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Principal fibre bundle (P, 7w, M, 5S) (S = SU(2), M = T-Cauchy surface)

@ A — smooth connections on P NG

m

[
\

@ P — some smooth curves in M

@ ‘P — cylindrical functions on A w.r.t. P p:s
— C*-subalgebra generated by fy o h,
Quantum Configuration Space

b
A := Spec(P) - generalized connections @,
Symmetry ~ Lie group of automorphisms 7Z
®: G x P — P left action with
®(g,p-s)=P(g,p)s
forallge G, pe P,seS.

Induced Actions:
°00:Gx A=A (gw)— ¢ 1w
e p: GxM— M, (g,m)— (mo®)g,pm) where pp, € Fp,



LQG -framework

Reduction Based on Invariant Connections

‘Symmetry (G,®) on P with S compact




LQG -framework

Reduction Based on Invariant Connections

‘Symmetry (G,®) on P with S compact

ChooV




LQG -framework

Reduction Based on Invariant Connections

‘Symmetry (G,®) on P with S compact

Choose P

Compute G-invariant
connections

Ac ={we A|dzw =w forall g € G}
={w € A | Staby(w) = G}




LQG -framework

Reduction Based on Invariant Connections

‘Symmetry (G,®) on P with S compact

ChooV

Compute G-invariant
connections

Ac ={we A|dzw =w forall g € G}
={w € A | Staby(w) = G}

S5 0+ 0 c oo g

Compute 1 4(Ag)

G =

va(Ag)= Spec (P4, )




Homogeneous Isotropic LQC

P =R3 x SU(2)

@ P : P, P - embedded analytic, linear curves

e Group: G = E := R3 x, SU(2) for p: SU(2) — SO(3) universal
covering map

e Action: ®((v,0),(x,s)) = (v,0) -, (x,5) = (v+ o(c)(x),05)

e Invariant connections: Ag = R (Wang's theorem)

Pullbacks by section x — (x, e):

3
wC: V= C E \7ka for v, € T(R3,
k=1

where 7 = —ioy for Pauli matrices o1, 05, 03.



Homogeneous Isotropic LQC

Two osmological uantum onfiguration paces

R :=Pla, — Ar = Spec(R) it R= Ag — A inclusion map
| ABL [2003] | Fleischhack [2010]
P linear curves embedded analytic curves
R CAP(R) Co(R) D CAP(R)
TE ]RBohr RU RBohr
Embedding no extension i extends to embedding
iof Ag it Rponr — Ay it RURpon — Ay
‘ HiZ,~full theory ‘ p: (0,1) — R homeomorphism
Measures | Haar measure up | Proj. Measures 11, ; (MH13)
Hilbert L?(Rgohr, 4B) L2(Rpohr, ) + L2(R, A)
Spaces — H¢ (Engle) | L2(Rponr, f,¢) for t € (0,1)

/1,/17t(A) =1t (/)*/\)(A N R) + (1 — l’) MB(A N RBohr) Ac€ %(R L RBohr)
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Calculation of Invariant Connections (P = R3 x SU(2))

Classical results:

Wang’s theorem: (¢ transitive on M)

= p admits bijection between Ag and linear maps g — s fulfilling two
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@ Homog. Isotropic LQC: A =R
o Homog. LQC (no stab.): Ag = {L: g — su(2) | L linear} = R3dimld]
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Calculation of Invariant Connections (P = R3 x SU(2))

Classical results:

Wang’s theorem: (¢ transitive on M)

= p admits bijection between Ag and linear maps g — s fulfilling two
conditions concerning the -stabilizer of m(p).

@ Homog. Isotropic LQC: A =R

o Homog. LQC (no stab.): Ag = {L: g — su(2) | L linear} = R3dimld]

Harnad, Shnider, Vinet: (special submfd. P of P — G () same Vp' € P')
= P’ admits bijection between A¢ and smooth maps ¥: g x TP’ — s with
YlgxT,,p linear for all p’ € P'. (4 stabilizer conditions)

@ Semi-Homogeneous LQC: Ay parametrized by smooth maps

Problems: (usually ignored)

Theorems do not work for different orbit types:
@ Isotropic case: G =/ := SU(2) with ®(o,(x,s)) = (o(o)(x),0s)
@ Scale Invariance: G = A := R with (), (x,s)) = (A - x,s)
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A General Characterization Theorem

Need more flexible theorem that applies to general case.

Idea: Replace p, P’ by ®-covering of P, i.e. collection {P,},c; of
submanifolds of P such that:

e Each p-orbit intersects | J,; m(Pa).

@ ToP =TyPy+de®p(g)+ TvpP for pe Py, €l = P, is patch

Theorem (MH: math-ph arXiv:1310.0318v1)

®-covering {Pu }aci admits bijection between Ag and families {14 }aes of
smooth maps 1 : g X TPy — s such that 14 |gx T, Po IS linear for all
Po. € Py and (Generalized Wang conditions)

Q g(pg) + Wp, —s(ps) = dLqWp, == (g, Wp,) —5 = p(q) 0 Ya(Wp,)
@ ¥3(Ad(q)(8):0ps) = p(q) © Ya(8,Op,)-

For po € Po, pg € Pg with pg = q - p, for g € G X S as well as
VT/Pa € TPaPar Wpﬁ S TpBPB,EEQBHdgeﬁ.

v

Technical but works fine for explicit calculations. Conditions simplify
in special cases such as the previous classical results.
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Alternative Reduction Concept — A Motivation

Non-transitive situations for P = R3 x SU(2)

@ Scale invariant connections: A\ = {wo} for wo(vk) =0
For R3\{0} x SU(2): A equ. smooth lin. maps 1: R x TS? — su(2)

e Isotropic connections A;: (pullback by x — (x, e))
w?(V) = a([Ix]?) (V) + b(IIx]1) [(x), n(¥)]
+ e (I1x112) [1(x), (), ()]

where a, b, c: (—¢,00) — R smooth for € > 0 and p(V) := Z:/'(:l vit;.
For R3\{0} x SU(2): a, b, c: (0,00) — R smooth




Alternative Reduction Concept — A Motivation

Non-transitive situations for P = R3 x SU(2)

@ Scale invariant connections: A\ = {wo} for wo(vk) =0
For R3\{0} x SU(2): A equ. smooth lin. maps 1: R x TS? — su(2)

e Isotropic connections A;: (pullback by x — (x, e))
w?(V) = a([Ix]?) (V) + b(IIx]1) [(x), n(¥)]
+ e (I1x112) [1(x), (), ()]

where a, b, c: (—¢,00) — R smooth for € > 0 and p(V) := Z:/'(:l vit;.
For R3\{0} x SU(2): a, b, c: (0,00) — R smooth

Symmetry ‘ Ag ‘ Ac
homogeneous ~ RO Spec(R) (hard)
semi-homogeneous | par. by functions other 7
scale invariance {wo} {wo}
isotropic par. by functions other ?
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General Concept

Alternative Approach — Reduction on Quantum Level

Observation: P invariant = 0;(F) =P forall g € G 0: (g,w) - ¢} 1w
P invariant <= @goy € P Vge G,y P

Proposition (Extension of Group Actions; arXiv:1307.5303v1)

0: G x X — X action, A C B(X) C*-algebra with 07(21) =2 Vg€ G
= ©: G x Spec(2) — Spec(), (g,X) = X o 07 unique action with:
e O, continuous for all g € G,
@ O extends: ©Ogouix =1x00g forallg e G
G topological:
® O continuous if 05f: G — U, g — O, f continuous for all f € 2.
e Converse implication holds for 2 unital.

Then X¢ := {x € X | Stabg(x) = G} closed in X and Xg C X¢.

@ X = Spec(2l) tx: X = Spec(), x — [f — f(x)]

e X¢g = {X eX | Stabg(x) = G} X = 1x(Xg) C

x|
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General Concept

MH: gr-qc

(P,m,M,S) with S compact arXiv:1307.5303v1
ChooseP/ ’Symmetry (G,®)on P‘ \
A = 0: Gx A—= A
A = Spec() e [8: G x ‘ — A
©0:Gx A A | [Ag = {w € A Stabs(w) = G} |

‘ compact spaces ‘
/ N

Ag = {w e A|Stabe(@) = G} | O | Ag = Spec(Pla.) = t(Ag) C A

- Lift © exists if P invariant, i.e., gz oy € P forallyeP, g€ G.
- Usually fulfilled in LQG where P = R3 x SU(2)
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Loop Quantum Cosmology

P =R3 x SU(2)
¢ | isotropic | (semi-)homogeneous | homogeneous isotropic . .
© ‘ rotations ‘ translations ‘ euclidean group = Pl' P‘*’ Invariant
@ Have bijection x: A — Hom(P, SU(2)) (P ="P,Py,)
e Homg(P, SU(2)) := k(Ag) (invariant homomorphisms)
o Characterized by simple algebraic relations: x € Homg (P, SU(2)) iff
Euclidean: x(V+ 0(0)(7)) = aoox(7) V(V,0) € E,y€P,
Rotations: x(e(a)(7)) = acox(y) Vo e SU(2), y€P,
V C R3: x(V+7v) = x(v) VveV,yeP.
Consequences: -
— — n
o par(Ag) < par(Ag) =0
P euclidean case 21K
linear Reonr =& A¢ = Ag

) embedded analytic | R LURpon: = A € Ag I New elements e.g.:
X (7e) = exp (27K (i, 7)))
x(v) = eif v not circular

P homog., isotropic case

embedded analytic Ac € Ag
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Outlook

Ongoing and Future Work

Quantization vs. Reduction:
@ General conditions on G and P showing that A C Ag.

Measures for Reduced Spaces Ag:
o Construction of n.R.m.’'s by means of projective structures.

@ Seems to work at least for Py, e.g., if ¢ is analytic and proper.

Invariance up to Gauge: G>o0: P — P, mroo=o0,0(p-s)=o(p)-s
o Ag CAY 5e:0,(c) = o(e), ie., Og(e)(7)(p) = 0 0 e(7)(a~L(p)).

Future Work:
@ Embedding of the resulting Hilbert spaces of square integrable
functions into symmetric sector of LQG.

@ Reduction of the holonomy-flux algebra and definition of
representations on the respective reduced Hilbert spaces.
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Reduction on Quantum Level
@ Invariant P allows for symmetry reduction on quantum level.

@ Reduced space embedded in full theory since subset

o Cquant,red < Cred,quant

e Identification A = Hom(P, SU(2)) allows to determine Cred,quant by
simple algebraic relations = par, (Cl.ed7quant) =0

e A, = Hom(P,, SU(2)) — Covantred = Crod.quant for G = E,ILH
'711 = HOHI(P], SU(2)) — Cgluant,red = Cllred,quant for G = E’ H
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Outlook

Conclusions

Reduction on Quantum Level
Invariant P allows for symmetry reduction on quantum level.

Reduced space embedded in full theory since subset

Cquant,red < Cred,quant

Identification A = Hom(P, SU(2)) allows to determine Cred,quant by
simple algebraic relations = par, (Credquant) =0

A, =2 Hom(P,, SU(2)) — Covantred = Crod.quant for G = E,ILH

A = Hom(Py, SU(2)) — C! =C! for G=E,H

quant,red red,quant

Invariant Connections
@ Characterization theorem for invariant connections for traditional
reduction concept.

R LI Ronr as projective limit = Radon measures 11, ¢
@ Similarly, for Creq,quant if ¢ analytic and proper.

@ In particular, for Ar O R LI Rpohe- (compare)



Thank you for your attention !
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