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Principal Fibre Bundles and Symmetries

Principal fibre bundle (P, π,M,S) (S = SU(2), M = Σ-Cauchy surface)

A – smooth connections on P

P – some smooth curves in M

P – cylindrical functions on A w.r.t. P
→ C ∗-subalgebra generated by f0 ◦ hγ

Quantum Configuration Space

A := Spec(P) - generalized connections

Symmetry ' Lie group of automorphisms

Φ: G × P → P left action with

Φ(g , p · s) = Φ(g , p) · s
for all g ∈ G , p ∈ P, s ∈ S .

Induced Actions:

θ : G ×A → A, (g , ω) 7→ Φ∗g−1ω

ϕ : G ×M → M, (g ,m) 7→ (π ◦ Φ)(g , pm) where pm ∈ Fm
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LQG -framework

Reduction Based on Invariant Connections

Symmetry (G ,Φ) on P with S compact

R
e
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Choose P Compute G -invariant
connections

A = Spec(P)

ιA : A → A
ω 7→ [f 7→ f (ω)]

AG = {ω ∈ A | Φ∗gω = ω for all g ∈ G}
= {ω ∈ A | Stabθ(ω) = G}

AG := ιA(AG )∼= Spec
(
P|AG

)Compute ιA(AG )
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Homogeneous Isotropic LQC

P = R3 × SU(2)

P : Pω, Pl - embedded analytic, linear curves

Group: G = E := R3 o% SU(2) for % : SU(2)→ SO(3) universal
covering map

Action: Φ((v , σ), (x , s)) := (v , σ) ·% (x , s) = (v + %(σ)(x), σs)

Invariant connections: AE
∼= R (Wang’s theorem)

Pullbacks by section x 7→ (x , e):

ωc : ~vx 7→ c
3∑

k=1

~vkx τk for ~vx ∈ TxR3,

where τk = −iσk for Pauli matrices σ1, σ2, σ3.



Homogeneous Isotropic LQC

Two Cosmological Quantum Configuration Spaces

R := P|AE
−→ AE

∼= Spec(R) i : R ∼= AE ↪−→ A inclusion map

ABL [2003] Fleischhack [2010]

P linear curves embedded analytic curves

R CAP(R) C0(R)⊕ CAP(R)

AE RBohr R t RBohr

Embedding no extension i extends to embedding
i of AE i : RBohr → Aω i : R t RBohr → Aω

Hωkin-full theory ρ : (0, 1)→ R homeomorphism

Measures Haar measure µB Proj. Measures ∗µρ,t (MH13)

Hilbert L2(RBohr, µB) L2(RBohr, µB) + L2(R, λ)
Spaces ↪−→ Hωkin (Engle) L2(RBohr, µρ,t) for t ∈ (0, 1)

*µρ,t(A) = t (ρ∗λ)(A ∩ R) + (1− t) µB(A ∩ RBohr) A ∈ B(R t RBohr)



Classical Results

Calculation of Invariant Connections (P = R3 × SU(2))

Classical results:

Wang’s theorem: (ϕ transitive on M)
⇒ p admits bijection between AG and linear maps g → s fulfilling two
conditions concerning the ϕ-stabilizer of π(p).

Homog. Isotropic LQC: AE
∼= R

Homog. LQC (no stab.): AG
∼= {L : g→ su(2) | L linear} ∼= R3·dim[g]

Harnad, Shnider, Vinet: (special submfd. P ′ of P – Gπ(p′) same ∀p′ ∈ P ′)
⇒ P ′ admits bijection between AG and smooth maps ψ : g× TP ′ → s with
ψ|g×Tp′P

′ linear for all p′ ∈ P ′. (+ stabilizer conditions)

Semi-Homogeneous LQC: AW parametrized by smooth maps

Problems: (usually ignored)

Theorems do not work for different orbit types:
Isotropic case: G = I := SU(2) with Φ(σ, (x , s)) = (%(σ)(x), σs)

Scale Invariance: G = Λ := R>0 with Φ(λ, (x , s)) = (λ · x , s)
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A General Characterization Theorem

Need more flexible theorem that applies to general case.

Idea: Replace p,P ′ by Φ-covering of P, i.e. collection {Pα}α∈I of
submanifolds of P such that:

Each ϕ-orbit intersects
⋃
α∈I π(Pα).

TpP = TpPα + deΦp(g) + TvpP for p ∈ Pα, α ∈ I – Pα is patch

Theorem (MH: math-ph arXiv:1310.0318v1)

Φ-covering {Pα}α∈I admits bijection between AG and families {ψα}α∈I of
smooth maps ψα : g× TPα → s such that ψα|g×TpαPα is linear for all
pα ∈ Pα and (Generalized Wang conditions)

1 g̃(pβ) + ~wpβ − s̃(pβ) = dLq~wpα =⇒ ψβ(~g , ~wpβ )−~s = ρ(q) ◦ψα(~wpα)

2 ψβ(Ad(q)
(
~g),~0pβ

)
= ρ(q) ◦ ψα

(
~g ,~0pα

)
.

For pα ∈ Pα, pβ ∈ Pβ with pβ = q · pα for q ∈ G × S as well as
~wpα ∈ TpαPα, ~wpβ ∈ TpβPβ, ~g ∈ g and ~s ∈ s.

Technical but works fine for explicit calculations.

Conditions simplify
in special cases such as the previous classical results.
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Alternative Reduction Concept – A Motivation

Non-transitive situations for P = R3 × SU(2)

Scale invariant connections: AΛ = {ω0} for ω0(~vx) = 0
For R3\{0}×SU(2): AΛ equ. smooth lin. maps ψ : R×TS2 → su(2)

Isotropic connections AI : (pullback by x 7→ (x , e))

ωabc(~vx) := a
(
‖x‖2

)
µ(~vx) + b

(
‖x‖2

)
[µ(x), µ(~vx)]

+ c
(
‖x‖2

)
[µ(x), [µ(x), µ(~vx)]]

where a, b, c : (−ε,∞)→ R smooth for ε > 0 and µ(~v) :=
∑k

i=1 ~v
iτi .

For R3\{0} × SU(2): a, b, c : (0,∞)→ R smooth

Symmetry AG AG

homogeneous ∼= R9 Spec(R) (hard)

semi-homogeneous par. by functions other ?

scale invariance {ω0} {ω0}
isotropic par. by functions other ?
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General Concept

Alternative Approach – Reduction on Quantum Level

Observation: P invariant =⇒ θ∗g (P) = P for all g ∈ G θ : (g , ω)→ Φ∗g−1ω

P invariant ⇐⇒ ϕg ◦ γ ∈ P ∀ g ∈ G , γ ∈ P

Proposition (Extension of Group Actions; arXiv:1307.5303v1)

θ : G × X → X action, A ⊆ B(X ) C ∗-algebra with θ∗g (A) = A ∀ g ∈ G
=⇒ Θ: G × Spec(A)→ Spec(A), (g , x) 7→ x ◦ θ∗g unique action with:

Θg continuous for all g ∈ G,

Θ extends θ: Θg ◦ ιX = ιX ◦ θg for all g ∈ G

G topological:

Θ continuous if θ∗•f : G → A, g 7→ θ∗g f continuous for all f ∈ A.

Converse implication holds for A unital.

Then XG :=
{
x ∈ X

∣∣ StabΘ(x) = G
}

closed in X and XG ⊆ XG .

X = Spec(A) ιX : X → Spec(A), x 7→ [f 7→ f (x)]

XG :=
{
x ∈ X

∣∣ Stabθ(x) = G
}

XG := ιX (XG ) ⊆ X
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General Concept

(P , π,M , S) with S compact
MH: gr-qc
arXiv:1307.5303v1

Symmetry (G ,Φ) on P

θ : G ×A → A

Choose P

A = Spec(P)

Θ: G ×A → A

Lift

AG := {ω ∈ A | StabΘ(ω) = G}

compact spaces

AG = Spec(P|AG
) ∼= ι(AG ) ⊆ A

AG = {ω ∈ A | Stabθ(ω) = G}

⊇

- Lift Θ exists if P invariant, i.e., ϕg ◦ γ ∈ P for all γ ∈ P, g ∈ G .
- Usually fulfilled in LQG where P = R3 × SU(2)
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Loop Quantum Cosmology

P = R3 × SU(2)

Φ isotropic (semi-)homogeneous homogeneous isotropic
ϕ rotations translations euclidean group =⇒ Pl, Pω invariant

Have bijection κ : A → Hom(P,SU(2)) (P = Pl,Pω)

HomG (P,SU(2)) := κ
(
AG

)
(invariant homomorphisms)

Characterized by simple algebraic relations: χ ∈ HomG (P,SU(2)) iff

~n

2πκ

Euclidean : χ(~v + %(σ)(γ)) = ασ ◦ χ(γ) ∀ (~v , σ) ∈ E , γ ∈ P,
Rotations : χ(%(σ)(γ)) = ασ ◦ χ(γ) ∀ σ ∈ SU(2), γ ∈ P,
V ⊆ R3 : χ(~v + γ) = χ(γ) ∀ ~v ∈ V , γ ∈ P.

Consequences:
µAL

(
AG

)
≤ µAL

(
AG

)
= 0

P euclidean case

linear RBohr
∼= AG = AG

embedded analytic R t RBohr
∼= AG ( AG

P homog., isotropic case

embedded analytic AG ( AG

New elements e.g.:
χ
(
γc
)

= exp
(
2πκ〈~n, ~τ〉)

)
χ(γ) = e if γ not circular
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Outlook

Ongoing and Future Work

Quantization vs. Reduction:

General conditions on G and P showing that AG ( AG .

Measures for Reduced Spaces AG :

Construction of n.R.m.’s by means of projective structures.

Seems to work at least for Pg, e.g., if ϕ is analytic and proper.

Invariance up to Gauge: G 3 σ : P → P, π ◦ σ = σ, σ(p · s) = σ(p) · s
AG ⊆ A

G
G 3 ε : Θg (ε) = σ(ε), i.e., Θg (ε)(γ)(p) = σ ◦ ε(γ)(σ−1(p)).

Future Work:

Embedding of the resulting Hilbert spaces of square integrable
functions into symmetric sector of LQG.

Reduction of the holonomy-flux algebra and definition of
representations on the respective reduced Hilbert spaces.
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Outlook

Conclusions

Reduction on Quantum Level
Invariant P allows for symmetry reduction on quantum level.

Reduced space embedded in full theory since subset

Cquant,red ≤ Cred,quant
Identification A ∼= Hom(P, SU(2)) allows to determine Cred,quant by
simple algebraic relations =⇒ µAL

(
Cred,quant

)
= 0

Aω ∼= Hom(Pω, SU(2)) −→ Cωquant,red � Cωred,quant for G = E , I ,H

Al
∼= Hom(Pl,SU(2)) −→ Clquant,red = Clred,quant for G = E ,H

Invariant Connections
Characterization theorem for invariant connections for traditional
reduction concept.

R t RBohr as projective limit =⇒ Radon measures µρ,t

Similarly, for Cred,quant if ϕ analytic and proper.

In particular, for AE ⊇ R t RBohr. (compare)



Outlook

Conclusions

Reduction on Quantum Level
Invariant P allows for symmetry reduction on quantum level.

Reduced space embedded in full theory since subset

Cquant,red ≤ Cred,quant
Identification A ∼= Hom(P, SU(2)) allows to determine Cred,quant by
simple algebraic relations =⇒ µAL

(
Cred,quant

)
= 0

Aω ∼= Hom(Pω, SU(2)) −→ Cωquant,red � Cωred,quant for G = E , I ,H

Al
∼= Hom(Pl, SU(2)) −→ Clquant,red = Clred,quant for G = E ,H

Invariant Connections
Characterization theorem for invariant connections for traditional
reduction concept.

R t RBohr as projective limit =⇒ Radon measures µρ,t

Similarly, for Cred,quant if ϕ analytic and proper.

In particular, for AE ⊇ R t RBohr. (compare)



Outlook

Conclusions

Reduction on Quantum Level
Invariant P allows for symmetry reduction on quantum level.

Reduced space embedded in full theory since subset

Cquant,red ≤ Cred,quant
Identification A ∼= Hom(P, SU(2)) allows to determine Cred,quant by
simple algebraic relations =⇒ µAL

(
Cred,quant

)
= 0

Aω ∼= Hom(Pω, SU(2)) −→ Cωquant,red � Cωred,quant for G = E , I ,H

Al
∼= Hom(Pl, SU(2)) −→ Clquant,red = Clred,quant for G = E ,H

Invariant Connections
Characterization theorem for invariant connections for traditional
reduction concept.

R t RBohr as projective limit =⇒ Radon measures µρ,t

Similarly, for Cred,quant if ϕ analytic and proper.

In particular, for AE ⊇ R t RBohr. (compare)



Outlook

Conclusions

Reduction on Quantum Level
Invariant P allows for symmetry reduction on quantum level.

Reduced space embedded in full theory since subset

Cquant,red ≤ Cred,quant
Identification A ∼= Hom(P, SU(2)) allows to determine Cred,quant by
simple algebraic relations =⇒ µAL

(
Cred,quant

)
= 0

Aω ∼= Hom(Pω, SU(2)) −→ Cωquant,red � Cωred,quant for G = E , I ,H

Al
∼= Hom(Pl, SU(2)) −→ Clquant,red = Clred,quant for G = E ,H

Invariant Connections
Characterization theorem for invariant connections for traditional
reduction concept.

R t RBohr as projective limit =⇒ Radon measures µρ,t

Similarly, for Cred,quant if ϕ analytic and proper.

In particular, for AE ⊇ R t RBohr. (compare)



Outlook

Thank you for your attention !
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