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LQG - Configuration Space

» GR as Hamiltonian theory:
—> spatial metric + extrinsic curvature
— SU(2)-connection + Dreibein

» Quantization A — A: L?(A, par)

A ‘ SU(2)-connections

A ‘ generalized connections

Gelfand compactification:

» A = Spec(€)

» ¢ = (C*-algebra of cylindrical functions on A ¢ C B(A)
generated by f o h, for v € P and f € C(SU(2))

» A < A densly embedded if ¢ separates points: LA (g — g(A)]
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Symmetry: Lie group (G, ®) in Aut(P)
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quant \ei
Classical Reduction
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Reduction of A (P,m,M,S)

Symmetry: Lie group (G, ®) in Aut(P) A
quant red
Classical Reduction / \
> Aed = {ACA|OIA=A Vg e G} A A
> -Ared = SpeC(Q:red) lred quantl
Cred € B(Ayeq) separating Ared —— 7 —— Ared

quant. vs. red.

red

o € Aut(P) VgetG

»0:Gx A=A (g,A)— PLLA
= Awed = {A € A|Staby(A) = G}

Idea: Extend 6 to A and reduce on quantum level:

Ared = { A € A| Stabe(A) = G}



Reduction of A (P,m,M,S)

Symmetry: Lie group (G, ®) in Aut(P)

A
quant \e‘i
Classical Reduction
A A

> Ared :{A€A|¢;A:Avg66} red
> -Ared = SpeC(Q:red) lred quantl
Cred € B(Ared) separating Ared —— 7 —— Areq

quant. vs. red.

by € Aut(P) VgeaG
» 0: GXM—> M, (mod)(g,p(m))



Extension of group actions — Quantum reduction

Observation: 0z(¢) ¢ if pgoyeP VgeG yeP



Extension of group actions — Quantum reduction

Observation: 0x(¢) ¢ if pgoyeP VgeG yeP
In general: 0:GxX—=X ¢CB(X) X := Spec(¢)

0:(€) C €




Extension of group actions — Quantum reduction

Observation: 0x(¢) ¢ if pgoyeP VgeG yeP

In general: 0:GxX—=X ¢CB(X) X := Spec(¢)
0;(¢)C¢ = 30:Gx X — X unique with: [MH13]

ey —

» ©, continuous Vg e G )T( )T(

> Ogor=100g Vge G X% x

Xred := {x € X | Stabg(x) = G} Xied := {X € X | Stabg(x) = G}



Extension of group actions — Quantum reduction

Observation: 0x(¢) ¢ if pgoyeP VgeG yeP

In general: 0:GxX—=X ¢CB(X) X := Spec(¢)
0;(¢)C¢ = 30:Gx X — X unique with: [MH13]

ey —

» ©, continuous Vg e G )T( )T(

> Ogor=100g Vge G X% x

Xred := {x € X | Stabg(x) = G} Xied := {X € X | Stabg(x) = G}

L(Xred) g Yred



Extension of group actions — Quantum reduction

Observation: 0x(¢) ¢ if pgoyeP VgeG yeP

In general: 0:GxX—=X ¢CB(X) X := Spec(¢)
0;(¢)C¢ = 30:Gx X — X unique with: [MH13]

ey —

» ©, continuous Vg e G )T( )T(

> Ogor=100g Vge G X% x

Xred := {x € X | Stabg(x) = G} Xied := {X € X | Stabg(x) = G}

L(Xred) - yred Cred (= Q:|Xred



Extension of group actions — Quantum reduction

Observation: 0x(¢) ¢ if pgoyeP VgeG yeP

In general: 0:GxX—=X ¢CB(X) X := Spec(¢)
0;(¢)C¢ = 30:Gx X — X unique with: [MH13]

ey —

» ©, continuous Vg e G )T( )T(

> Ogor=100g Vge G X% x

Xred := {x € X | Stabg(x) = G} Xied := {X € X | Stabg(x) = G}

unital

= Xred := Spec(€rea) = t(Xred) C Xyed = compact
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Quantum Reduction (P,m,M,S)

choosey Symmetry (G, ®) on P \

A = Spec(€) ’0:G><A—>A‘

extend

©:Gx A= A AredZ{A€A|Stab9(A):G}

‘ compact ‘
/ AN

Zred — {Z S ~7t| Stabe(Z) - G} 2 Ared = L(-Ared) C Z

> O exists if P invariant: g0y € P forallyeP, ge G

» usually fulfilled as ¢ and P smooth or analytic
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Quantization vs. Reduction

Construct A € Apeq\ Areq explicitly:

» A= Hom(P,S) —  Ayeqa & invariant homomorphisms
» Modify A along some ~: A7) ¢ Area(y ={A(7) | A€ Awa}
Loop Quantum Cosmology: P = R3 x SU(2) (MH13/14)
LQC ‘ linear curves ‘ analytic curves
(semi-)homogeneous | Aped 2 Ared | Ared 2 Ared
homogeneous isotropic | Ajed = Ared | Ared 2 Ared

— exp(2nTf(r) - (n,a)) if « circular 7
(v) =
1 else

2nT
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Invariant Measures

Homogeneous Isotropic LQC: Single out LZ(RBOhr, UBohr):
® — euclidean group Ared =R P =R3 x SU(2)
curves Aq Action:
ABL: | linear Rpohr +: R X Areq = Ared
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Invariant Measures

Homogeneous Isotropic LQC: Single out LZ(RBOhr, UBohr):
® — euclidean group Ared =R P =R3 x SU(2)
curves Aq Action:
ABL: | linear Rpohr +: R X Areq = Ared
F: | analytic | R U Rpgonr +: R X Areq — Ared
w1 normalized Radon measure = on [?(Areq, 1t) [MH14]

+i: 90— o(t+-) unitary VteR < I = [4Bohr
= Lz(RBohra ,uBohr)

ABL: +; exponentiated reduced fluxes on L2(Rpohr, (Bohr )

{+3}ter strongly continuous 1-parameter group of unitaries
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Measures on Ajeq S compact + connected

» P = embedded analytic curves (M analytic)

»  analytic and pointwise proper
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Measures on Ajeq S compact + connected

» P = embedded analytic curves (M analytic)
»  analytic and pointwise proper (¢m proper)
Pcont ‘lei.\('

%) trans./properI normal stabilizers / \
S—"

measure for SU(2), S* generalized measure in special
stable elemente in g needed A-L measure situations
— Aved = Aved X Aveq X Ared (Radon product measure)
(Semi-)homogeneous LQC: (¢ proper and free, SU(2))
Ared = [Rpon xS?] POMICL s« Area



Measures on Ajeq S compact + connected

» P = embedded analytic curves (M analytic)
»  analytic and pointwise proper (¢m proper)

‘P(lisv
%) trans./properI normal stabilizers / \
t = pm(exp(tg)) Pdisc,free

measure for SU(2), st generalized measure in special
stable elemente in g needed A-L measure situations
= Aved 2 Areqd X Ared X Aed (Radon product measure)

Homogeneous Isotropic LQC: 7P, 2 Peont

T T q1]RxR>ol
Ared = IRBohr X [RBothS }
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Invariance up to Gauge

Ared = Homyeq(P, Isor) € Hom(P, Isor) = A

Z(fy): Fy0) = Fy) generalized parallel transport
(pg 07) = PgoA(y) 0 dgm Og(A)=A

J> \

Homyeq (P, IsoF) :
» G={0:P—>P|wroo=m,o0(p-s)=oc(p)-s}
> E((pg 0y) = ®g0040 E(’y) o ng od, O4(A) = 04(A)
» compact and more physical than Hom,qq(Pa, Isor)
» contains Homyeq(Pa, Isor); usually much larger:
0 € G + A€ Homyeq(Pa,Isor) = o(A) € Homyea g(P, IsoF)
o(A)) = o Aly) oot



Invariance up to Gauge

Ared = Homyeq(P, Isor) € Hom(P, Isor) = A

ed =
> A(): Fyo) = Fy) generalized parallel transport
> Alpg o) =g A7) 0 Ops Og(A) = A

Homyeq (P, IsoF) :
» G:={0c:P—Plrnoo=m,o(p-s)=oac(p)-s}
> E((pg 0y) = ®g0040 E('y) o ng od, O4(A) = 04(A)

» compact and more physical than Hom,qq(Pa, Isor)

v

contains Homyeq(Pa, Isof); usually much larger:
ceg+ Ac Homred(PA, ISOF) — O'(Z) € HOIIII.C(LQ(P./ ISOF)

o(A)(7) == o A(7)oo "

> seems easier to construct measures on this space
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Reduction on Quantum Level:
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» Splitting up P allows to factorize quantum-reduced space.

— define measure on each factor separately
Non-trivial conditions on symmetry and structure group.



Conclusions

Homogeneous Isotropic LQC:

> LBonr Unique normalized Radon measure on Ry, and R LI Ry, for
which 47 unitary on respective Hilbert space.

> Lie algebra part of quantum-reduced space:

= ql7RXR>0f
Rpohr X [RBohr xS']

Reduction on Quantum Level:

» Usually gives more than quantization of reduced classical space.
— (Semi-)homogeneous 4+ homogeneous isotropic LQC

» Splitting up P allows to factorize quantum-reduced space.
— define measure on each factor separately
Non-trivial conditions on symmetry and structure group.

Outlook:
> uniqueness of measures + measures on Hom,.q g(7P, Isor)

» embedding of states 4+ dynamics



Thank you for your attention!
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