimensional case will appear in [18].

2. Setup

Here we sketch the set–up of our construction. We con-
sider a two–dimensional orientable smooth manifold, to-
gether with an atlas of coordinate charts and an auxiliary
metric. To this manifold, we associate a set of embed-
ded triangulations ∆∗, their dual triangulations ∆, and
denote by Γ the one–skeleton of ∆. Each dual triangula-
tion consists of (three–valent) vertices v, oriented edges
e, and faces. By embedded, we simply mean that the ver-
tices carry coordinates. We assume that the edges of the
triangulation (which we will denote by e∗) are geodesics
with respect to the auxiliary metric. To this end we also
assume that the triangulation is sufficiently fine in order
to ensure that the geodesics are well–defined.

We endow the set of triangulations with a partial or-
der denoted by ≺. A (dual) triangulation ∆′ is said to be
finer than a (dual) triangulation ∆ if ∆′ can be obtained
from ∆ by 1–3 and 2–2 Pachner moves [10], as shown for
example on figure 1. For the 1–3 move, one needs to spec-
ify in addition a set coordinates for the new node of the
triangulation. We will see that freedom in this choice is
essential for realizing a notion of spatial diffeomorphism
invariance with respect to the embedding.

Two triangulations ∆ and ∆′ can be compared if they
have a common refinement ∆. An example is depicted
in figure 1, showing that two triangulations obtained via
a 1–3 move, but each with a different placement of the
new vertex, have a common refinement.

Concerning the group–theoretic data, we associate to
each edge a space F(G) of functions over the group G.
The topology of this space will be specified later on. The
group G in question can be finite or a compact semi–
simple Lie group, and either Abelian or non–Abelian.

FIG. 1: Example of refinement via 1–3 and 2–2 moves. The
rightmost triangulation is finer than the leftmost one, and
represents the common refinement ∆ of the triangulations on
the top and on the bottom.

The notion of refinement that we are going to use is
based on Pachner moves. Pachner moves for triangulated
two-dimensional surfaces consist of the so–called 1–3, 3–
1, and 2–2 moves, and two such triangulated surfaces are
PL–homeomorphic if one can be transformed into the
other by a finite number of these moves. Since here we
are interested in refining operations, we will consider only
the 1–3 as well as the 2–2 Pachner moves (i.e. discard the
3–1 moves). This is sufficient to ensure that topologically
equivalent triangulations have common refinements. The
notion of geometric triangulations includes embedding
information for the vertices, and at least for the planar
case it follows from [19] that any two such triangulations
have a common refinement.

Our task is to find the observables that are cylindri-
cally consistent, i.e. commuting with the refinement op-
erations. We will first focus on closed holonomies and
then on the integrated simplicial fluxes.

3. Cylindrical consistency of closed holonomies

The cylindrical consistency of closed holonomies fol-
lows from the definition of the refining Pachner moves in
the holonomy representation, which we are now going to
present.

In the holonomy representation, the action of the Pach-
ner moves can directly be deduced from the geometri-
cal interpretation of BF theory as describing flat con-
nections. Let hγ denote the holonomy along a (closed)
path γ. Gluing a tetrahedron to the surface might locally
change this path to γ′. However, since this amounts to
adding only pieces of flat holonomies, the deformation of
the path will not change the holonomy, and one can write
that hγ = hγ′ .

This requirement determines the action of the Pach-
ner moves uniquely. From this it will follow that closed
holonomy observables are cylindrically consistent, i.e.
commuting with the action of refining Pachner moves.
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The setup in this work will be a simplicial version of
LQG (see also [17]). This is needed in order to implement
Pachner moves as refinement. To make the notion of a
BF vacuum for LQG concrete, we have to (a) define the
vacuum state, and (b) define a notion of refinement. For
point (c), we first have to specify a cylindrically consis-
tent observable algebra (i.e. one that is consistent with
the notion (b) of refinement). This latter will be different
from the standard holonomy–flux algebra of LQG, which
allows us to evade the uniqueness theorems. We will then
show that the Hilbert space of gauge–invariant functions
can be generated from the new vacuum by (exponenti-
ated) flux observables.

We will restrict ourselves to (2 + 1)–dimensional grav-
ity, for which the BF state is indeed the physical vacuum,
and hence implement the ideas of [1]. The extension to
the (3 + 1)–dimensional case will appear in [18].

2. Setup

Here we sketch the set–up of our construction. We con-
sider a two–dimensional orientable smooth manifold, to-
gether with an atlas of coordinate charts and an auxiliary
metric. To this manifold, we associate a set of embed-
ded triangulations ∆∗, their dual triangulations ∆, and
denote by Γ the one–skeleton of ∆. Each dual triangula-
tion consists of (three–valent) vertices v, oriented edges
e, and faces. By embedded, we simply mean that the ver-
tices carry coordinates. We assume that the edges of the
triangulation (which we will denote by e∗) are geodesics
with respect to the auxiliary metric. To this end we also
assume that the triangulation is sufficiently fine in order
to ensure that the geodesics are well–defined.

We endow the set of triangulations with a partial or-
der denoted by ≺. A (dual) triangulation ∆′ is said to be
finer than a (dual) triangulation ∆ if ∆′ can be obtained
from ∆ by 1–3 and 2–2 Pachner moves [10], as shown for
example on figure 1. For the 1–3 move, one needs to spec-
ify in addition a set coordinates for the new node of the
triangulation. We will see that freedom in this choice is
essential for realizing a notion of spatial diffeomorphism
invariance with respect to the embedding.

Two triangulations ∆ and ∆′ can be compared if they
have a common refinement ∆. An example is depicted
in figure 1, showing that two triangulations obtained via
a 1–3 move, but each with a different placement of the
new vertex, have a common refinement.

Concerning the group–theoretic data, we associate to
each edge a space F(G) of functions over the group G.
The topology of this space will be specified later on. The
group G in question can be finite or a compact semi–
simple Lie group, and either Abelian or non–Abelian.

FIG. 1: Example of refinement via 1–3 and 2–2 moves. The
rightmost triangulation is finer than the leftmost one, and
represents the common refinement ∆ of the triangulations on
the top and on the bottom.
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(Right shift with holonomy around vertex.)

Needs exponentiated flux. (Diffeos and exponentiated fluxes not 
weakly continuous.)

Might explain `finite action interpretation’  of Hamiltonian.

In (3+1)d: complications due to simplicity 
constraints, but doable. [Zapata 96, BD & Ryan 08]



On Hamiltonian dynamics and simplicity constraints

Good news!

Some Hamiltonian constraints are already there!

Dual regularization mechanism to Thiemann- 
Hamiltonian (with adjusted ordering).

•non-graph changing (interpretation as tent move)

•for `flat or homogeneous sector’ (stacked spheres) and in 
(2+1)D free of discretization anomalies

[classical: BD & Ryan 08,

Bonzom & Dittrich 13 

quantum: Barrett , Crane 96, 

Bonzom 11, Bonzom, Freidel 11, ]

•`graph’ changing: Pachner or Alexander moves: spin foam dynamics

•dynamics can be understood as first refining and then imposing dynamics

•could impose dynamics by gluing spin foam amplitudes

[Example: BD, Steinhaus 13]

[Alesci, Rovelli 10]



Coming back to “spin foam amplitudes give the physical vacuum”

(Why are we not already with a very physical vacuum? 

 This BF vacuum has constant distribution in twisted geoemtries.)

Can we get (Regge) physical vacuum with (almost) constant distribution in 
Regge like geometries, and (some) suppression of non-Regge geometries?

This however is a non-local problem (Area constraints are non-local). 

 

 Tautological claim : 

Imposition of simplicity constraints making everyone happy

            equivalent to

Continuum limit,  i.e. with construction of physical vacuum.

On Hamiltonian dynamics and simplicity constraints

[Speziale, Freidel 10]

We therefore need coarse graining and refining ...

  ... coming in the next ILQGS talk. 



Conclusions and outlook

A new Hilbert space  for Loop Quantum Gravity!  

          Lots of interesting mathematical structures to fill in.

           Very near to spin foam dynamics.

           Facilitate extraction of low energy physics, cosmology etc.

           Another view on quantum geometry and simplicity constraints.

          

           Many generalizations possible. 

           Quantum deformations of SU(2)?

           Does it allow SL(2,C) Hilbert space, supporting self dual variables?

LARGER PROGRAM:

Apply this to (non-trivial) fixed points of renormalization flow!


