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Overview and motivation

In these lectures we shall explain some of the basic mathematical theory of
group representations, with connections to the way these arise as symme-
tries in quantum mechanics. Understanding the symmetries of a physical
system is (as for mathematical structures) an important part of our descrip-
tion of the system; this is for example the case for special relativity, where
the Poincaré group acts by symmetries, or for the classification of quarks,
mesons, and baryons, where the compact unitary groups play a similar role.
We base some of the presentation on [11] and [12] for the the mathematical
structure of quantum mechanics and the way Lie groups enter; for the math-
ematical background and in particular harmonic analysis on locally compact
groups we refer to [3]. See also the lecture notes [1] and [13] for the role
played by Mackey’s Imprimitivity Theorem. At the end we will mention
some more advanced topics from representation theory of semisimple Lie
groups, namely the so-called minimal representations, see [6], [7], and [8] as
well as [5]. Among these we find the metaplectic representation (= the oscil-
lator representation) and the representation corresponding to the quantized
Kepler problem, i.e. the Hydrogen atom.

Lecture I: Locally compact groups and Lie groups

We start by the general notions of locally compact groups and Lie groups,
and study their role as symmetries of Hilbert spaces, formalized by the
definition of unitary group representations. The text we follow here is [3] (p.
67–73, p. 84, p. 90–93), and also [1] (p. 3, p. 30, p. 32), and [11] (p. 5, p.
76–85); the topics will be:

• Basic notions of locally compact groups, Lie groups, and representa-
tions

• Examples of groups and representations
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• Symmetries of physical systems as representations

Exercise 1. Exercise 7.1 p. 31 in [1].

Lecture II: The Imprimitivity Theorem with applications

This theorem is one of the cornerstones of the theory of unitary group rep-
resentations in the general setting; we shall follow [3] and [1] (p. 37, p. 42,
p. 50 and the key Theorem 11.5) - see also [14] - and treat

• Homogeneous spaces and induced representations

• Projection-valued measures

• The imprimitivity Theorem

• Representations of semi-direct product groups

• Examples

Exercise 2. One (perhaps less well-known) application of The Imprimitiv-
ity Theorem is to the following version of abstract scattering theory - discuss
how a system imprimitivity arises in a natural way from the scattering ax-
ioms below. Hint: Consider the closed subspace

Dt0 =
⋃
t≤t0

U(t)D

and the orthogonal projection P ((−∞, t0]) onto this space. Then P gives
rise to a projection-valued measure, transforming in a certain way under the
one-parameter group U(t), namely for every Borel set B ⊂ R we have

U(t)P (E)U(−t) = P (t + E).

The following is the abstract scattering theory as formulated by Lax and
Phillips in [9], forming the basis of concrete scattering theory both for wave
equations and automorphic functions.

Theorem 3. Let H be a separable Hilbert space, U(t) a one-parameter group
of unitary operators, D a closed subspace satisfying

1. U(t)D ⊂ D for t ≤ 0

2.
⋂

t<0 U(t)D = {0}

3.
⋃

t∈R U(t)D = H

Then H can be represented as a space L2(R,N ), where N is an auxiliary
Hilbert space, such that
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1. U(t) corresponds to right tranlation by t

2. the correspondence between H and L2(R,N ) is unitary

3. D correponds to L2(R−,N ) where R− = (−∞, 0).

This is called the incoming translation representation of the unitary group;
similarly we talk about the outgoing translation representation if there is an-
other closed subspace D+ with the same properties for the reversed inequal-
ities in t; this will then represent H as L2(R,N+) with D+ corresponding
to L2(R+,N+). Since we can identify N and N+ (using e.g. the Fourier
transform) we may now define the scattering operator

S : L2(R,N ) 7→ L2(R,N ) (1)

by taking the incoming representer to the outgoing; then we have

Proposition 4. S is a unitary operator, in particular onto, commuting with
translation.

The point we want to make here, is that the Lax-Phillips Translation Rep-
resentation Theorem may be thought of as an instance of the Imprimitivity
Theorem. Now scattering theory deals (among other things) with the Fourier
transform of the scattering operator S. This operator is of major importance
in physics.

Lecture III: Representations of the Poincaré group

Here we use the Mackey machine to find all (up to unitary equivalence) uni-
tary irreducible representations of the Poincaré group (modulo known lists
of representations of certain subgroups); and we find the list of physically
relevant representations, essentially labeled by mass and spin, corresponding
to the relativistic description of elementary particles. See [1] (p. 62–65, and
the comments p. 66), [13] (p. 9), [12] (p. 189–193, p. 202–217), [11] (p.
56–67). We will discuss

• The structure of orbits and little groups

• Realizations of the unitary irreducible representations

• Wave equations for relativistic particles

• Conformal symmetries for mass zero particles

Exercise 5. Exercise 15.1 p. 62 in [1]
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Lecture IV: Minimal representations

Here we refer to [5] as well as the special case of G = O(p, q) as treated in
[6], [7], and [8]. See also [13] (p. 19) for the metaplectic representation as
well as [4] and [10]. One point to be made is that not all unitary irreducible
representations of semisimple Lie groups are induced representations; some
are quite isolated and need special constructions. Even some important ones
from the point of physics arise here, and we shall look at

• The metaplectic representation and the connection to the harmonic
oscillator

• The Kepler problem and the wave equation: A representation of the
conformal group

• Minimal representations for O(p, q) and isomophism groups of tube
domains.

Time permitting, we shall also mention a way of connecting by deformation
the metaplectic representation and the Kepler representation, see [2].

References

[1] Erik van den Ban: Applications of representation theory in
classical quantum mechanics, Lecture Notes for the MRI
Spring School Lie groups in Analysis, Geometry and Me-
chanics. Utrecht, June, 2004. Updated version, 13/6 - 2004.
http://www.staff.science.uu.nl/˜ban00101/lecnotes/repq.pdf
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