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1 What is (conformal) QFT all about?
Session 1.1

I start with some heuristic considerations, in order to emphasize how Quantum Field
Theory is rooted in some of the most fundamental principles of Physics, and also in order
to indicate the physical meaning of the quantities featuring in QFT.

In Quantum Theory, the time evolution of any dynamical quantity is given by the
adjoint action of the Hamiltonian:

φ(t) = eitHφ(0)e−itH , φ̇ = i[H,φ].

As an operator on a Hilbert space, the Hamiltonian has the meaning of “energy”, ie, its
spectrum gives the possible energies of a system.

In Field Theory, energy is an integral over a density field, eg 1
2
( ~E2 + ~B2) in Maxwell

theory, where ~E(t, ~x) and ~B(t, ~x) are the electric and magnetic fields. Conservation of the
energy is expressed by a continuity equation

∂tρ+ ~∇~S = 0,

where ~S is the energy flow, eg, ~S = ~E × ~B in Maxwell theory.
In Special Relativity, energy is the zero component of a Lorentz four vector P µ, ~P =

momentum. The relativistic conservation law reads

∂µT
µν(x) = 0, x = (t, ~x)

where T µν is called the stress-energy tensor field (SET)1.

1. Combining all these principles, one arrives at QFT, with a distinguished conserved
“operator valued quantum field” T µν(x), such that

P µ =

∫

t

d3xT µ0(t, ~x)

are independent of t and generate the translations in time and space:

U(a)φ(x)U(a)∗ = φ(x+ a), i[Pµ, φ(t, x)] = ∂µφ(t, x) (1)

for all local fields of the theory, where U(a) = eia
µPµ .

2. If (and only if) T µν is symmetric, then also Jν
κλ = xκT

ν
λ −xλT ν

κ is conserved (∂νJ
ν
κλ =

Tκλ − Tλκ), and

Mκλ =

∫

x0=t

J0
κλ(x) d

sx

is independent of t.

1This name comes from elasticity theory. The German “energy-momentum tensor” would be more
appropriate.
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3. If (and only if) T µν is also traceless, T = T κ
κ = 0, then also Jν = xκT

κν conserved
(∂νJ

ν = T κ
κ ), and

D =

∫

x0=t

J0(x) dsx

is independent of t. In this case, also Jν
µ = 2xµxκT

κν − x2T ν
µ is conserved (∂νJ

ν
µ =

2xκ(Tκµ − Tµκ) + xµT
κ
κ ), and

Kµ =

∫

x0=t

J0
µ(x) d

sx

is independent of t.

4. Since (1) holds also for φ = T µν , one can compute the commutators:

i[Pµ, Pν ] = 0,

i[Pµ,Mκλ] = ηµλPκ − ηµκPλ,

i[Pµ, D] = −Pµ,

i[Pµ, Kν ] = −2ηµνD + 2Mµν .

5. The components Mi0 can be recognized as the angular momentum (integral over
~x× momentum density). Thus, in a relativistic theory, Mκλ should generate the
Lorentz transformations: U(Λ)φ...µ...(x)U(Λ)

∗ = (· · · (Λ−1)µ
′

µ · · · )φ...µ′...(Λx),

i[Mκλ, φ...µ...] = (xκ∂λ − xλ∂κ)φ...µ... +
∑

(ηκµφ...λ... − ηλµφ...κ...), (2)

where the fields may be vector or tensor fields. From this, one can also compute the
commutators with Mκλ, using (2):

i[Mκλ, Pµ] = ηκµPλ − ηλµPκ,

i[Mκλ, D] = 0,

i[Mκλ,Mµν ] = ηκµMλν ± . . . ,

i[Mκλ, Kµ] = ηκµKλ − ηλµKκ.

6. A QFT is called conformal (CFT), if also the commutation relations

i[D,Kµ] = −Kµ,

i[Kµ, Kν ] = 0,

hold, which turn them into the Lie algebra of the conformal group G = SO(2, n)0
(n = dimension of spacetime), and if D acts on the fields as the generator of the
scale transformations

x→ λx,

and Kµ as the generator of the special conformal transformations

x→ x− x2 b

1− 2x · b+ b2 x2
.

We assume that the generators integrate to a (projective) unitary representation U .
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7. How do fields transform under D and Kµ? Consider the point x = 0 which is fixed
under Lorentz transformations, scaling and special transformation. Thus, these
generators act on the space spanned by “operators” φ(0). One may diagonalize
the commuting adjoint actions of D and M : i[D,φ(0)] = dφ(0), i[Mµν , φA(0)] =
π(mµν)

B
AφB(0), and then, by using (1) and the commutator between P and D, find

i[D,φ(x)] = (xκ∂κ + d)φ(x). (3)

d is called the scaling dimension of the field φ: in integrated form, the law reads

eitDφ(x)e−itD = λdφ(λx) (λ = et).

The commutator between D and K implies that K lowers the eigenvalue d by one
unit. Since (by reasons to become clear later) d must not be negative, there must
be fields such that i[K,φ(0)] = 0. These are called “quasiprimary fields”. Again,
using (1) and the conformal Lie algebra, one finally gets

i[Kµ, φ(x)...ν...] =
(
2xµ(x∂)+ x2∂µ +2dxµ

)
φ(x)...ν... +2

∑
(ηµνx

κ − δκµxν)φ...κ.... (4)

Thus, for quasiprimary fields all infinitesimal transformation laws are fixed by the
nature of the field as a Lorentz tensor (two quantum numbers j1, j2 ∈ 1

2
N0 specifying

the matrix representation i[Mµν , ·] = π(mµν) of the Lorentz Lie algebra on φ(0)),
and by the scaling dimension d. The derivative of a quasiprimary field is no longer
quasiprimary, because the commutator with Kµ will also contain the primitive field.

8. A representation is a Hilbert space where the fields and symmetries act, satisfying
all the above commutation relations. A repn has “positive energy” if the generator
P 0 is positive. A vacuum repn is a PER with a unique U -invariant vector Ω. The
transformation laws then uniquely determine the two-point functions (φ(x)Ω, φ(y)Ω)
(and strongly constrain higher correlation functions). These turn out to be distri-
butions. Therefore also the fields cannot be operator valued functions, but must be
operator valued (OPV) distributions.

By integrating the two-point distribution with test functions f(x)f(y), one obtains
the norm square ||φ(f)Ω||2. In order that this is positive for all f , the scaling
dimension must satisfy a certain unitarity bound d ≥ dmin(j1, j2). In particular, the
SET has dimension d = 4 and j1 = j2 = 1. The massless Klein-Gordon field has
d = 1, j1 = j2 = 0, thee free electromagnetic field d = 2, (j1, j2) = (0, 1)⊕ (1, 0).

We now have the essential features of conformal QFT: a Hilbert space H; fields as
OPV distributions f 7→ φ(f) = φ(f)∗ over spacetime, among them a distinguished field:
the SET; an automorphic transformation law αg : φ(f) 7→ φ(fg) of the fields under
the conformal group G acting geometrically on its arguments x; a unitary projective
representation U of G on H whose generators are integrals over (components of) the
SET, and which implements the conformal symmetry: αg(·) = U(g) · U(g)∗. In addition,
one has to require causality2: Fields at spacelike separation must be commuting operators,
in order to exclude acausal effects caused by a quantum measurement.

2Most commonly, the term “locality” is used instead.
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The question is: what other fields may there be present in a CFT? What are
their quantum numbers (d, j1, j2), what are their algebraic relations, what are
the vacuum correlation functions (Ω, φ1(x1) . . . φn(xn)Ω)?

Can one classify such theories?
In four-dimensional (4D) spacetime, this is an ambitious, and rather hopeless program.

2 CFT in two dimensions
Session 1.2

In two dimensions (2D), enormous progress has been made in the last three decades.

The physical interest in 2D CFT is manifold. Some of the models (cf Sect. 5) have
well-known realizations as scaling limits of critical Stat Mech systems (cf Sect. 4). Current
algebras are used to describe the quantum Hall effect. In String Theory, CFT are under-
stood as describing the “internal degrees of freedom” of the two-dimensional string surface
swept out in a 10-dimensional spacetime, where the specific CFT model distinguishes dif-
ferent “compactifications” from 10 to the “physical” 4 dimensions of our “low-energy
experience”.

1. The conformal symmetry simplifies drastically. The Lie algebra splits into to copies
of sl(2,R):

i[P,D] = −P, i[K,D] = K, i[P,K] = −2D.

Here, P = P± = 1
2
(P0 ± P1) are the translations in lightlike directions, D = D± =

1
2
(D ±M01) are the independent scale transformations of the lightcone coordinates
x± = t ± x (such that D+ − D− is a Lorentz transformation), and K = K± =
1
2
(K0 ∓K1) are the generators for the transformation

x 7→ x

1− bx
.

The conformal group G = G+×G− consists of the fractional linear transformations

x 7→ ax+ b

cx+ d
,

(
a b
c d

)
∈ SL(2,R).

Under the Cayley transformation z := 1+ix
1−ix

∈ S1, this becomes

z 7→ αz + β

βz + α
,

(
α β

β α

)
∈ SU(1, 1).

This group is called the Möbius group. Positivity of P 0 in every Lorentz frame is
equivalent to positivity of P+ and P−, and this in turn is equivalent to positivity of
K+ and K−, because the one-parameter subgroups generated by P and K are inner

conjugate (by the element

(
0 −1
1 0

)
) in the Möbius group.
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2. Now consider the SET. In 2D, its scaling dimension is d = 2. Being symmetric and
traceless, it has only two independent components T 00 = T 11 and T 01 = T 10. Being
conserved, one finds that T± = 1

2
(T 00 ∓ T 01) satisfy

(∂0 ∓ ∂1)T
± = 0,

hence T± actually depend only on the lightcone coordinates x±. Such fields are
called “chiral”, φ+(x+) are called “leftmovers”, φ−(x−) are called “rightmovers”. For
both copies T ≡ T±, we have (suppressing the sign) P =

∫
T (x)dx, D =

∫
xT (x)dx,

K =
∫
x2T (x)dx, transforming chiral fields according to

i[P, φ(x)] = ∂φ(x), i[D,φ(x)] = (x∂ + h)φ(x), i[D,φ(x)] = (x2∂ + 2hx)φ(x).

The parameter h is the chiral scaling dimension, h = 2 for the SET.
Because two fields at distance x = x1−x2 must commute whenever x2 = x+x− < 0,
chiral fields φ+ must commute with φ− unconditionally, and φ+(x+1 ) must commute
with φ+(x+2 ) whenever x

+
1 6= x+2 . Therefore, the commutator can only be a sum of

derivatives of δ-functions times other fields.
Making an ansatz for the commutator [T+, T+], the coefficient fields turn out to be
determined by the commutation relations with the generators [14], except for the
term δ′′′ (again suppressing the sign):

[T (x), T (y)] = i (T (x) + T (y)) δ′(x− y)− ic

24π
δ′′′(x− y) · 1. (5)

Under the Cayley transformation, T̂ (z) := −(dx/dz)2T (x(z)), T̂ is an OPV distribu-
tion on the circle without the point −1. It can be shown that it extends periodically
to the entire circle. One may then take its Fourier decomposition:

T̂ (z) =
1

2π

∑

n∈Z

Lnz
−2−n,

and rewrite the commutation relation as

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0, L∗

n = L−n. (6)

Re-expressed on the real line,

Ln =
1

2

∫
(1− ix)1−n(1 + ix)1+nT (x)dx.

This is the Virasoro algebra. Physically, it expresses causal commutativity of
the chiral SET along with its physical role of being the generator of conformal
transformations. Mathematically, it is a central extension of the Lie algebra of
diffeomorphisms Diff(S1) (δn(z) = izn+1).)

The algebra is universal, only the coefficient c, called “central charge” is model-
specific.

In particular,

L0 =
1

2
(P +K), L±1 =

1

2
(P −K)± iD.
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L0 is the generator of the rotations of the circle, z 7→ eiαz. Positivity of P , and
hence of K, implies positivity of L0. In fact, both are equivalent because L0 is inner
conjugate (by the dilations) to 1

2
(etP + e−tK) for any t.

3. A chiral CFT is a QFT with chiral fields = OPV distributions on the real line,
with chiral quasiprimary fields satisfying causal commutativity at different points
and transforming under Möbius transformations as displayed above, among them
the SET T (x) with h = 2 as a density for the Möbius generators P,D,K. The
transformation law can be equivalently written as

i[Lm, φ(x)] = Dh
mφ(x) ≡

1

2

(1 + ix

1− ix

)m

·
(
(1 + x2)∂ + (x+ im)h

)
φ(x) (7)

for m = 0,±1. A field satisfying the same commutation relations for all m ∈ Z, is
called primary field. Equivalently, a primary field satisfies

i[T (f), φ(x)] = f(x)φ′(x) + h f ′(x)φ(x) (8)

(whereas for quasiprimary fields there may be further terms involving fields of lower
dimension.) (8) integrates to the adjoint action of U(γ) = eiT (f) on primary fields:

U(γ)φ(x)U(γ)∗ =
(dγ(x)

dx

)h

· φ(γ(x)),

where γ = γ1 is obtained from f by integrating ∂tγt(x) = f(γt(x)), γ0(x) = x to a
one-parameter group of diffeomorphisms γt. The map γ 7→ U(γ) is then a projective
unitary repn of Diff(S1).
Notice that because of the central charge, the SET is quasiprimary but NOT pri-
mary; in fact, the central term − ic

24π
f ′′′(x) in the infinitesimal transformation law

(= commutator i[T (f), T (x)]) integrates to

U(γ)T (x)U(γ)∗ =
(dγ(x)

dx

)2

· T (γ(x))− c

24π
· Dγ
Dx

· 1,

where Dγ
Dx

= γ′′′

γ′
− 3

2
(γ

′′

γ′
)2 is the Schwarz derivative.

Necessarily, h ∈ N for chiral fields, and the Cayley transformed fields again extend
to the circle and may be described in terms of their Fourier components. The
commutation relations then become

[Lm, φn] = ((h− 1)m− n)φm+n

(m = 0,±1 for quasiprimary fields, all m for primary fields).
A vacuum representation is a representation of the field algebra with a vector Ω
invariant under the Möbius group: LmΩ = 0 for m = 0,±1. This implies LmΩ = 0
for m > 0 because otherwise it is an eigenvector of L0 with eigenvalue −m, whereas
L0 is a positive operator. Notice that the central term in the Virasoro algebra
excludes the existence of a diffeomorphism invariant vector.

4. A 2D CFT is a QFT on 2D Minkowski spacetime = Cartesian product of two chiral
axes R, with fields φ(t, x) = φ(x+, x−) transforming covariantly wrt both chiral
Möbius groups, with two chiral scaling dimensions (h+, h−) such that d = h+ + h−
is the scaling dimension, and s = h+ − h− is the Lorentz spin (more precisely: the
helicity). The fields must commute among each other if x+x− < 0 for x = x1 − x2.
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3 The quantization of c and h
Session 2.1

The two-point functions of 2D conformal fields are

∼
( −i
x+ − y+ − iε

)2h+

·
( −i
x− − y− − iε

)2h−

where “−iε” stands for the distributional definition as the boundary limit from Im(y) >
Im(x). Under the Cayley transform, this becomes

∼ 1

(z+ − w+)2h+

1

(z+ − w+)2h−

,

where the branch cut is defined by “radial ordering” as the distributional limit taken from
|w| < |z|. Such fields will therefore in general NOT extend periodically to S1 × S1, but
only to a covering space.

Causal commutativity requires that h+ − h− ∈ N (so that the complex phases from
the branch cuts cancel at spacelike distance). Therefore, the relevant covering space may
be viewed as S1 × R, where R is the time direction.

The adjoint action of L±
n on a primary field, expressing its diffeo covariance, is as in

(7)
[L+

m, φ(x+, ·)] = Dh+

m φ(x+, ·), [L−
m, φ(·, x−)] = Dh−

m φ(·, x−). (9)

Let us look at the vector-valued distribution (wrt y+) φ(y+, ·)Ω. It is the boundary
value of a function of y+ in the upper half-plane. (This follows from positivity of the
energy: P+ > 0 implies that eiy+P+ is bounded for Im(y+).) In particular, φ(y+ = i, ·)Ω
is a vector |h〉 in the Hilbert space. From the commutation relations with the Virasoro
algebra, it follows that L0|h〉 = h|h〉 and Ln|h〉 = 0 for all n > 0, ie |h〉 is a ground state
for the conformal Hamiltonian L0.

This provides a “simple” classification scheme [7] for the possible values of h and c.
Namely, by applying arbitrary products of Ln and using the Virasoro commutators, one
can write every resulting vector as a linear combination of vectors L−ks · · ·L−k1|h〉 with
ks ≥ · · · ≥ k1 > 0. The linear span of these symbols is called a Verma module (carrying a
representation of the Virasoro algebra), but the corresponding vectors in the QFT Hilbert
space need not be linearly independent. Imposing also the reality condition L∗

−k = Lk,
the inner product of any two vectors in the Verma module can be computed recursively as

a polynomial in h and c. Example: ||L−k|h〉||2 = 〈h|[Lk, L−k]|h〉 = (2kh+ k(k2−1)
12

c) · 〈h|h〉.
This inner product on the Verma module is obviously not positive definite in general.

One directly sees from the example (taking k = 1 and k → ∞) that both h and c must be
nonnegative. The systematic evaluation of positive-definiteness, giving a classification of
the admissible values of h and c [7] yields the following result. If c < 0, the inner product
is indefinite. If c = 0, the only possible value is h = 0, and all vectors except |h〉 = Ω are
null vectors. If c > 1, the inner product is positive-definite for all values of h. If c = 1, it
is semi-definite for quantized values h ∈ 1

2
Z

2, and positive-definite for all other h. Finally,
for 0 < c < 1, it is semi-definite only if

c = 1− 6

(n+ 2)(n+ 3)
, (n ∈ N),
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and if

h = hpq =
[(n+ 3)p− (n+ 2)q]2 − 1

4(n+ 2)(n+ 3)
, (p = 1, . . . n+ 1, q = 1 . . . n+ 2).

For all other values it is indefinite.

This is a remarkable result. It is a classification of possible QFTs “from nothing”
except symmetry requirements. Neither can the central charge assume every
positive value, nor can primary bulk fields have arbitrary scaling dimensions.
Moreover, for c < 1, there are necessarily null vectors in the Verma module.

The presence of null vectors has important consequences [1]: If P (L−k)|h〉 is a null
vector in the Verma module (P some polynomial), then

P (L−k)|h〉 = 0

in the physical Hilbert space. Inserting this into any correlation function,

(φ(y+ = i, ·)Ω, P (L−k)
∗φ1 · · ·φnΩ) = 0.

But P (L−k)
∗ is a polynomial in L+k, and L+kΩ = 0. So by using the commutation

relations (9), one obtains a partial differential equation (of the Fuchsian type) for the cor-
relation function. The solutions to these PDEs are called “conformal blocks”, = certain
hypergeometric functions or generalizations thereof, exhibiting branch cuts. The correla-
tion functions are therefore products of leftmoving and rightmoving conformal blocks:

∼
∑

A+A−

CA+A−
BA+

({x+})BA−
({x−}).

The conformal blocks BA−
({x−}) exhibit power-like singularities at coinciding points,

reflecting the singular nature of quantum fields in general. The regular multipliers of the
singular powers are again conformal blocks for a field occurring in the operator product
expansion (OPE)

φ1(x)φ2(y) ∼
∑

λ+,λ−

(x+ − y+)λ
+

(x− − y−)λ
− · φλ(y) (10)

which in general can be proven to exist in a certain technical sense. The primary fields
appearing in the OPE of two primary fields define the “fusion rules”. The line of argu-
ment shows that the knowledge of the null vectors fixes the fusion rules, although the
computation will be difficult.

The branch cut structure of the conformal blocks allows to compute commutators: in
order to exchange the position of two fields in a correlation function, one must analytically
continue the conformal blocks to the swapped configuration point, where the path of the
continuation depends on the sign of the difference variable. Under this kind of analytic
continuation, one solution of the PDE goes into another solution, ie, the space of conformal
blocks exhibits “braiding” transformations:

BA(. . . xk, xk+1 . . . ) =
∑

B

RAB(±)BB(. . . xk+1, xk . . . ),

where ± = sign (xk+1 − xk).
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Exercise (c = 1
2
, h = h1,2 =

1
16
): The four-point conformal blocks are f± =

∏
i<j x

− 1

8

ij ·
·
√√

x13x24 ±
√
x14x23, where xij = xi − xj − iε. Study the leading singular powers as

x12 → 0 or x23 → 0, and the braiding as x1 ↔ x2 (giving a complex phase) or x2 ↔ x3
(giving a braiding matrix; tricky! [16]).

The distance of two points x, y ∈ R
2 is spacelike iff (x−y)+ and (x−y)− have opposite

signs. Therefore, in order to have causal commutativity at spacelike distance, one must
have ∑

A+,A−

RA+B+
(±)RA−B−

(∓)CA+A−

!
= CB+B−

.

This condition also puts constraints on the (a priory unknown) pairing coefficients C.
Chosing a solution, amounts to specifying a model. There exist “trivial solutions”,

namely essentially C = 1, exploiting unitarity of the R matrix in a suitable basis, but
the classification of nontrivial solutions does not look very simple from this perspective.
I will come back to fusion and braiding later in a more appropriate framework.

4 Euclidean CFT
Session 2.2

Correlation functions are boundary values of analytic functions in a certain cone in com-
plex spacetime. The precise situation is very involved, eg, trying to analytically continue
the fields themselves by “complex translations”

φ(z+, z−) := ei(z+P++iz−P−)φ(0, 0)e−i(z+P++iz−P−)

makes sense only if Im(z) > 0 (so that the left operator is bounded by 1) and on vectors
of positive energy (so that the right vector is bounded by some exponential of the energy).

Yet, it makes sense to study the analytically continued correlation functions. Of
particular interest are the points of purely imaginary time, where the Lorentzian metric
becomes the Euclidean metric. With z+ = t+ x = iy + x and z− = t− x = iy − x, these
are the point where z+ and −z− are each others’ conjugates, one calls them z and z̄. At
the Euclidean points, left (right) chiral fields turn into (anti) holomorphic fields. (In 2D,
“imaginary space” is equivalent to “imaginary time” up to some changes of sign, but not
so in 4D.)

Euclidean field theory has its own place in physics. It arises in Statistical Mechanics,
eg as the continuum limit of lattice models at a critical point (where the physical length
given by the decay of correlations diverges relative to the lattice unit). Indeed, in these
situations, the Hilbert space axiom of relativistic QFT is inappropriate, also the notion
of adjoint operators looses its meaning, because it would relate fields at complex points
to fields at their complex conjugate points. Instead, the statistical correlation functions
possess another positivity property coming from the classical statistical measure in the
critical limit, which is much easier to satisfy as the QFT Hilbert space positivity. There-
fore, the Euclidean setting is much more flexible, and the previous classification restrictios
do not apply. There exist models with negative c, and logarithmic quantum field theories
which exhibit logarithmic correlation functions (whereas in QFT, all singularities are of
power type).
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Also the causality axiom no longer makes sense in Euclidean CFT. It is replaced by
a condition of single-valuedness of correlation functions viewed as functions of z and z̄,
eg, z−h+ z̄−h− is single-valued only if h+ − h− ∈ Z. This gives the same restriction on the
“spin” as in relativistic QFT, whereas the restriction on the dimension h++h− is relaxed.

An ECFT model is often defined by a specification of the OPE of its holomorphic
fields, ie, the asymptotic short-distance behavior of the form3

φA(z)φB(w) =
∑

n∈Z

(z − w)n · φn(w).

One has hA + hB = hn − n, hence n ∈ Z is bounded from below and fixes the dimensions
of the fields φn in the expansion. The presence of negative n reflects the short-distance
singularities of correlation functions. The individual contributions φn can be extracted
from the series by suitable countour integrations, making use of Cauchy’s theorem.

From the singular part, one can recover the commutator by taking the “radial-ordered”
difference: in the limit r ր 1, eg,

1

z − rw
− 1

rz − w
=

1

z

∑

n≥0

(
r
w

z

)n
+

1

w

∑

n≥0

(
r
z

w

)n → 1

z

∑

n∈Z

( z
w

)n
=

2π

z
· δ2π(arg z− argw).

Going back to the expansion formula, let V be the linear span of all symbols φ(0), φ
a conformal field (including derivatives of quasiprimary fields). Putting w = 0, one may
read the left action of φA(z) on V

φA(z)φB(0) =
∑

n≥−n0

zn · φn(0),

as a Laurent polynomial in linear maps Y A
n : V → V, φB 7→ φn on the field space. With

Y (A, z) =
∑
znY A

n , the associativity of the operator product reads

Y (A, z)Y (B,w) = Y (Y (A, z − w)B). (11)

In this form, the OPE is one of the axioms of a vertex operator algebra (VOA) [2, 11],
supplemented with further axioms concerning the grading of V by the scaling dimensions,
translation covariance via an operator T : V → V , φ 7→ ∂φ, causal commutativity, and
the presence of the SET as a distinguished element of V .

ECFT on C = R + iR lends itself to a generalization to Riemannian surfaces. Since
correlation functions are singular at coinciding points, they are functions in either vari-
able on a punctured surface, where the punctures are the positions of the other fields.
Correlation functions are (in classes of models) still products of holomorphic and anti-
holomorphic conformal blocks, and one may axiomatize CFT by properties of the latter.
In the extreme case, one rather axiomatizes not the conformal blocks themselves, but
rather the abstract vector spaces they span, depending on the moduli of the Rieman-
nian surface and the quantum numbers of the fields “inserted” at the punctures. When
two surfaces are glued along some boundary, these spaces must satisfy some consistency
conditions. Axiomatizing these conditions, amounts to define “QFT as a functor from
cobordisms into vector spaces” [17], cf Schweigert’s lectures.

3The OPE of chiral fields in QFT has exactly the same form, but the meaning is different. Here, z is
the analytically continued variable in C, there, z is the Cayley transformed variable in S1. The reason
for this “form invariance” is that the Cayley transform is in fact a complex Möbius transformation.
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5 Chiral models
Session 3.1

Chiral CFT models exist in abundance. Apart from the SET, one may have (primary)
currents of dimension 1. In physics, “current” stands for the density of some “charge”.
The simplest (“canonical”) commutation relation (CCR) are given by the Heisenberg
algebra

[j(x), j(y)] =
i

2π
δ′(x− y) ⇔ [j(f), j(g)] = iσ(f, g)

with the symplectic form on S(R)

σ(f, g) =
1

4π

∫
(fg′ − f ′g). (12)

In Weyl form W (f) = eij(f) for real f , the CCR read

W (f)W (g) = e−
i
2
σ(f,g) ·W (f + g), W (f) unitary,

defining the C* algebra CCR(σ).
The non-abelian version is given by

[Ja(x), J b(y)] = i fab
c J c(x) δ(x− y) + i

κ

2π
· hab δ′(x− y), (13)

where fab
c are the structure constants of some Lie algebra g, and hab = Tr (adXaadXb) =

−fac
d f

bd
c the Cartan-Killing metric. κ is an (at this point undetermined) parameter.

Rewritten in terms of the Fourier modes

Ĵa(z) = i
dx

dz
· Ja(x(z)) =

1

2π

∑

n∈Z

Ja
nz

−n−1,

the algebra turns into the Kac-Moody algebra ĝ

[Ja
m, J

b
n] = fab

c Jm+n + hab ·mδm+n,0 · κ, Ja
n
∗ = Ja

−n, [κ, Ja
n] = 0. (14)

In an irreducible representation, the central generator κ is a multiple of 1. This algebra,
in turn, can be regarded as the infinitesimal version of a unitary projective representation
of the loop group

LG = {g : S1 → G smooth}, U(g)U(h) = eic(g,h)U(g · h).

The cocycles c(g, h) of the loop group can be classified: it turns out to be unique for
semisimple Lie groups up to a factor. In the infinitesimal version, it is responsible for the
central term, with κ the undetermined factor.

We ask again, whether these commutation relations can be realized on a Hilbert space.
By the primary field commutation relations,

[Lm, J
a
n] = −nJa

m+n,

the positive Fourier modes act like lowering operators for the conformal energy L0, hence
there must be ground states Ja

n|λ〉 = 0 (n > 0). Because the zero modes commute
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with L0, the ground states carry a unitary representation π of the Lie algebra g of G.
Unless one admits infinite degeneracy of energy eigenstates, these representations must
be finite-dimensional, thus G should be a compact group.4

Now, one may proceed as in the Virasoro case: the vectors Jas
−ks

· · · Ja1
−k1

|λ〉i span a
Verma module, whose inner product can be computed by the commutation relations and
the reality condition. Its positivity depends only on κ and the representation π of g on
the ground states. It turns out [12] that κ is quantized: if θ denotes the highest root of
g, then κ = k · 1

2
(θ, θ) where k (called the level) is a positive integer; and for every value

of the level k, only finitely many representations π are admitted, namely those whose
highest weight λ satisfies the bound (λ, θ) ≤ κ. Eg, for SU(2), the spin is limited to be
j ≤ k

2
. Again, the inner product is only semi-definite, and the corresponding null vectors

give rise to PDEs for the correlation functions among primary fields, on which the current
algebra acts like infinitesimal gauge transformations:

i[Ja(x), φA(y, ·)] = π(Xa)BAφB(y)δ(x− y).

The nontrivial task is to construct these algebras by operators on a Hilbert space.
There exist several methods:

“Field theoretic constructions”

F.0 Construction of the action on the Verma module and quotient by the null space.
Bad control over the resummation of the Fourier modes to define the local fields.

F.1 The abelian case (CCR) can be directly constructed on a symmetric Fock space
with creation and annihilation operators a(k)∗ = a(−k) for k ∈ R, [a(k), a(k′)∗] =
k δ(k − k′):

j(x) =
1

2π

∫

R

dk a(k)e−ikx = j∗(x),

The ground state (a(k)Ω = 0 for k > 0) gives rise to the 2-point function

(Ω, j(x)j(y)Ω) =
1

4π2

∫

R+

k dk e−i(x−y) =
1

4π2

( −i
x− y − iε

)2

.

The SET of the current is given by

T (x) =
1

4π
:j(x)2: (c = 1). (15)

F.2 Kac-Frenkel construction [6] = embedding of nonabelian current algebras into an
extension of a free Bose field theory (CCR). Example: SU(2).
Let the abelian current be given by its Fourier modes satisfying [jm, jn] = nδn+m,0.
Extend q = j0 to a pair of “quantum mechanical” zero modes [q, p] = i, and define

J±(z) = exp
(
∓
√
2
∑

n<0

jn
n
z−n

)
· exp

(
±
√
2(q + ip log z)

)
· exp

(
∓
√
2
∑

n>0

jn
n
z−n

)
.

4Another argument is that the inner product between vectors Ja
−1|0〉 is given by the Cartan metric,

which therefore must be positive-definite.
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Formally, this can also be written in x-space as

J±(x) = : exp±
√
2 i

∫ x

−∞

j(u)du:,

where : · : stands for the necessary regularization of the highly singular (because of
the sharp cutoff) expression.
Then J3 = j/

√
2 and J± = J1 ± iJ2 satisfy the su(2) current algebra at level

k = 4κ = 1.
For other Lie algebras g, one starts from a multi-component current with test func-
tions taking values in the Cartan subalgebra, and replaces the coefficient ±

√
2 by

the root vectors of g.

F.3 Embedding into a free Fermi field theory (CAR). Physicists define a complex free
Fermi fields satisfying {ψ∗(x), ψ(y)} = 2πδ(x − y) by creation and annihilation
operators, a(k)∗ = b(−k) for k ∈ R, {a(k), a(k′)∗} = δ(k − k′) = {b(k), b(k′)∗} on
the antisymmetric Fock space with a ground state a(k)Ω = bi(k)Ω = 0 if k > 0:

ψ(x) =

∫

R

dk a(k)e−ikx, ψ∗(x) =

∫

R

dk b(k)e−ikx

This implies the canonical anti-commutator {ψ(x), ψ∗(y)} = 2π δ(x − y) and the
2-point fn

(Ω, ψ(x)ψ∗(y)Ω) = (Ω, ψ∗(x)ψ(y)Ω) =

∫

R+

dk e−i(x−y) =
−i

x− y − iε
.

The abelian current and the SET with c = 1 can be embedded by

j(x) =
1

2π
:ψ∗(x)ψ(x):, T (x) =

1

8π
:∂ψ∗(x)ψ(x)− ψ∗(x)∂ψ(x):,

where the Wick product is defined by subtraction of the vacuum expectation value.
The current is the generator of gauge transformations:

eij(f)ψ(x)e−ij(f) = e−if(x) ψ(x), eij(f)ψ∗(x)e−ij(f) = e+if(x) ψ∗(x)

and the SET generates diffeomorphisms. (A real Fermi field has no current, and
gives a SET with c = 1

2
.)

The generalizations to N complex Fermi fields is obvious. Let now τa be a unitary
N -dimensional matrix repn of some Lie algebra g. Then

Ja(x) =
1

2π

∑

ij

:ψ∗
i (x)(τ

a)ijψj(x):

is a representation of the g current algebra on the Fock space of the free Fermi fields.

F.4 The Sugawara construction. Given a current algebra, the SET is a multiple of
hab:j

ajb:. For su(2)k, the central charge turns out to be ck =
3k
k+2

(= 1 for k = 1).
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“Operator algebraic constructions”:

A.1 (Analog of F.1) One fixes a state on the Weyl algebra CCR(σ) (cf (12)):

ω(W (f)) = e−
1

2
||f ||2

+ , ||f ||2+ =
1

2π

∫

R+

k dk|f̂(k)|2 = ||j(f)Ω||2,

then the GNS construction gives πω(W (f)) = eij(f).

A.2 (Generalizes F.2) The symplectic form σ extends (by the same formula (12)) to

S̃(R) = {g : R → R : g′ ∈ S(R)}, which includes smooth “step functions”. Denote
by CCR(σ̃) the associated extended CCR algebra. We call q(g) = − 1

2π

∫
g′ =

1
2π
(g(−∞) − g(+∞)) the “charge” of W (g).5 If g′1 and g′2 have support in disjoint

intervals, then σ(g1, g2) = ±q1q2 · π, where the sign depends on the order of the
supports. Thus, one has commutation relations

W (g1)W (g2) = e∓q1q2·π ·W (g2)W (g1).

Therefore, the subalgebra of operators with charges in an even lattice q ·Z (ie, q2 is
an even integer) satisfies causal commutation relations. (This algebra can be viewed
as a crossed product of CCR(σ) by Z, where the action of n ∈ Z is given by AdW (ng)

for any g of charge q. The choice of g is irrelevant because, up to a complex phase,
W (g2) ∼ W (f)W (g1), where f = g2 − g1 has zero charge.) The vacuum state of
CCR(σ) extends to the crossed product algebra by composition with the conditional
expectation which projects onto the charge zero operators.
To make contact with F.2, one has to establish, that in the GNS representation of
this state, the properly regularized limits of W (g) as g → ±gx(·) = ±2π

√
2 θ(x− ·)

exist (as operator-valued distributions) and give the expressions of F.1.

More generally, every even lattice (including the root lattices of semisimple Lie
algebras) give rise to some local extension of the current algebra [3].

A.3 (Analog of F.3) Define the CAR C* algebra by the anti-commutation relations
{B(f), B(g)} = (Γf, g)H over the Hilbert space H = L2(R,CN ⊕ C

N), Γf =
Γ(f

1
, f

2
) = (f

2
, f

1
). Then

√
2πB(f) =

∑
i ψi(f

i
1) +

∑
i ψ

∗
i (f

i
2) is the complex free

Fermi field (which is bounded after smearing, unlike general quantum fields).
Every projection satisfying ΓPΓ = 1− P defines a quasifree state ωP (B(f)B(g)) =
(Γf, Pg)H, giving rise to inequivalent GNS representations πP in general. The Fock
representation is obtained from P0 = projection onto the positive-frequency part of
the Fourier transform.
Now, let u be a unitary operator on H commuting with Γ, then

B(f) 7→ B(uf)

is an automorphism αu of the CAR algebra. The state ωP ◦ αu will be equal to ωP

iff P commutes with u. More generally, its GNS repn will be unitarily equivalent

5If f ∈ S(R) is constant = 1 on the support of g, then W (tf)W (g)W (tf)∗ = eitq(g)W (g), ie, W (tf)
approximates (as f → 1) the unitary 1-parameter group eitQ with Q =

∫
j(x)dx the charge operator.
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to πP iff [P, u] (or equivalently uPu∗ − P ) has finite Hilbert-Schmidt norm. In this
case, αu is implemented by a unitary operator in the GNS representation,

πP (αu(·)) = UπP (·)U∗.

For P = P0, one can verify the Hilbert-Schmidt condition for gauge transformations
u = g⊕g, where g : S1 → G is a smoothG-valued function, ie g ∈ LG, acting onH =
L2(R,CN ⊕ C

N) by pointwise matrix multiplication in an N -dimensional unitary
representation. (For G = U(1), g(x) = eiα(x), this amounts to

∫
dxdy |eiα(x) −

eiα(y)|2/(x − y)2 < ∞.) The implementing unitaries U(g) then form a projective
repn of LG, and the generators of its one-parameter subgroups give a representation
of the current algebra on the Fock space of the free Fermi fields [15].
Also the (orientation-preserving) diffeomorphisms act unitarily on H by f 7→ uf =

(γ′)
1

2 · f ◦ γ, and again [P0, u] is Hilbert-Schmidt. The unitaries U(γ) then form a
projective repn of Diff(S1), and the generators of its one-parameter subgroups give
a representation of the SET on the Fock space of the free Fermi fields.

A.4 (Analog of F.4) The diffeomorphisms act by automorphisms g 7→ g ◦ γ on the loop
group. Every unitary projective representation of LG extends to the semidirect
product Diff(S1)⋉LG [15]. The generators of one-parameter subgroups of Diff(S1)
can be identified with SET field operators T (f).

Then there is an arsenal of methods to construct new models from given models.
Trivially, one may take tensor products (where central charges and levels just add). One
may take fixed point subalgebras under some automorphism group of the field algebra,
like the global G-symmetry of the g-current algebra, which preserves the Sugawara SET
T , among other fields.

The coset construction consists in taking the subalgebra Acoset of all fields that com-
mute with a given subalgebra Ã ⊂ A. The SET T̃ of Ã has the same CR (8) with all

fields of Ã, as the full SET T . Therefore, the difference T coset = T − T̃ belongs to the
commutant. In particular, it commutes with T̃ . It follows that T coset is a SET of its own
with central charge ccoset = c − c̃. Eg, the SET of two complex Fermi fields has c = 2,
whereas the Sugawara SET for the embedded su(2)k=1 subtheory has c = 1. Thus, there
is a coset SET with c = 1. Indeed, the coset theory is the “abelian” current algebra
corresponding to U(1) ⊂ SU(2), and its SET is the SET (15).

An important class of coset models is the following. If h ⊂ g is a Lie subalgebra, in
general the Sugawara SETs Th and Tg do not coincide. Then the coset SET has central
charge cg − ch. By this method, all Virasoro algebras with c < 1 can be obtained via the
diagonal embedding of su(2)k+1 into su(2)k⊗su(2)1: ck+c1−ck+1 = 1− 6

(k+2)(k+3)
[8], and

all its positive-energy representations (cf Sect. 3) are contained in PERs of su(2)k⊗su(2)1.

All these models exhibit a rich representation theory, in many cases “rational”
(ie, finitely many inequivalent irreducible representations). Quantities of physical
interest are: spectral quantum numbers (lowest eigenvalues of L0 and characters
like χ(β) = Tr e−βL0 , possibly including generators of further symmetries), corre-
lation functions (conformal blocks), fusion rules, subtheories and branching rules
(decomposition of representations upon restriction to subtheories), . . .
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6 Superselection sectors in AQFT
Session 4.1

I turn to the formulation of CFT in the setting of “algebraic QFT” (AQFT) [9]. Here,
we don’t specify local fields, but only local vN algebras in their vacuum representation

A(I) ⊂ B(H0), (I ⊂ R or ⊂ S1 any interval).

We have done so before: The Weyl algebra construction of the abelian current algebra
gave unitaries W (f); then AU(1)(I) = {W (f) : supp f ⊂ I}′′. The CAR constructions
gave unitary implementers of gauge or diffeo transformations; then Aĝ(I) = {U(g) : g :
S1 → G, supp f ⊂ I}′′ or ASET(I) = {U(γ) : γ ∈ Diff(S1), supp γ ⊂ I}′′.

Although a general proof exists only for (large classes of) models, the field-theoretic
and the AQFT approach are believed to be equivalent.

The axioms of AQFT require

• Isotony: local algebras increase with O,

• Causality (= locality, cf footnote 2): Local algebras at spacelike distance (or: of
disjoint intervals in the chiral case) commute,

• Covariance: there is a repn of the Poincaré (conformal, Möbius) group G by auto-
morphisms such that αgA(O) = A(gO),

• Vacuum: there is an invariant state ω ◦ αg = ω, hence a unitary repn U of G in the
GNS repn of ω; and the GNS vector is a ground state for the energy (in particular,
U is a positive-energy representation). In the chiral case, these axioms imply Haag
duality: A(I ′) = A(I)′.

If one also requires that the repn U of the Möbius group extends to a projective repn
of the diffeomorphism group Diff(S1) such that U(γ)A(I)U(γ)∗ = A(γI) and localized
diffeos act trivial on the complement: supp γ ⊂ I ⇒ AdU(γ)|A(I′) = id, then by Haag
duality, U(γ) ∈ A(I). The subalgebras A0(I) generated by U(γ) (supp γ ⊂ I) define a
Virasoro subtheory.

A positive-energy representation (PER) of A is a representation π on a Hilbert space
equipped with a positive-energy representation Uπ of the Möbius group, such that

Uπ(g)π(A(I))Uπ(g)
∗ = π(A(gI)).

(I suppress here some subtleties with the extension from R to S1.)
One can show that every positive-energy representation, if restricted to the comple-

ment of any interval I0 ⊂ R, is unitarily equivalent to the (defining) vacuum representation
π0(a) = a:

π(a) = V aV ∗ (a ∈ A(I ′0)).

By causality, V ∗π(a)V commutes with A(J ′) whenever a ∈ A(I) and J contains both I
and I0. Hence by Haag duality, it belongs to A(J). Therefore, a 7→ ρ(a) = V π(a)V ∗ is
an endomorphism of the C*-inductive limit of A(I), I ⊂ R, and ρ acts trivially on the
subalgebra A(I ′0). Such endomorphisms are called “localized”, or DHR endo’s [4].

In other words: every PER is unitarily equivalent to a localized endomorphism:
π ∼ π0 ◦ ρ. The localization interval I0 can be chosen arbitrarily.
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If two unitarily equivalent ρ1 and ρ2 are localized in intervals I1 and I2, then by Haag
duality, the unitary intertwiner ρ2 = Adu ◦ ρ1 is an element of A(I), where I contains
both I1 and I2.

Example: the local algebras A(I) of the CCR algebra are generated by Weyl operators
W (f), supp f ⊂ I. The maps

W (f) 7→ ei
∫
gf ·W (f), j(x) 7→ j(x) + g(x) · 1

are localized endomorphisms if g ∈ S(R) has compact support. Any two such maps are
inner equivalent by W (γ) where γ′ = g1 − g2, iff

∫
g1 =

∫
g2. The equivalence classes are

therefore given by the “charge” q =
∫
g.

A unitary equivalence class of PERs (hence of DHR endomorphisms) is called a su-
perselection sector of A, or a “charge”.

Consider the C* category of PERs. The morphisms t ∈ Hom(ρ, σ) are intertwining
operators satisfying tρ(a) = σ(a)t for all a ∈ A (eg, the unitary “charge transporters” u :
ρ1 → ρ2 changing the localization interval), and they always belong to A by Haag duality.
Direct sums and subrepresentations can be defined in terms of isometric intertwiners:

ρ(a) = w1ρ1(a)w
∗
1 + w2ρ2(a)w

∗
2 (w1w

∗
1 + w2w

∗
2 = 1, w∗

iwj = δij · 1);
ρ ≺ σ iff ρ(·) = w∗σ(·)w with ww∗ ∈ Hom(σ, σ), w∗w = 1.

This category is in fact a tensor category, with the “tensor product” given on the ob-
jects by the composition (in particular, NOT by the tensor product, which is not even a
representation): πσ × πρ = πσ◦ρ, and on the intertwiners by t1 × t2 = t1ρ1(t2) = σ1(t2)t1.

The irreducible decomposition of a product of irreducibles defines the “fusion rules”:

ρaρb ∼
⊕

c

N c
abρc.

In particular, there is a notion of “conjugate”: Irreducibles ρ and ρ̄ are conjugates iff
id ≺ ρρ̄ iff id ≺ ρ̄ρ. The relation of this notion of fusion rules with the one introduced
earlier in terms of the OPE of two primary fields, will be made in Sect. 7.

The tensor category of superselection sectors is also unitarily braided [4, 5]. One shows
that ρ1ρ2 = ρ2ρ1 if the two DHR endo’s are localized in disjoint intervals Ii. One then
defines ερ1,ρ2 := 1 if I1 is to the right of I2, and

εAdu1ρ1,Adu2ρ2
:= u2ρ2(u1)ερ1,ρ2ρ1(u2)

∗u∗1

in general. Thanks to causality, this definition is well-defined, ερ,σ ∈ Hom(ρσ, σρ), and
satisfies the naturality axiom for a braiding. Notice that in general, ερ1,ρ2 6= 1 if I1 is
to the left of I2, because the respective endomorphisms act nontrivially on the charge
transporters needed to swap the localizations.

Example: The Virasoro theory with c = 1
2
has three sectors with h = 0, 1

2
, 1
16
. One may

choose representative DHR endo’s in these sectors satisfying τ ◦τ = id and τ ◦σ = σ. Then
σ ◦ τ ∼ σ, and σ ◦σ ∼ id⊕ τ with isometric intertwiners r ∈ Hom(id, σ2), t ∈ Hom(τ, σ2),
and u = rr∗ − tt∗ ∈ Hom(σ, στ) unitary. The tensor category structure is given by
the formulae τ(r) = t, τ(t) = r and σ(r) = (r + t)/

√
2, σ(t) = (r − t)u/

√
2. The

braiding is given by ετ,τ = −1, ετ,σ = εσ,τ = −iu and εσ,σ = κ−1
σ (rr∗ + itt∗), where

κσ = e2πihσ = e2πi/16, on the representatives, and by naturality on all their equivalents.
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7 Local extensions
Session 4.2

A QFT is described by a covariant assignment of local vN algebras I 7→ A(I). An
extension is then a covariant assignment I 7→ B(I) such that A(I) ⊂ B(I), and the
covariance αg of B extends that of A. It is also required that B(I) commutes with A(J)
if I and J are disjoint (“relative locality”). If B(I) commutes with B(J), the extension
is called local. In order to exclude trivial extensions like tensor products, we shall require
that the relative commutant A(I)′ ∩ B(I) is trivial; in particular, there can be no coset
SET, hence A and B share the same SET (if they have one).

We have encountered several extensions before: The lattice construction is an exten-
sion of the abelian current algebra, and it is local if the lattice is even. A nonabelian
current algebra is a local extension of its Sugawara SET. The real or complex free Fermi
algebra is a nonlocal extension of the SET with c = 1

2
resp c = 1.

A two-dimensional CFT is also a local extension of its pair of chiral subalgebra A+ ⊗
A+ ⊂ B2, cf Sect. 3 for the case that A+ and A− are Virasoro theories with c < 1.

Constructing an extension amounts to “add” more operators to A(I) and specify
their algebraic relations in a consistent and covariant way. AQFT offers a way to do so
in a most efficient way [13]. Namely, there is a 1:1 correspondence between extensions
and “Q-systems” (= C* Frobenius algebras) in the category of superselection sectors.
In the rational case, there exist only finitely many Q-systems, hence only finitely many
extensions. Whether the extension is local or not, can be directly read off the Q-system.

A Q-system consists of a (reducible) DHR endo θ (ie, a represention of A), an inter-
twiner w ∈ Hom(id, θ) and an intertwiner x ∈ Hom(θ, θ2), such that the relations

w∗x = θ(w∗)x = 1, xx = θ(x)x, w∗w = x∗x = d · 1 (d > 1)

hold. These relations take care of all consistency conditions for the extension. In order to
have irreducible extensions, we must require that id ≺ θ with multiplicity 1, hence w is
uniquely fixed by θ up to a phase, and the intertwiner x contains the proper information.

Let θ be localized in I0. Then B(I0) is the algebra A(I0) supplemented by an element
v such that

va = θ(a)v, v2 = xv, v∗ = w∗x∗v.

This is again a vN algebra. Shifting the localization with a unitary u, (θ̃ = Aduθ, w̃ =
uw, x̃ = uθ(u)xu∗) is another Q-system, defining A(I) ⊂ B(I) for any other region, with
ṽ = uv. B is local iff u1v commutes with u2v for I1 and I2 disjoint; this in turn is
equivalent to the condition εθ,θx = x.

A more physical picture emerges, if we “split” the generator v into “charged fields”:
if ρ ≺ θ is irreducible and wρ ∈ Hom(ρ, θ), then ψρ satisfies

ψρa = ρ(a)ψρ (16)

Moreover, (fixing representatives of the irreducible subsectors) every element of B has a
unique decomposition b =

∑
ρ aρψρ, with ψid = 1. The map µ : b 7→ aρ=id is the (unique)

conditional expectation B → A, and ωB = ωA ◦ µ. This implies that ψρ generate the
charged repn from the vacuum repn: for any two vectors Φi ∈ H0,

(ψ∗
ρΦ1, aψ

∗
ρΦ2) = (Φ1, µ(ψρaψ

∗
ρ)Φ2) = (Φ1, ρ(a)µ(ψρψ

∗
ρ)Φ2) = (Φ1, πρ(a)Φ2).
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The product ψσψρ then generates the representation πσ × πρ = πσ◦ρ. Moreover, one
has (from v2 = xv resp from v∗ = w∗x∗v)

ψaψb =
∑

c

tcab · ψc, ψ∗
a = r∗aψā

where tcab = w∗
aθ(w

∗
b )xwc ∈ Hom(ρc, ρaρb), and ra = w∗

āθ(w
∗
a)xw ∈ Hom(id, ρ̄aρa). This

multiplication algebra of charged fields (with A-valued coefficients) is the analog of the
OPE of primary fields in AQFT, making the announced contact with the notion of fusion
rule in Sect. 3. If B is local, then ψρψσ = εσ,ρ · ψσψρ.

Thus, the extension described by a Q-system consists in adding a set of charged field
operators ψρ to A, whose algebraic relations are specified by the intertwiners w and x in
the Q-system. If ρ is localized in I, then ψρ belongs to B(I). Indeed, by (16) it commutes
with A(J), I and J disjoint. Thus, the charged fields are transported to arbitrary intervals
by ψAduρ = uψρ (because wρu

∗ ∈ Hom(Aduρ, θ)).

Example (continued from Sect. 6): The Virasoro theory with c = 1
2
admits only one

nontrivial Q-system (θ = σ2, w = 2
1

4 r, x = 2−
1

4 (r+ t)). Since θ ∼ id⊕ τ , there is only one

charged field operator ψτ = 2
1

4 · t∗v satisfying

ψτa = τ(a)ψτ , ψ2
τ = 1, ψψ∗

τ = ψτ .

Now, if τ and Aduτ are localized in disjoint intervals, we have

ψτψAduτ = ψτuψτ = τ(u)ψτψτ = (τ(u)u∗) · ψAduτψτ .

But τ(u)u∗ equals the braiding ετ,τ = −1, hence the charged field anti-commutes. In fact,
ψ is a real free Fermi field.

The problem to construct two-dimensional local CFTs with given chiral subtheories
now consists in finding a Q-system for A+ ⊗ A−.

Example: Both A+ and A− are the Virasoro theory with c = 1
2
. There is (among

others) a Q-system with Θ = W1(id⊗ id)W ∗
1 +W2(τ⊗τ)W ∗

2 +W3(σ⊗σ)W ∗
3 , W =

√
2W1,

X =
∑

a,b,c

Θ(Wb)Wa(tab,c ⊗ tab,c)W
∗
c /

√
2,

where tab,c ∈ Hom(ρc, ρaρb) are given by 1 ∈ Hom(ρ, idρ), 1 ∈ Hom(ρ, ρid), 1 ∈ Hom(id, ττ),
1 ∈ Hom(σ, τσ), (u⊗u) ∈ Hom(σ, στ),

√
2(r⊗r) ∈ Hom(id, σσ),

√
2(t⊗ t) ∈ Hom(τ, σσ),

respectively.
One obtains two nontrivial charged fields Ψττ = W ∗

2 V/
√
2 and Ψσσ = W ∗

3 V , satisfying

Ψττa = (τ ⊗ τ)(a)Ψττ , Ψσσa = (σ ⊗ σ)(a)Ψσσ, (a ∈ A⊗ A)

and the algebraic relations among each other

ΨττΨττ = 1, ΨττΨσσ = Ψσσ, ΨσσΨττ = (u⊗u)Ψσσ, ΨσσΨσσ = ((r⊗r)+(t⊗t)Ψττ )/
√
2,

Ψ∗
ττ = Ψττ , Ψ∗

σσ =
√
2(r∗ ⊗ r∗)Ψσσ, Ψ∗

ττΨττ = Ψ∗
σσΨσσ = 1.
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Exercises: Verify the defining properties of the Q-system. Verify the displayed relations
of the charged fields from their definitions via the Q-system! Verify their consistency as
an algebraic extension of A⊗A. Verify that the charged fields commute among each other
at spacelike distance, but not at timelike distance.

Of course, there is a general theory behind this example, including the notions of
“modularity” and “α-induction” [10, 13] which cannot be treated here. Every (possibly
nonlocal) chiral extension induces a local two-dimensional extension (this is not 1:1; the
extension in the example is induced from the trivial chiral extension B = A, but also from
the extension with θ = σ2 presented above), and every local two-dimensional extension
is intermediate to one of the induced extensions (in the last example, one may just omit
Ψσσ). The multiplicities Zab of the irreducible subsectors ρa ⊗ ρb of A ⊗ A as subrepns
of the induced representation Θ turn out to form a modular invariant matrix (the 3 × 3
unit matrix in the example). Since the latter can been classified independently, one has
an apriori restriction on the possible representations Θ (but not all modular invariant
matrices have such a realization).
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