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INTRODUCTION

Ambiguity in canonical quantization

The choice of representation for the fundamental algebra
in canonical quantization is not free of ambiguity

In ordinary Quantum Mechanics, the Stone–von Neumann theorem
guarantees the uniqueness

of the (strongly continuous, unitary and irreducible) representation
of the Weyl algebra.

In more complex situations, symmetry can help:

» In the Fock quantization of a field theory in flat spacetime
↝ Poincaré invariance

» In LQG ↝ diffeomorphism invariance [LOST; Fleishchack]
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INTRODUCTION

A result [Cortez, Mena Marugán, Olmedo, Velhinho]

Consider a Klein-Gordon (KG) field Φ with time-dependent mass
in a compact Riemaniann manifold Σ (dim Σ ≤ 3).

The Fock representations with

1. a vacuum state invariant under the spatial symmetries
of the KG equation

[a complex structure (CS) invariant under those symmetries]
2. unitarily implementable field dynamics

form a unitary equivalence class.

A representative of these class is the massless representation,
defined by the complex structure J0:

J0 (
Φ
πΦ

) = ( 0 −(−0h 0∆)−1/2

−(−0h 0∆)−1/2 0
)( Φ
πΦ

)

0h↝ determinant of the metric 0hab on Σ,
0∆↝ Laplace-Beltrami operator
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INTRODUCTION

Applications

The result has many interesting applications
in non-stationary scenarios:

» Test KG field Φ in a FLRW universe:

Φ̈ + 2
ȧ

a
Φ̇ − 0∆Φ +m2a2Φ = 0

(a↝ scale factor) With a suitable scaling, u = aΦ
(the ‘Mukhanov scaling’),

ü + 0∆u + (m2a2 − ä
a
)u = 0

» Reduction of the Gowdy models

» Tensor perturbations and Mukhanov-Sasaki variable
in a perturbed FLRW.
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INTRODUCTION

Scalings of the field

[Cortez, Mena Marugán, Olmedo, Velhinho]

Another source of ambiguity: the choice of fundamental variables.

In particular, consider the following
time-dependent, linear canonical transformation:

Φ↦ F (t)Φ,

πΦ ↦ [F (t)]−1πΦ +G(t)
√

0hΦ

Obviously, this transformation changes the field dynamics.
Furthermore,

it prevents the unitary implementation of the new dynamics.

(If dim Σ = 1, a shift of the momentum is admissible.
But we do not get anything new ↝ unitary equivalence.)
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INTRODUCTION

These results hold in the presence of
corrections subdominant in the ultraviolet.

As an example of particular physical interest, we consider
the case of scalar perturbations around a FLRW universe

whose spatial sections are either three-tori (flat case ↝ k = 0)
or three-spheres (k = +1).

5/33



INTRODUCTION

CLASSICAL MODEL

UNIQUE QUANTIZATION

GAUGE INVARIANTS

CONCLUSIONS



CLASSICAL MODEL

FLRW model

» Metric ↝ ADM decomposition:

ds2 = −(N2 −NaN
a)dt2 + 2Nadx

a dt + habdxa dxb;
hab,↝ 3-metric, N ↝ lapse, Na ↝ shift.

» Matter content: scalar field Φ with mass m̃ =m/σ.

In the FLRW model:

with perturbations:

hab(t, x) = σ2e2α(t)

[

0hab(x),

+ εab(t, x)]

N(t, x) = σ

[

N0(t),

+ δN0(t, x)]

Na(t, x) = 0,

δNa(t, x)

Φ(t, x) = (l3/20 σ)−1

[

ϕ(t),

+ δϕ(t, x)]

N0, α, ϕ ↝ homogeneous variables,
0hab ↝ unperturbed metric (in T 3 or S3),

σ2 = 4πG/(3l20), l30 = ∫
√

0hd3x.
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CLASSICAL MODEL

Perturbed FLRW model

» Metric ↝ ADM decomposition:

ds2 = −(N2 −NaN
a)dt2 + 2Nadx

a dt + habdxa dxb;
hab,↝ 3-metric, N ↝ lapse, Na ↝ shift.

» Matter content: scalar field Φ with mass m̃ =m/σ.

In the FLRW model with perturbations:

hab(t, x) = σ2e2α(t)[0hab(x) + εab(t, x)],
N(t, x) = σ[N0(t) + δN0(t, x)],
Na(t, x) = δNa(t, x),

Φ(t, x) = (l3/20 σ)−1[ϕ(t) + δϕ(t, x)],

N0, α, ϕ ↝ homogeneous variables,
0hab ↝ unperturbed metric (in T 3 or S3),

σ2 = 4πG/(3l20), l30 = ∫
√

0hd3x.
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CLASSICAL MODEL

Eigenbasis of the Laplace-Beltrami operator

To expand the inhomogeneities, we use the orthogonal basis
of the eigenfunctions of the Laplace-Beltrami (LB) operator

of the reference static metric:

0∆Qnl = −ω2
nQ

nl, n = 1,2, . . .

l = 1, . . . ,gn accounts for the degeneracy
(implicit in most formulas)

T 3: plane waves (sines and cosines).
S3: (real) hyperspherical harmonics.

For vector and tensor quantities, we introduce

Pna = 1
ω2
n
(Qn)∣a

Pnab = 1
3

0habQ
n + 1

ω2
n
(Qn)∣ab

∣ ↝ covariant derivarives w.r.t. 0hab.

We only consider harmonics that can be obtained in this way.
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CLASSICAL MODEL

Expansion of the inhomogeneities

We expand the inhomogeneities in this way:

εab(t, x) = 2∑n
[an(t)Qn(x)0hab + 3bn(t)Pnab(x)] ,

δN0(t, x) = ∑n
N0(t)gn(t)Qn(x),

δNa(t, x) = σ2eα(t)∑n
kn(t)Pna (x),

δϕ(t, x) = ∑n
fn(t)Qn(x);

an, bn, fn, gn and kn parametrize the inhomogeneities.

We treat them as perturbative coefficients,
truncating the action at quadratic order in them.
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CLASSICAL MODEL

Perturbative Hamiltonian

Naturally, the Hamiltonian is a linear combination of constraints:

H = N0 (H∣0 +∑Hn
∣2) +∑N0gnH

n
∣1 +∑knH

n
1.

» H∣0 +∑Hn
∣2 ↝ (perturbed) Hamiltonian constraint

» Hn
∣1 ↝ linear Hamiltonian constraints

» Hn
1 ↝ momentum constraints

We fix the local gauge freedom classically,
removing the constraints Hn

∣1 and Hn
1

and parametrizing the inhomogeneities with δϕ and its momentum.
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CLASSICAL MODEL

Gauge fixing

Gauge of constant curvature Longitudinal gauge

an = 0 = bn bn = 0 = πan − παan − 3πϕfn =∶ Cn
Well-posedness:

det(
{an,Hn

1} {bn,Hn
1}

{an,Hn
∣1} {bn,Hn

∣1}
) ∝ πα det(

{bn,Hn
1} {Cn,Hn

1}
{bn,Hn

∣1} {Cn,Hn
∣1}

) > 0

Secondary constraints:
{an,H} = 0 = {bn,H} {bn,H} = 0 = {Cn,H}

These constraints fix the value of the Lagrange multipliers
kn = 0 (Na = 0)

Reduced symplectic structure

ȧnπan , ḃnπbn = 0 ȧnπan ≠ 0
α,πα, ϕ, πϕ, fn, πfn canonical α,πα, ϕ, πϕ, fn, πfn not canonical

α ↦ α + 1
2 ∑a

2
n, πα ↦ πα

ϕ↦ ϕ + 3∑anfn, πϕ ↦ πϕ
fn ↦ fn, πfn ↦ πfn − 3πϕan
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CLASSICAL MODEL

Second-order Hamiltonian constraint
After the reduction,

Hn
∣2 =

1
2e

−α (Enπππ2
fn + 2Enfπfnπfn +E

n
fff

2
n) .

For instance, in the gauge an = 0 = bn,

Eππ = e−2α (1 + 3k

ω2
n − 3k

π2
ϕ

π2
α

)

Efπ = −3
π2
ϕ

πα
+ 3k

ω2
n − 3k

πϕ

π2
α

(e6αm2ϕ − 3παπϕ)

Eff = e2α[ω2
n +m2e2α + (background function) + kO(ω−2

n )]

Is there a canonical transformation
linear in the inhomogeneous sector

that leads this Hamiltonian to the KG form?
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CLASSICAL MODEL

Canonical transformation
If we restrict to local transformations, we cannot remove the terms
subdominant in ωn. But still we can scale the field and choose its
momentum in the following form:

Gauge of constant curvature Longitudinal gauge

ᾱ = α − 1
2 (3

π2
ϕ

π2
α
− 1)∑ f2

n ᾱ = α + 1
2 ∑ f

2
n

πᾱ = πα −∑[fnπfn − (3
π2
ϕ

πα
+ πα)f2

n] πᾱ = πα −∑(fnπfn − παf2
n)

ϕ̄ = ϕ + 3
πϕ
πα
∑n f2

n ϕ̄ = ϕ
πϕ̄ = πϕ
f̄n = eαfn

πf̄n = e
−α[πfn − (3

π2
ϕ

πα
+ πα)fn] πf̄n = e

−α (πfn − παfn)

so as to arrive at a KG Hamiltonian with subdominant corrections.
(If k = 0, the corrections vanish in the an = 0 = bn gauge.

This case will be discussed later.)
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CLASSICAL MODEL

Dynamical equations

Using conformal time η, defined by eαdη = N0dt.

» Canonically conjugate momentum of f̄nl:

πf̄nl = [1 + pn(η)] ˙̄fnl + qn(η)f̄nl,

with pn, qn ∼ O(ω−2
n ).

» Equation of motion of f̄nl:

¨̄fnl + rn(η) ˙̄fnl + [ω2
n + s(η) + sn(η)]f̄nl = 0,

where rn, sn = (ω−2
n ).
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UNIQUE QUANTIZATION

Dynamical equations

Using conformal time η, defined by eαdη = N0dt.

» Canonically conjugate momentum of f̄nl:

πf̄nl = [1 + pn(η)] ˙̄fnl + qn(η)f̄nl,

with pn, qn ∼ O(ω−2
n ).

» Equation of motion of f̄nl:

¨̄fnl + rn(η) ˙̄fnl + [ω2
n + s(η) + sn(η)]f̄nl = 0,

where rn, sn = (ω−2
n ).
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UNIQUE QUANTIZATION

Creation-like variables

We introduce the creation- and annihilation-like variables
adapted to the massless representation, characterized by J0:

(
af̄nl
a∗̄
fnl

) = 1√
2ωn

(ωn i
ωn −i)( f̄nl

π̄f̄nl
) .

The action of the complex structure J0 is then

J0 (
af̄nl
a∗̄
fnl

) = (i 0
0 −i)(

af̄nl
a∗̄
fnl

)

By construction, J0 is invariant under the symmetries
of the LB operator.

Besides, it allows a unitary implementation of the dynamics.
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UNIQUE QUANTIZATION

Dynamics

Classical time evolution does not mix modes.
Therefore, it is represented by a block-diagonal matrix U :

(
af̄nl(η)
a∗̄
fnl

(η)) = Un(η, η0)(
af̄nl(η0)
a∗̄
fnl

(η0)
) .

Each block has the form

Un(η, η0) = (αn(η, η0) βn(η, η0)
β∗n(η, η0) α∗n(η, η0)

) ,

with ∣αn∣2 − ∣βn∣2 = 1.

Is there a unitary operator U implementing this transformation
in the quantum theory, âf̄nl(η) = U(η, η0)âf̄nl(η0)U−1(η, η0)?

U is unitarily implementable

⇔ J0UJ0 + U is a Hilbert-Schmidt operator.
⇔ ∑

n,l

∣βn∣2 = ∑
n

gn∣βn(η, η0)∣2 < ∞, ∀η

It depends only on the asymptotic behaviour of βn! 18/33



UNIQUE QUANTIZATION

Asymptotical analysis

We write f̄nl in the following way:

f̄nl(η) = AnleωnΘn(η) +A∗
nle

ωnΘ∗n(η),

where Θn(η) = −i(η − η0) + ∫
η

η0

Wn(η̄)
ωn

dη̄.

Wn satisfies the Ricatti equation

Ẇn = iωnrn − sn + (2iωn − rn)Wn −W 2
n

with the initial condition Wn(η0) = 0.

Its asymptotic behaviour is found to be

Wn(η) =
1

2iωn
[s(η) − s(η0)e2iωn(η−η0) − e2iωnη ∫

η

η0

ṡ(η̃)
e2iωnη̃

dη̃]

+O(ω−2
n )
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UNIQUE QUANTIZATION

Unitarity of the evolution

Now we can write the asymptotic behaviour
of the Bogoliubov coefficients αn and βn.

We find that { αn = e
iωn(η−η0) +O(ω−2

n ),
βn ∼ O(ω−2

n ),

Consequently, ∑n gn∣βn∣2 < ∞, since

gn

⎧⎪⎪⎨⎪⎪⎩

= ω2
n + 1, in S3,

≲ ω2
n, in T 3.

The dynamics is indeed unitarily implementable.

But are there other inequivalent representations
with these properties?
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UNIQUE QUANTIZATION

Invariant complex structures in S3

Isometries of S3 ↝ SO(4) rotations.
We are interested only in SO(4)-invariant complex structures.

Each eigenspace of the LB operator carries an irreducible
representation of SO(4) ↝ an invariant complex structure cannot
mix different eigenspaces.

And recall that {f̄nl}l and {πf̄nl}l transform in the same way.

By Schur’s lemma,
an SO(4)-invariant CS J must be block diagonal:

J ( f̄nl
πf̄nl

) = (an bn
cn dn

)( f̄nl
πf̄nl

) ,

with an, bn, cn, dn ∈ R.

21/33



UNIQUE QUANTIZATION

Invariant complex structures in T 3

[Castelló Gomar, Cortez, Mart́ın-de Blas, Mena Marugán, Velhinho]

In T 3, the symmetry group is U(1) ×U(1) ×U(1).
↝ Abelian compact group
↝ one-dimensional complex irreducible representations.

However, the real irreducible reps. are two-dimensional.

We can apply Schur’s lemma in the complex basis to decompose
any invariant complex structure in 2 × 2 blocks.

The requirement that J(Ω⋅, ⋅) be positive definite implies that J
transforms in the same way a mode and its complex conjugate.

This allows us to pass to the real basis, as in S3.
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UNIQUE QUANTIZATION

Relation between representations

Any invariant complex structure J must be related to J0

by a block-diagonal symplectomorphism K,
whose blocks have the form

Kn = (κn λn
λ∗n κ∗n

) ,

with ∣κn∣2 − ∣λn∣2 = 1 (so ∣κn∣ > 1).

Thus, J = KJ0K−1.

U is unitarily implementable with respect w.r.t. J = KJ0K−1

⇔ K−1UK is unitarily implementable w.r.t. J0.

⇔ The sequence {√gnβ
J
n} is square summable,

where βJn are the ‘β coefficients’ of K−1UK.

Let us assume that this is the case.
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UNIQUE QUANTIZATION

Equivalence of representations

√
gnβ

J
n =

√
gn[(κ∗n)2βn − λ2

nβ
∗
n + 2iκ∗nλnI(αn)].

We can substract square-summable contributions until we arrive at

M

∑
n

gn ∣λn
κ∗n

∣
2

sin2 [ωn(η − η0) + ∫
η

η0

s(η̄)
2ωn

dη̄] < ∞

for arbitrarily large M .

Using Luzin’s theorem to integrate the above function
over a suitable set, and since the integral of the sine

is bounded from below, we conclude that

∑
n

gn ∣λn/κ∗n∣
2 < ∞.

This in turn implies that ∑n gn∣λn∣2 < ∞, as 1− ∣λn/κn∣2 = 1/∣κn∣2.

Therefore, the two representations are unitarily equivalent.
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UNIQUE QUANTIZATION

Rescaling of the variables

What if we had choosen other variables?

For example, we could perform a time-dependent linear
canonical transformation using background functions:

f̆n = F (η)f̄n,
πf̆n = πf̄n/F (η) +G(η)f̄n.

(we can fix F (η0) = 1 and G(η0) = 0).
Naturally, such a transformation changes the dynamics,

with new Bogoliubov coefficients that depend on F and G.

Is there any invariant complex structure J = KJ0K−1

that implements unitarily the new dynamics?

If that were the case, the sequence {√gnβ̆
J
n}

would be square-summable. But a careful analysis of its
asymptotic behaviour shows that then F and G must be constant!
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GAUGE INVARIANTS

Gauge transformations

Consider infinitesimal coordinate transformations
that do not change the background metric, xµ ↦ xµ + ξµ,

where ξµ is a perturbation that can be parametrized as

ξ0 = σ2N0∑n
TnQ

n,

ξa = σ2eα∑n
LnP

n
a ,

The inhomogeneities would change in this way:

an ↦ an + e−α (α̇Tn + 1
3Ln) ,

bn ↦ bn − 1
3e

−αLn,
fn ↦ fn + e−αϕ̇ Tn,
gn ↦ gn + e−αṪn,
kn ↦ kn −N0e

−α(ω2
nTn + L̇n − α̇Ln).

It is clear that these coefficients can be combined to give
gauge-invariant quantities.
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GAUGE INVARIANTS

A gauge-invariant canonical pair

In particular, consider the gauge-invariant combination

Ψn =
1√

ω2
n − 3k

e−α

πϕ
[πϕπfn + (e6αm2ϕ − 3παπϕ)fn − 3π2

ϕan]

Motivation:

» {Ψn, Ψ̇n} = 1

» Ψ satisfies a KG equation with time-dependent mass.

In the reduced system,

Ψn =
1√

ω2
n − 3k

(π̄f̄n + χf̄n) ,

Ψ̇n =
χ√

ω2
n − 3k

(π̄f̄n + χf̄n) −
√
ω2
n − 3kf̄n,

where χ is a background function which depends on the gauge.
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GAUGE INVARIANTS

Equivalence of the representations

We can assign a new preferred CS to these variables.
Again, it will be related to J0

by a block diagonal symplectomorphism:

(aΨn

a∗Ψn
) = 1√

2ωn
(ωn i
ωn −i)(Ψn

Ψ̇n
) = (κn λn

λ∗n κ∗n
)(
af̄n
a∗̄
fn

)

The coefficients λn are given by

λn = i
χ2 + 3k

2ωn
√
ω2
n − 3k

Since ∑n gn∣λn∣2 < ∞, the two quantizations are unitarily related.
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GAUGE INVARIANTS

Mukhanov-Sasaki variable

Let us define the Mukanov-Sasaki variable:

vn = eα (fn +
πϕ

πα
(an + bn)) ,

In the flat case, {vn, v̇n} = 1 and, moreover, vn the MS equation:

v̈n − (ω2
n −

z̈

z
) vn = 0,

with z = −eαπϕ/πα.

In the gauge an = 0 = bn, vn = f̄n.

In the longitudinal gauge, they do not coincide,
but the corresponding quantizations are unitarily equivalent.
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GAUGE INVARIANTS

A footnote
[Cortez, Fonseca, Mart́ın-de Blas, Mena Marugán]

There is a recent further result:

Consider a KG field with time-dependent mass,
and mode- and time-dependent linear canonical transformations

compatible with the symmetries of the LB operator.

Every transformation of this kind that does not change
the KG form of the equation of motion

(but possibly changes the time-dependent mass),
must be unitarily implementable.

In the cases considered here, there are subdominant corrections,
but we have seen that they are irrelevant.
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CONCLUSIONS

Conclusions

» The presence of subdominant corrections
does not spoil the uniqueness result for a KG field

with time-dependent mass.

» Together with the symmetry, the unitarity of the dynamics
imposes a strong constraint in quantum field theory

in non-stationary spacetimes.
It selects not only a preferred equivalence class

of representations,
but also a privileged scaling of the field and its momentum.

» The scaling of the field is necessary to have unitary dynamics.
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