Invariant Connections: Classical, Quantum and Applications

Maximilian Hanusch

Universität Paderborn

February 11. 2014

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Principal fibre bundle (P, π, M, S)

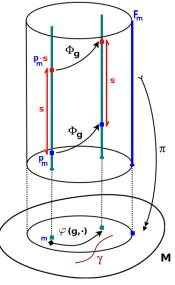
- \mathcal{A} smooth connections on P
- \mathcal{P} some smooth curves in M
- \mathfrak{P} cylindrical functions on $\mathcal A$ w.r.t. $\mathcal P$

ightarrow C*-subalgebra generated by f_0 \circ h_{\gamma}

Quantum Configuration Space

 $\overline{\mathcal{A}} := \operatorname{Spec}(\mathfrak{P})$ - generalized connections

$$\left(S=SU(2),\;M=\Sigma ext{-} ext{Cauchy surface}
ight)$$



(日)、

э

Principal fibre bundle (P, π, M, S)

- \mathcal{A} smooth connections on P
- \mathcal{P} some smooth curves in M
- \mathfrak{P} cylindrical functions on $\mathcal A$ w.r.t. $\mathcal P$
 - \rightarrow C*-subalgebra generated by $f_0 \circ h_\gamma$

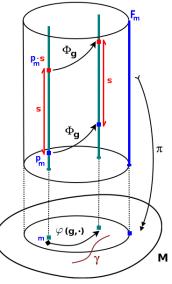
Quantum Configuration Space

- $\overline{\mathcal{A}} := \operatorname{Spec}(\mathfrak{P})$ generalized connections
- Symmetry \simeq Lie group of automorphisms
 - $\Phi\colon\thinspace G\times P\to P$ left action with

$$\Phi(g, p \cdot s) = \Phi(g, p) \cdot s$$

for all $g \in G$, $p \in P$, $s \in S$.

$$(S = SU(2), M = \Sigma$$
-Cauchy surface)



Principal fibre bundle (P, π, M, S)

- \mathcal{A} smooth connections on P
- \mathcal{P} some smooth curves in M
- \mathfrak{P} cylindrical functions on $\mathcal A$ w.r.t. $\mathcal P$
 - ightarrow C^* -subalgebra generated by $f_0 \circ h_\gamma$

Quantum Configuration Space

- $\overline{\mathcal{A}}:=\operatorname{Spec}(\mathfrak{P})$ generalized connections
- Symmetry \simeq Lie group of automorphisms
 - $\Phi\colon\thinspace G\times P\to P$ left action with

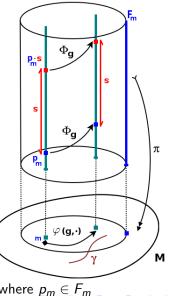
$$\Phi(g,p\cdot s)=\Phi(g,p)\cdot s$$

for all $g \in G$, $p \in P$, $s \in S$.

Induced Actions:

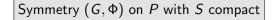
- $heta\colon \mathsf{G} imes\mathcal{A} o\mathcal{A}$, $(g,\omega)\mapsto \Phi^*_{g^{-1}}\omega$
- $\varphi \colon G \times M \to M$, $(g, m) \mapsto (\pi \circ \Phi)(g, p_m)$ where $p_m \in F_m$

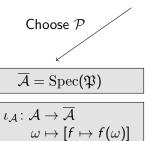
$$(S = SU(2), M = \Sigma$$
-Cauchy surface)

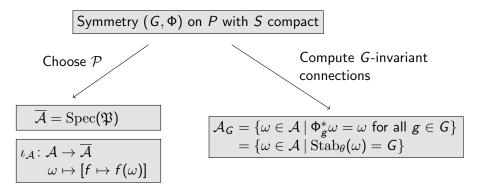


Symmetry (G, Φ) on P with S compact

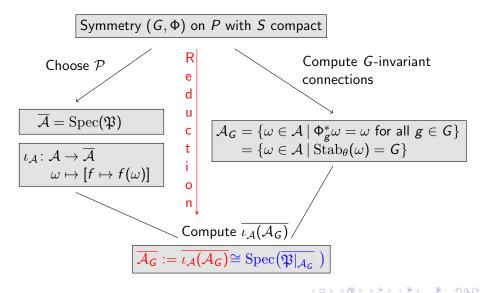
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?







▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●



 $P = \mathbb{R}^3 \times SU(2)$

- $\mathcal{P}: \mathcal{P}_{\omega}, \mathcal{P}_{l}$ embedded analytic, linear curves
- Group: G = E := ℝ³ ⋊_ρ SU(2) for ρ: SU(2) → SO(3) universal covering map
- Action: $\Phi((v, \sigma), (x, s)) := (v, \sigma) \cdot_{\varrho} (x, s) = (v + \varrho(\sigma)(x), \sigma s)$
- Invariant connections: A_E ≅ ℝ (Wang's theorem)
 Pullbacks by section x ↦ (x, e):

$$\omega^{c} \colon ec{v}_{x} \mapsto c \; \sum_{k=1}^{3} ec{v}_{x}^{k} au_{k} \quad ext{for} \quad ec{v}_{x} \in T_{x} \mathbb{R}^{3},$$

where $\tau_k = -i\sigma_k$ for Pauli matrices $\sigma_1, \sigma_2, \sigma_3$.

Two Cosmological Quantum Configuration Spaces

$$\mathfrak{R} := \overline{\mathfrak{P}|_{\mathcal{A}_E}} \longrightarrow \overline{\mathcal{A}_E} \cong \operatorname{Spec}(\mathfrak{R})$$

 $i \colon \mathbb{R} \cong \mathcal{A}_E \hookrightarrow \mathcal{A}$ inclusion map

	ABL [2003]	Fleischhack [2010]	
\mathcal{P}	linear curves	embedded analytic curves	
R	$\mathcal{C}_{\mathrm{AP}}(\mathbb{R})$	$\mathcal{C}_0(\mathbb{R})\oplus\mathcal{C}_{\operatorname{AP}}(\mathbb{R})$	
$\overline{\mathcal{A}_{E}}$	$\mathbb{R}_{ ext{Bohr}}$	$\mathbb{R} \sqcup \mathbb{R}_{\mathrm{Bohr}}$	
Embedding	no extension	<i>i</i> extends to embedding	
\overline{i} of $\overline{\mathcal{A}_E}$	$\overline{i} \colon \mathbb{R}_{\mathrm{Bohr}} \to \overline{\mathcal{A}}_{\omega}$	$\overline{i} \colon \mathbb{R} \sqcup \mathbb{R}_{\mathrm{Bohr}} \to \overline{\mathcal{A}}_{\omega}$	
	$\mathcal{H}^{\omega}_{ ext{kin}}$ -full theory	$ ho\colon (0,1) o \mathbb{R}$ homeomorphism	
Measures	Haar measure $\mu_{ m B}$	Proj. Measures * $\mu_{ ho,t}$ (MH13)	
Hilbert Spaces	$ \begin{array}{c} \mathrm{L}^{2}(\mathbb{R}_{\mathrm{Bohr}},\mu_{\mathrm{B}}) \\ \hookrightarrow \mathcal{H}_{\mathrm{kin}}^{\omega} \ (Engle) \end{array} $	$egin{aligned} &\mathrm{L}^2(\mathbb{R}_{\mathrm{Bohr}},\mu_{\mathrm{B}})+\mathrm{L}^2(\mathbb{R},\lambda)\ &\mathrm{L}^2(\mathbb{R}_{\mathrm{Bohr}},\mu_{ ho,t}) ext{ for } t\in(0,1) \end{aligned}$	

 $^*\mu_{\rho,t}(A) = t \ (\rho_*\lambda)(A \cap \mathbb{R}) + (1-t) \ \mu_{\mathrm{B}}(A \cap \mathbb{R}_{\mathrm{Bohr}}) \quad A \in \mathfrak{B}(\mathbb{R} \sqcup \mathbb{R}_{\mathrm{Bohr}})$

Calculation of Invariant Connections

$$(P = \mathbb{R}^3 \times SU(2))$$

Classical results:

Wang's theorem: (φ transitive on M)

 $\Rightarrow p$ admits bijection between \mathcal{A}_G and linear maps $\mathfrak{g} \rightarrow \mathfrak{s}$ fulfilling two conditions concerning the φ -stabilizer of $\pi(p)$.

• Homog. Isotropic LQC: $\mathcal{A}_E \cong \mathbb{R}$

• Homog. LQC (no stab.): $\mathcal{A}_G \cong \{L \colon \mathfrak{g} \to su(2) \mid L \text{ linear}\} \cong \mathbb{R}^{3 \cdot \dim[\mathfrak{g}]}$

Calculation of Invariant Connections

$$(P = \mathbb{R}^3 \times SU(2))$$

Classical results:

Wang's theorem: (φ transitive on M)

 $\Rightarrow p$ admits bijection between \mathcal{A}_G and linear maps $\mathfrak{g} \rightarrow \mathfrak{s}$ fulfilling two conditions concerning the φ -stabilizer of $\pi(p)$.

• Homog. Isotropic LQC: $\mathcal{A}_E \cong \mathbb{R}$

• Homog. LQC (no stab.): $\mathcal{A}_G \cong \{L \colon \mathfrak{g} \to su(2) \mid L \text{ linear}\} \cong \mathbb{R}^{3 \cdot \dim[\mathfrak{g}]}$

Harnad, Shnider, Vinet: (special submfd. P' of $P - G_{\pi(p')}$ same $\forall p' \in P'$) $\Rightarrow P'$ admits bijection between \mathcal{A}_G and smooth maps $\psi : \mathfrak{g} \times TP' \to \mathfrak{s}$ with $\psi|_{\mathfrak{g} \times T_{p'}P'}$ linear for all $p' \in P'$. (+ stabilizer conditions)

• Semi-Homogeneous LQC: \mathcal{A}_W parametrized by smooth maps

Calculation of Invariant Connections

$$(P = \mathbb{R}^3 \times SU(2))$$

Classical results:

Wang's theorem: (φ transitive on M)

 $\Rightarrow p$ admits bijection between \mathcal{A}_G and linear maps $\mathfrak{g} \rightarrow \mathfrak{s}$ fulfilling two conditions concerning the φ -stabilizer of $\pi(p)$.

• Homog. Isotropic LQC: $\mathcal{A}_E \cong \mathbb{R}$

• Homog. LQC (no stab.): $\mathcal{A}_G \cong \{L \colon \mathfrak{g} \to su(2) \mid L \text{ linear}\} \cong \mathbb{R}^{3 \cdot \dim[\mathfrak{g}]}$

Harnad, Shnider, Vinet: (special submfd. P' of $P - G_{\pi(p')}$ same $\forall p' \in P'$) $\Rightarrow P'$ admits bijection between \mathcal{A}_G and smooth maps $\psi \colon \mathfrak{g} \times TP' \to \mathfrak{s}$ with $\psi|_{\mathfrak{g} \times T_{p'}P'}$ linear for all $p' \in P'$. (+ stabilizer conditions)

• Semi-Homogeneous LQC: \mathcal{A}_W parametrized by smooth maps

Problems: (usually ignored)

Theorems do not work for different orbit types: • Isotropic case: G = I := SU(2) with $\Phi(\sigma, (x, s)) = (\varrho(\sigma)(x), \sigma s)$ • Scale Invariance: $G = \Lambda := \mathbb{R}_{>0}$ with $\Phi(\lambda, (x, s)) = (\lambda \cdot x, s)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- **Idea:** Replace p, P' by Φ -covering of P, i.e. collection $\{P_{\alpha}\}_{\alpha \in I}$ of submanifolds of P such that:
 - Each φ -orbit intersects $\bigcup_{\alpha \in I} \pi(P_{\alpha})$.
 - $T_p P = T_p P_\alpha + d_e \Phi_p(\mathfrak{g}) + Tv_p P$ for $p \in P_\alpha$, $\alpha \in I$ P_α is patch

- **Idea:** Replace p, P' by Φ -covering of P, i.e. collection $\{P_{\alpha}\}_{\alpha \in I}$ of submanifolds of P such that:
 - Each φ -orbit intersects $\bigcup_{\alpha \in I} \pi(P_{\alpha})$.
 - $T_p P = T_p P_\alpha + d_e \Phi_p(\mathfrak{g}) + Tv_p P$ for $p \in P_\alpha$, $\alpha \in I$ P_α is patch

Theorem (*MH: math-ph arXiv:1310.0318v1*)

 Φ -covering $\{P_{\alpha}\}_{\alpha \in I}$ admits bijection between \mathcal{A}_{G} and families $\{\psi_{\alpha}\}_{\alpha \in I}$ of smooth maps $\psi_{\alpha} \colon \mathfrak{g} \times TP_{\alpha} \to \mathfrak{s}$ such that $\psi_{\alpha}|_{\mathfrak{g} \times T_{P_{\alpha}}P_{\alpha}}$ is linear for all $p_{\alpha} \in P_{\alpha}$ and (Generalized Wang conditions)

- $\widehat{g}(p_{\beta}) + \vec{w}_{p_{\beta}} \widetilde{s}(p_{\beta}) = dL_{q}\vec{w}_{p_{\alpha}} \implies \psi_{\beta}(\vec{g}, \vec{w}_{p_{\beta}}) \vec{s} = \rho(q) \circ \psi_{\alpha}(\vec{w}_{p_{\alpha}})$

For $p_{\alpha} \in P_{\alpha}$, $p_{\beta} \in P_{\beta}$ with $p_{\beta} = q \cdot p_{\alpha}$ for $q \in G \times S$ as well as $\vec{w}_{p_{\alpha}} \in T_{p_{\alpha}}P_{\alpha}$, $\vec{w}_{p_{\beta}} \in T_{p_{\beta}}P_{\beta}$, $\vec{g} \in \mathfrak{g}$ and $\vec{s} \in \mathfrak{s}$.

- **Idea:** Replace p, P' by Φ -covering of P, i.e. collection $\{P_{\alpha}\}_{\alpha \in I}$ of submanifolds of P such that:
 - Each φ -orbit intersects $\bigcup_{\alpha \in I} \pi(P_{\alpha})$.
 - $T_p P = T_p P_\alpha + d_e \Phi_p(\mathfrak{g}) + Tv_p P$ for $p \in P_\alpha$, $\alpha \in I$ P_α is patch

Theorem (MH: math-ph arXiv:1310.0318v1)

 Φ -covering $\{P_{\alpha}\}_{\alpha \in I}$ admits bijection between \mathcal{A}_{G} and families $\{\psi_{\alpha}\}_{\alpha \in I}$ of smooth maps $\psi_{\alpha} \colon \mathfrak{g} \times TP_{\alpha} \to \mathfrak{s}$ such that $\psi_{\alpha}|_{\mathfrak{g} \times T_{P_{\alpha}}P_{\alpha}}$ is linear for all $p_{\alpha} \in P_{\alpha}$ and (Generalized Wang conditions)

- $\widehat{g}(p_{\beta}) + \vec{w}_{p_{\beta}} \widetilde{s}(p_{\beta}) = dL_{q}\vec{w}_{p_{\alpha}} \implies \psi_{\beta}(\vec{g}, \vec{w}_{p_{\beta}}) \vec{s} = \rho(q) \circ \psi_{\alpha}(\vec{w}_{p_{\alpha}})$

For $p_{\alpha} \in P_{\alpha}$, $p_{\beta} \in P_{\beta}$ with $p_{\beta} = q \cdot p_{\alpha}$ for $q \in G \times S$ as well as $\vec{w}_{p_{\alpha}} \in T_{p_{\alpha}}P_{\alpha}$, $\vec{w}_{p_{\beta}} \in T_{p_{\beta}}P_{\beta}$, $\vec{g} \in \mathfrak{g}$ and $\vec{s} \in \mathfrak{s}$.

Technical but works fine for explicit calculations.

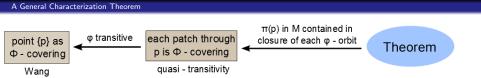
- **Idea:** Replace p, P' by Φ -covering of P, i.e. collection $\{P_{\alpha}\}_{\alpha \in I}$ of submanifolds of P such that:
 - Each φ -orbit intersects $\bigcup_{\alpha \in I} \pi(P_\alpha)$.
 - $T_p P = T_p P_\alpha + d_e \Phi_p(\mathfrak{g}) + Tv_p P$ for $p \in P_\alpha$, $\alpha \in I$ P_α is patch

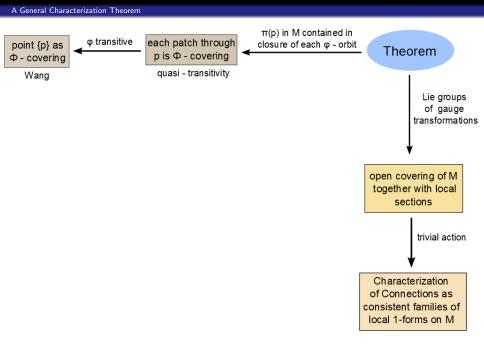
Theorem (*MH: math-ph arXiv:1310.0318v1*)

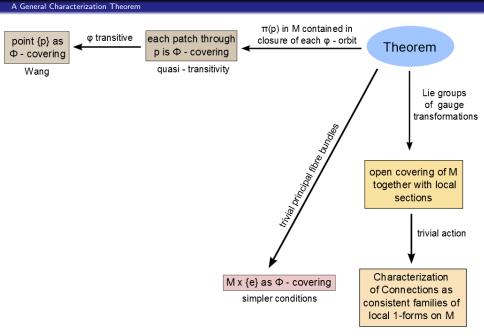
 Φ -covering $\{P_{\alpha}\}_{\alpha \in I}$ admits bijection between \mathcal{A}_{G} and families $\{\psi_{\alpha}\}_{\alpha \in I}$ of smooth maps $\psi_{\alpha} \colon \mathfrak{g} \times TP_{\alpha} \to \mathfrak{s}$ such that $\psi_{\alpha}|_{\mathfrak{g} \times T_{p_{\alpha}}P_{\alpha}}$ is linear for all $p_{\alpha} \in P_{\alpha}$ and (Generalized Wang conditions)

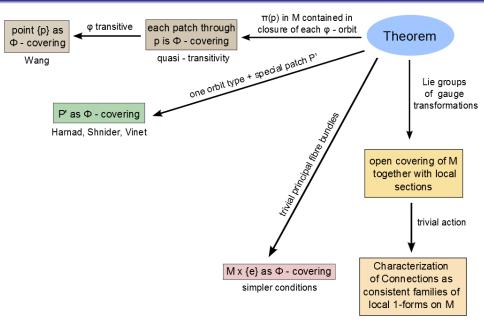
- $\widehat{g}(p_{\beta}) + \vec{w}_{p_{\beta}} \widetilde{s}(p_{\beta}) = dL_{q}\vec{w}_{p_{\alpha}} \implies \psi_{\beta}(\vec{g}, \vec{w}_{p_{\beta}}) \vec{s} = \rho(q) \circ \psi_{\alpha}(\vec{w}_{p_{\alpha}})$

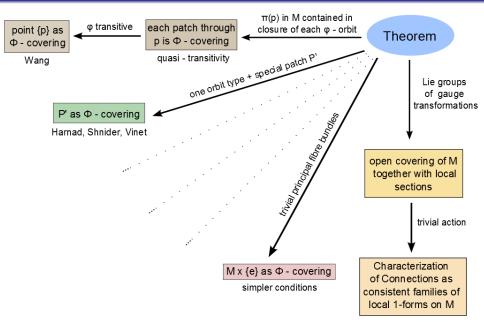
For $p_{\alpha} \in P_{\alpha}$, $p_{\beta} \in P_{\beta}$ with $p_{\beta} = q \cdot p_{\alpha}$ for $q \in G \times S$ as well as $\vec{w}_{p_{\alpha}} \in T_{p_{\alpha}}P_{\alpha}$, $\vec{w}_{p_{\beta}} \in T_{p_{\beta}}P_{\beta}$, $\vec{g} \in \mathfrak{g}$ and $\vec{s} \in \mathfrak{s}$.











Non-transitive situations for $P = \mathbb{R}^3 \times SU(2)$

- Scale invariant connections: $\mathcal{A}_{\Lambda} = \{\omega_0\}$ for $\omega_0(\vec{v}_x) = 0$ For $\mathbb{R}^3 \setminus \{0\} \times SU(2)$: \mathcal{A}_{Λ} equ. smooth lin. maps $\psi : \mathbb{R} \times TS^2 \to su(2)$
- Isotropic connections \mathcal{A}_{I} : (pullback by $x \mapsto (x, e)$) $\omega^{abc}(\vec{v}_{x}) := a(||x||^{2})\mu(\vec{v}_{x}) + b(||x||^{2})[\mu(x), \mu(\vec{v}_{x})] + c(||x||^{2})[\mu(x), [\mu(x), \mu(\vec{v}_{x})]]$ where a, b, c: $(a, c, \infty) \to \mathbb{P}$ smooth for $c \ge 0$ and $\mu(\vec{v}) := \sum_{k=1}^{k} \vec{v}_{k}^{i}$

where $a, b, c: (-\epsilon, \infty) \to \mathbb{R}$ smooth for $\epsilon > 0$ and $\mu(\vec{v}) := \sum_{i=1}^{k} \vec{v}^{i} \tau_{i}$. For $\mathbb{R}^{3} \setminus \{0\} \times SU(2)$: $a, b, c: (0, \infty) \to \mathbb{R}$ smooth

Non-transitive situations for $P = \mathbb{R}^3 imes SU(2)$

- Scale invariant connections: A_Λ = {ω₀} for ω₀(v_x) = 0 For ℝ³\{0} × SU(2): A_Λ equ. smooth lin. maps ψ: ℝ × TS² → su(2)
- Isotropic connections \mathcal{A}_I : (pullback by $x \mapsto (x, e)$) $\omega^{abc}(\vec{v}_x) := a(\|x\|^2)\mu(\vec{v}_x) + b(\|x\|^2)[\mu(x), \mu(\vec{v}_x)] + c(\|x\|^2)[\mu(x), [\mu(x), \mu(\vec{v}_x)]]$

where $a, b, c: (-\epsilon, \infty) \to \mathbb{R}$ smooth for $\epsilon > 0$ and $\mu(\vec{v}) := \sum_{i=1}^{k} \vec{v}^{i} \tau_{i}$. For $\mathbb{R}^{3} \setminus \{0\} \times SU(2)$: $a, b, c: (0, \infty) \to \mathbb{R}$ smooth

Symmetry	\mathcal{A}_{G}	$\overline{\mathcal{A}_{G}}$
homogeneous	$\cong \mathbb{R}^9$	$\operatorname{Spec}(\mathfrak{R})$ (hard)
semi-homogeneous	par. by functions	other ?
scale invariance	$\{\omega_0\}$	$\{\omega_0\}$
isotropic	par. by functions	other ?

Alternative Approach – Reduction on Quantum Level

Observation: \mathcal{P} invariant $\Longrightarrow \theta_g^*(\mathfrak{P}) = \mathfrak{P}$ for all $g \in G$ $\theta : (g, \omega) \to \Phi_{g^{-1}\omega}^*$ \mathcal{P} invariant $\iff \varphi_g \circ \gamma \in \mathcal{P} \quad \forall g \in G, \gamma \in \mathcal{P}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Alternative Approach – Reduction on Quantum Level

Observation: \mathcal{P} invariant $\Longrightarrow \theta_g^*(\mathfrak{P}) = \mathfrak{P}$ for all $g \in G$ $\theta : (g, \omega) \to \Phi_{g^{-1}\omega}^*$ \mathcal{P} invariant $\iff \varphi_g \circ \gamma \in \mathcal{P} \ \forall g \in G, \gamma \in \mathcal{P}$

Proposition (Extension of Group Actions; arXiv:1307.5303v1)

 $\begin{array}{l} \theta \colon G \times X \to X \text{ action, } \mathfrak{A} \subseteq B(X) \ C^* \text{-algebra with } \theta_g^*(\mathfrak{A}) = \mathfrak{A} \ \forall \ g \in G \\ \Longrightarrow \Theta \colon G \times \operatorname{Spec}(\mathfrak{A}) \to \operatorname{Spec}(\mathfrak{A}), \ (g, \overline{x}) \mapsto \overline{x} \circ \theta_g^* \text{ unique action with:} \\ \bullet \ \Theta_g \text{ continuous for all } g \in G, \\ \bullet \ \Theta \text{ extends } \theta \colon \ \Theta_g \circ \iota_X = \iota_X \circ \theta_g \text{ for all } g \in G \\ G \text{ topological:} \end{array}$

• Θ continuous if $\theta_{\bullet}^*f \colon G \to \mathfrak{A}$, $g \mapsto \theta_g^*f$ continuous for all $f \in \mathfrak{A}$.

• Converse implication holds for \mathfrak{A} unital.

Alternative Approach – Reduction on Quantum Level

Observation: \mathcal{P} invariant $\Longrightarrow \theta_g^*(\mathfrak{P}) = \mathfrak{P}$ for all $g \in G$ $\theta : (g, \omega) \to \Phi_{g^{-1}}^* \omega$ \mathcal{P} invariant $\iff \varphi_g \circ \gamma \in \mathcal{P} \ \forall g \in G, \gamma \in \mathcal{P}$

Proposition (Extension of Group Actions; *arXiv:1307.5303v1*)

 $\begin{array}{l} \theta \colon G \times X \to X \text{ action, } \mathfrak{A} \subseteq B(X) \ C^* \text{-algebra with } \theta_g^*(\mathfrak{A}) = \mathfrak{A} \ \forall \ g \in G \\ \Longrightarrow \Theta \colon G \times \operatorname{Spec}(\mathfrak{A}) \to \operatorname{Spec}(\mathfrak{A}), \ (g, \overline{x}) \mapsto \overline{x} \circ \theta_g^* \text{ unique action with:} \\ \bullet \ \Theta_g \text{ continuous for all } g \in G, \\ \bullet \ \Theta \text{ extends } \theta \colon \ \Theta_g \circ \iota_X = \iota_X \circ \theta_g \text{ for all } g \in G \\ G \text{ topological:} \end{array}$

• Θ continuous if $\theta_{\bullet}^*f \colon G \to \mathfrak{A}$, $g \mapsto \theta_g^*f$ continuous for all $f \in \mathfrak{A}$.

• Converse implication holds for \mathfrak{A} unital.

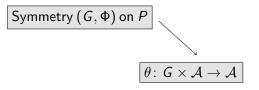
Then $\overline{X}_{\mathcal{G}} := \{\overline{x} \in \overline{X} \mid \operatorname{Stab}_{\Theta}(\overline{x}) = \mathcal{G}\}$ closed in \overline{X} and $\overline{X}_{\mathcal{G}} \subseteq \overline{X}_{\mathcal{G}}$.

• $\overline{X} = \operatorname{Spec}(\mathfrak{A})$ • $X_G := \{x \in X \mid \operatorname{Stab}_{\theta}(x) = G\}$ $\iota_X : X \to \operatorname{Spec}(\mathfrak{A}), x \mapsto [f \mapsto f(x)]$ $\overline{X_G} := \overline{\iota_X(X_G)} \subseteq \overline{X}$

 (P, π, M, S) with S compact

MH: gr-qc arXiv:1307.5303v1

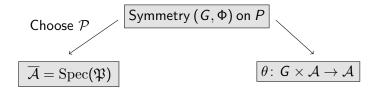
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



(P, π, M, S) with S compact

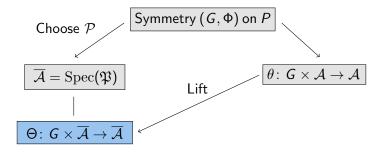
MH: gr-qc arXiv:1307.5303v1

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



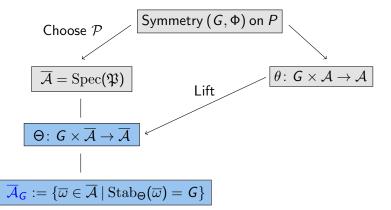
(P, π, M, S) with S compact

MH: gr-qc arXiv:1307.5303v1



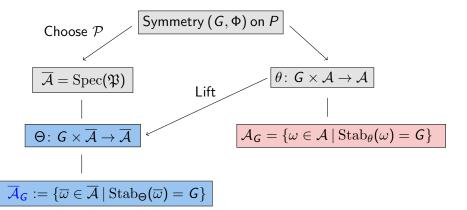
(P, π, M, S) with S compact

MH: gr-qc arXiv:1307.5303v1



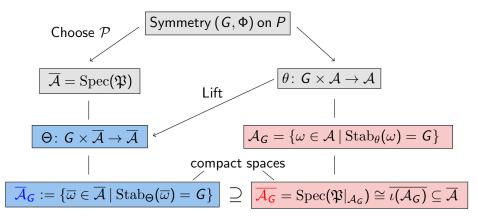
(P, π, M, S) with S compact

MH: gr-qc arXiv:1307.5303v1



(P, π, M, S) with S compact

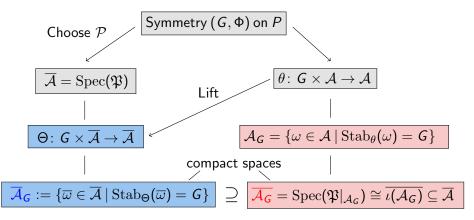
MH: gr-qc arXiv:1307.5303v1



General Concept

(P, π, M, S) with S compact

MH: gr-qc arXiv:1307.5303v1



- Lift Θ exists if \mathcal{P} invariant, i.e., $\varphi_g \circ \gamma \in \mathcal{P}$ for all $\gamma \in \mathcal{P}$, $g \in G$. - Usually fulfilled in LQG where $P = \mathbb{R}^3 \times SU(2)$

$$P = \mathbb{R}^3 \times SU(2)$$

Φ	isotropic	(semi-)homogeneous	homogeneous isotropic	$\implies \mathcal{P}_{l}, \mathcal{P}_{\omega} \text{ invariant}$
φ	rotations	translations	euclidean group	$\rightarrow P_1, P_\omega$ invariant

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$P = \mathbb{R}^3 \times SU(2)$$

Φ	isotropic	(semi-)homogeneous	homogeneous isotropic	$\implies \mathcal{P}_{l}, \mathcal{P}_{\omega} \text{ invariant}$
φ	rotations	translations	euclidean group	$\rightarrow P_{1}, P_{\omega}$ invariant

- Have bijection $\kappa \colon \overline{\mathcal{A}} \to \operatorname{Hom}(\mathcal{P}, SU(2))$
- $\operatorname{Hom}_{G}(\mathcal{P}, SU(2)) := \kappa(\overline{\mathcal{A}}_{G})$

(invariant homomorphisms)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $(\mathcal{P} = \mathcal{P}_{l}, \mathcal{P}_{\omega})$

 $P = \mathbb{R}^3 \times SU(2)$

Φ	isotropic	(semi-)homogeneous	homogeneous isotropic	$\implies \mathcal{P}_{l}, \mathcal{P}_{\omega} \text{ invariant}$
φ	rotations	translations	euclidean group	$\rightarrow P_{\rm I}, P_{\omega}$ invariant

- Have bijection $\kappa \colon \overline{\mathcal{A}} \to \operatorname{Hom}(\mathcal{P}, SU(2))$
- $\operatorname{Hom}_{\mathcal{G}}(\mathcal{P}, SU(2)) := \kappa(\overline{\mathcal{A}}_{\mathcal{G}})$

(invariant homomorphisms)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $(\mathcal{P} = \mathcal{P}_{l}, \mathcal{P}_{\omega})$

• Characterized by simple algebraic relations: $\chi \in \operatorname{Hom}_{G}(\mathcal{P}, SU(2))$ iff

Euclidean:	$\chi(\vec{\mathbf{v}} + \varrho(\sigma)(\gamma)) = \alpha_{\sigma} \circ \chi(\mathbf{v})$	$(\gamma) \forall (\vec{v}, \sigma) \in E, \ \gamma \in \mathcal{P},$
Rotations:	$\chi(\varrho(\sigma)(\gamma)) = \alpha_{\sigma} \circ \chi($	$(\gamma) \qquad orall \sigma \in {\it SU}(2), \ \gamma \in {\cal P}$,
$V\subseteq \mathbb{R}^3$:	$\chi(ec{\mathbf{v}}+\gamma) = \chi(\gamma)$	$\forall \ ec{m{v}} \in m{V}, \ \gamma \in \mathcal{P}.$

 $P = \mathbb{R}^3 imes SU(2)$

Φ	isotropic	(semi-)homogeneous	homogeneous isotropic	$\implies \mathcal{P}_{l}, \mathcal{P}_{\omega} \text{ invariant}$
φ	rotations	translations	euclidean group	$\rightarrow P_{I}, P_{\omega} \text{ invariant}$

- Have bijection $\kappa \colon \overline{\mathcal{A}} \to \operatorname{Hom}(\mathcal{P}, SU(2))$
- $\operatorname{Hom}_{G}(\mathcal{P}, SU(2)) := \kappa(\overline{\mathcal{A}}_{G})$

(invariant homomorphisms)

 $(\mathcal{P} = \mathcal{P}_1, \mathcal{P}_\omega)$

• Characterized by simple algebraic relations: $\chi \in \operatorname{Hom}_{G}(\mathcal{P}, SU(2))$ iff

Euclidean:	$\chi(ec{\mathbf{v}}+arrho(\sigma)(\gamma))=$	=	$\alpha_{\sigma} \circ \chi(\gamma)$	$orall \left(ec{m{v}},\sigma ight)\in m{E},\ \gamma\in\mathcal{P}$,
Rotations:	$\chi(\varrho(\sigma)(\gamma))$ =	=	$\alpha_{\sigma} \circ \chi(\gamma)$	$orall \sigma \in {\it SU}(2), \ \gamma \in {\cal P}$,
$V\subseteq \mathbb{R}^3$:	$\chi(ec{m{v}}+\gamma)$ =	=	$\chi(\gamma)$	$\forall \ \vec{v} \in V, \ \gamma \in \mathcal{P}.$

Consequences:

• $\mu_{AL}(\overline{\mathcal{A}_G}) \leq \mu_{AL}(\overline{\mathcal{A}}_G) = 0$

 $P = \mathbb{R}^3 \times SU(2)$

Φ	isotropic	(semi-)homogeneous	homogeneous isotropic	$\implies \mathcal{P}_{l}, \mathcal{P}_{\omega} \text{ invariant}$
φ	rotations	translations	euclidean group	$\rightarrow P_{I}, P_{\omega}$ invariant

- Have bijection $\kappa \colon \overline{\mathcal{A}} \to \operatorname{Hom}(\mathcal{P}, SU(2))$
- $\operatorname{Hom}_{G}(\mathcal{P}, SU(2)) := \kappa(\overline{\mathcal{A}}_{G})$

(invariant homomorphisms)

 $(\mathcal{P} = \mathcal{P}_1, \mathcal{P}_\omega)$

• Characterized by simple algebraic relations: $\chi \in \operatorname{Hom}_{G}(\mathcal{P}, SU(2))$ iff

Euclidean:	$\chi(\vec{v}+arrho(\sigma)(\gamma))$	=	$\alpha_{\sigma} \circ \chi(\gamma)$	$\forall (\vec{v}, \sigma) \in E, \ \gamma \in \mathcal{P}$,
Rotations:	$\chi(\varrho(\sigma)(\gamma))$	=	$\alpha_{\sigma} \circ \chi(\gamma)$	$orall \sigma \in SU(2), \ \gamma \in \mathcal{P}$,
$V\subseteq \mathbb{R}^3$:	$\chi(ec{ extbf{v}}+\gamma)$	=	$\chi(\gamma)$	$\forall \ \vec{v} \in V, \ \gamma \in \mathcal{P}.$

Consequences:

• $\mu_{AL}(\overline{\mathcal{A}_G}) \leq \mu_{AL}(\overline{\mathcal{A}}_G) = 0$

\mathcal{P}	euclidean case
linear	$\mathbb{R}_{\mathrm{Bohr}} \cong \overline{\mathcal{A}_{\mathcal{G}}} = \overline{\mathcal{A}}_{\mathcal{G}}$
embedded analytic	$\mathbb{R} \sqcup \mathbb{R}_{\mathrm{Bohr}} \cong \overline{\mathcal{A}_{\mathcal{G}}} \subsetneq \overline{\mathcal{A}}_{\mathcal{G}}$
\mathcal{P}	homog., isotropic case
embedded analytic	$\overline{\mathcal{A}_{\mathcal{G}}} \subsetneq \overline{\mathcal{A}}_{\mathcal{G}}$

 $P = \mathbb{R}^3 \times SU(2)$

Φ	isotropic	(semi-)homogeneous	homogeneous isotropic	$\implies \mathcal{P}_{l}, \mathcal{P}_{\omega} \text{ invariant}$
φ	rotations	translations	euclidean group	$\rightarrow P_{I}, P_{\omega}$ invariant

- Have bijection $\kappa \colon \overline{\mathcal{A}} \to \operatorname{Hom}(\mathcal{P}, SU(2))$
- $\operatorname{Hom}_{G}(\mathcal{P}, SU(2)) := \kappa(\overline{\mathcal{A}}_{G})$

(invariant homomorphisms)

 $(\mathcal{P} = \mathcal{P}_1, \mathcal{P}_\omega)$

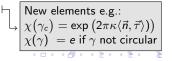
• Characterized by simple algebraic relations: $\chi \in \operatorname{Hom}_{G}(\mathcal{P}, SU(2))$ iff

Euclidean:	$\chi(\vec{v} + \varrho(\sigma)(\gamma)) =$	$\alpha_{\sigma} \circ \chi(\gamma)$	$orall \left(ec{m{v}},\sigma ight)\in m{E},\ \gamma\in\mathcal{P}$,
Rotations:	$\chi(\varrho(\sigma)(\gamma)) =$	$\alpha_{\sigma} \circ \chi(\gamma)$	$orall \sigma \in {\it SU}(2), \ \gamma \in {\cal P}$,
$V \subseteq \mathbb{R}^3$:	$\chi(ec{m{ u}}+\gamma)$ =	$\chi(\gamma)$	$\forall \vec{\mathbf{v}} \in \mathbf{V}, \gamma \in \mathcal{P}.$

Consequences:

$$\mu_{AL}(\overline{\mathcal{A}_{G}}) \leq \mu_{AL}(\overline{\mathcal{A}}_{G}) = 0$$

\mathcal{P}	euclidean case
linear	$\mathbb{R}_{\mathrm{Bohr}} \cong \overline{\mathcal{A}_{\mathcal{G}}} = \overline{\mathcal{A}}_{\mathcal{G}}$
embedded analytic	$\mathbb{R} \sqcup \mathbb{R}_{\mathrm{Bohr}} \cong \overline{\mathcal{A}_{G}} \subsetneq \overline{\mathcal{A}}_{G}$
\mathcal{P}	homog., isotropic case
embedded analytic	$\overline{\mathcal{A}_{\mathcal{G}}} \subsetneq \overline{\mathcal{A}}_{\mathcal{G}}$



Quantization vs. Reduction:

• General conditions on G and \mathcal{P} showing that $\overline{\mathcal{A}_G} \subsetneq \overline{\mathcal{A}}_G$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Quantization vs. Reduction:

• General conditions on G and \mathcal{P} showing that $\overline{\mathcal{A}_G} \subsetneq \overline{\mathcal{A}}_G$.

Measures for Reduced Spaces $\overline{\mathcal{A}}_{\mathcal{G}}$:

- Construction of n.R.m.'s by means of projective structures.
- \bullet Seems to work at least for $\mathcal{P}_{\mathfrak{g}},$ e.g., if φ is analytic and proper.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Quantization vs. Reduction:

• General conditions on G and \mathcal{P} showing that $\overline{\mathcal{A}_G} \subsetneq \overline{\mathcal{A}}_G$.

Measures for Reduced Spaces $\overline{\mathcal{A}}_{\mathcal{G}}$:

- Construction of n.R.m.'s by means of projective structures.
- Seems to work at least for $\mathcal{P}_{\mathfrak{g}}$, e.g., if φ is analytic and proper.

Invariance up to Gauge: $\mathcal{G} \ni \sigma \colon P \to P$, $\pi \circ \sigma = \sigma$, $\sigma(p \cdot s) = \sigma(p) \cdot s$ • $\overline{\mathcal{A}}_{\mathcal{G}} \subseteq \overline{\mathcal{A}}_{\mathcal{G}}^{\mathcal{G}} \ni \varepsilon : \Theta_{g}(\varepsilon) = \sigma(\varepsilon)$, i.e., $\Theta_{g}(\varepsilon)(\gamma)(p) = \sigma \circ \varepsilon(\gamma)(\sigma^{-1}(p))$.

Quantization vs. Reduction:

• General conditions on G and \mathcal{P} showing that $\overline{\mathcal{A}_G} \subsetneq \overline{\mathcal{A}}_G$.

Measures for Reduced Spaces $\overline{\mathcal{A}}_{\mathcal{G}}$:

- Construction of n.R.m.'s by means of projective structures.
- Seems to work at least for $\mathcal{P}_{\mathfrak{g}}$, e.g., if φ is analytic and proper.

Invariance up to Gauge: $\mathcal{G} \ni \sigma \colon P \to P$, $\pi \circ \sigma = \sigma$, $\sigma(p \cdot s) = \sigma(p) \cdot s$ • $\overline{\mathcal{A}}_{\mathcal{G}} \subseteq \overline{\mathcal{A}}_{\mathcal{G}}^{\mathcal{G}} \ni \varepsilon : \Theta_{g}(\varepsilon) = \sigma(\varepsilon)$, i.e., $\Theta_{g}(\varepsilon)(\gamma)(p) = \sigma \circ \varepsilon(\gamma)(\sigma^{-1}(p))$.

Future Work:

- Embedding of the resulting Hilbert spaces of square integrable functions into symmetric sector of LQG.
- Reduction of the holonomy-flux algebra and definition of representations on the respective reduced Hilbert spaces.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Reduction on Quantum Level

- Invariant ${\mathcal{P}}$ allows for symmetry reduction on quantum level.
- Reduced space embedded in full theory since subset
- $C_{\text{quant,red}} \leq C_{\text{red,quant}}$
- Identification $\overline{\mathcal{A}} \cong \operatorname{Hom}(\mathcal{P}, SU(2))$ allows to determine $\mathcal{C}_{red,quant}$ by simple algebraic relations $\Longrightarrow \mu_{AL}(\mathcal{C}_{red,quant}) = 0$
- $\overline{\mathcal{A}}_{\omega} \cong \operatorname{Hom}(\mathcal{P}_{\omega}, SU(2)) \longrightarrow \mathcal{C}_{quant, red}^{\omega} \leq \mathcal{C}_{red, quant}^{\omega}$ for G = E, I, H $\overline{\mathcal{A}}_{l} \cong \operatorname{Hom}(\mathcal{P}_{l}, SU(2)) \longrightarrow \mathcal{C}_{quant, red}^{l} = \mathcal{C}_{red, quant}^{l}$ for G = E, H

Reduction on Quantum Level

- \bullet Invariant ${\cal P}$ allows for symmetry reduction on quantum level.
- Reduced space embedded in full theory since subset
- $C_{\text{quant,red}} \leq C_{\text{red,quant}}$
- Identification $\overline{\mathcal{A}} \cong \operatorname{Hom}(\mathcal{P}, SU(2))$ allows to determine $\mathcal{C}_{red,quant}$ by simple algebraic relations $\Longrightarrow \mu_{AL}(\mathcal{C}_{red,quant}) = 0$
- $\overline{\mathcal{A}}_{\omega} \cong \operatorname{Hom}(\mathcal{P}_{\omega}, SU(2)) \longrightarrow \mathcal{C}_{quant, red}^{\omega} \lneq \mathcal{C}_{red, quant}^{\omega}$ for G = E, I, H $\overline{\mathcal{A}}_{l} \cong \operatorname{Hom}(\mathcal{P}_{l}, SU(2)) \longrightarrow \mathcal{C}_{quant, red}^{l} = \mathcal{C}_{red, quant}^{l}$ for G = E, H

Invariant Connections

• Characterization theorem for invariant connections for traditional reduction concept.

Reduction on Quantum Level

- Invariant ${\mathcal P}$ allows for symmetry reduction on quantum level.
- Reduced space embedded in full theory since subset
- $C_{\text{quant,red}} \leq C_{\text{red,quant}}$
- Identification $\overline{\mathcal{A}} \cong \operatorname{Hom}(\mathcal{P}, SU(2))$ allows to determine $\mathcal{C}_{red,quant}$ by simple algebraic relations $\Longrightarrow \mu_{AL}(\mathcal{C}_{red,quant}) = 0$
- $\overline{\mathcal{A}}_{\omega} \cong \operatorname{Hom}(\mathcal{P}_{\omega}, SU(2)) \longrightarrow \mathcal{C}_{quant, red}^{\omega} \lneq \mathcal{C}_{red, quant}^{\omega}$ for G = E, I, H $\overline{\mathcal{A}}_{l} \cong \operatorname{Hom}(\mathcal{P}_{l}, SU(2)) \longrightarrow \mathcal{C}_{quant, red}^{l} = \mathcal{C}_{red, quant}^{l}$ for G = E, H

Invariant Connections

• Characterization theorem for invariant connections for traditional reduction concept.

$\mathbb{R} \sqcup \mathbb{R}_{Bohr}$ as projective limit \Longrightarrow Radon measures $\mu_{\rho,t}$

- Similarly, for $\mathcal{C}_{\mathrm{red,quant}}$ if φ analytic and proper.
- In particular, for $\overline{\mathcal{A}}_E \supseteq \mathbb{R} \sqcup \mathbb{R}_{Bohr}$.

Thank you for your attention !

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>