Symmetry Actions and Invariance Conditions in LQG

Maximilian Hanusch University of Paderborn

February 17th, 2015

soon to join at Florida Atlantic University

LQG - Configuration Space

- GR as Hamiltonian theory:
 - \longrightarrow spatial metric + extrinsic curvature
 - \longrightarrow SU(2)-connection + Dreibein

 $\mathcal{A} \mid SU(2)$ -connections

LQG - Configuration Space

- GR as Hamiltonian theory:
 - \longrightarrow spatial metric + extrinsic curvature
 - \rightarrow SU(2)-connection + Dreibein
- Quantization $\mathcal{A} \longrightarrow \overline{\mathcal{A}}$: $L^2(\overline{\mathcal{A}}, \mu_{AL})$

 $\frac{\mathcal{A}}{\overline{\mathcal{A}}} \quad \frac{\mathrm{SU}(2)\text{-connections}}{\mathrm{generalized connections}}$

Gelfand compactification:

• $\overline{\mathcal{A}} = \operatorname{Spec}(\mathfrak{C})$

► $\mathfrak{C} = C^*$ -algebra of cylindrical functions on \mathcal{A} generated by $f \circ h_\gamma$ for $\gamma \in \mathcal{P}$ and $f \in C(SU(2))$

▶ $\mathcal{A} \hookrightarrow \overline{\mathcal{A}}$ densly embedded if \mathfrak{C} separates points: $\iota : \mathcal{A} \mapsto [g \mapsto g(\mathcal{A})]$

(*P*, *π*, *M*, *S*)

Symmetry: Lie group (G, Φ) in Aut(P)

Classical Reduction

(*P*, *π*, *M*, *S*)

Symmetry: Lie group (G, Φ) in Aut(P)

Classical Reduction

$$\bullet \ \mathcal{A}_{\mathrm{red}} := \{ A \in \mathcal{A} \mid \Phi_g^* A = A \ \forall \ g \in G \}$$

Symmetry: Lie group (G, Φ) in Aut(P)

Classical Reduction

$$\blacktriangleright \ \mathcal{A}_{\mathrm{red}} := \{ A \in \mathcal{A} \mid \Phi_g^* A = A \ \forall \ g \in G \}$$

$$\blacktriangleright \ \overline{\mathcal{A}_{\mathrm{red}}} := \mathrm{Spec}(\mathfrak{C}_{\mathrm{red}})$$

 $\mathfrak{C}_{\mathrm{red}}\subseteq B(\mathcal{A}_{\mathrm{red}})$ separating

(*P*, *π*, *M*, *S*)

Symmetry: Lie group (G, Φ) in Aut(P)

Classical Reduction

$$\blacktriangleright \ \mathcal{A}_{\mathrm{red}} := \{ A \in \mathcal{A} \mid \Phi_g^* A = A \ \forall \ g \in G \}$$

$$\blacktriangleright \ \overline{\mathcal{A}_{\mathrm{red}}} := \mathrm{Spec}(\mathfrak{C}_{\mathrm{red}})$$

 $\mathfrak{C}_{\mathrm{red}}\subseteq B(\mathcal{A}_{\mathrm{red}})$ separating

(*P*, *π*, *M*, *S*)

Symmetry: Lie group (G, Φ) in Aut(P)

Classical Reduction

►
$$\mathcal{A}_{\mathrm{red}} := \{A \in \mathcal{A} \mid \Phi_g^* A = A \ \forall \ g \in G\}$$

 $\bullet \ \overline{\mathcal{A}_{\mathrm{red}}} := \mathrm{Spec}(\mathfrak{C}_{\mathrm{red}})$

 $\mathfrak{C}_{\mathrm{red}}\subseteq {\it B}(\mathcal{A}_{\mathrm{red}})$ separating

(*P*, *π*, *M*, *S*)

Symmetry: Lie group (G, Φ) in Aut(P)

Classical Reduction

$$\blacktriangleright \ \mathcal{A}_{\mathrm{red}} := \{ A \in \mathcal{A} \mid \Phi_g^* A = A \ \forall \ g \in G \}$$

 $\blacktriangleright \ \overline{\mathcal{A}_{\mathrm{red}}} := \mathrm{Spec}(\mathfrak{C}_{\mathrm{red}})$

 $\mathfrak{C}_{\mathrm{red}}\subseteq {\it B}(\mathcal{A}_{\mathrm{red}})$ separating

(*P*, *π*, *M*, *S*)

Symmetry: Lie group (G, Φ) in Aut(P)

Classical Reduction

- $\blacktriangleright \ \mathcal{A}_{\mathrm{red}} := \{ A \in \mathcal{A} \mid \Phi_g^* A = A \ \forall \ g \in G \}$
- $\bullet \ \overline{\mathcal{A}_{\mathrm{red}}} := \mathrm{Spec}(\mathfrak{C}_{\mathrm{red}})$

 $\mathfrak{C}_{\mathrm{red}}\subseteq B(\mathcal{A}_{\mathrm{red}})$ separating

$$\mathcal{A}_{\mathrm{red}} = \{A \in \mathcal{A} \mid \mathrm{Stab}_{\theta}(A) = G\}$$

(*P*, *π*, *M*, *S*)

Symmetry: Lie group (G, Φ) in Aut(P)

Classical Reduction

- $\blacktriangleright \ \mathcal{A}_{\mathrm{red}} := \{ A \in \mathcal{A} \mid \Phi_g^* A = A \ \forall \, g \in G \}$
- $\begin{array}{l} \blacktriangleright \ \overline{\mathcal{A}_{\mathrm{red}}} := \mathrm{Spec}(\mathfrak{C}_{\mathrm{red}}) \\ \\ \mathfrak{C}_{\mathrm{red}} \subseteq \mathcal{B}(\mathcal{A}_{\mathrm{red}}) \text{ separating} \end{array}$

$$\Phi_g \in \operatorname{Aut}(P) \qquad \forall \, g \in G$$

$$\begin{array}{l} \blacktriangleright \ \theta \colon G \times \mathcal{A} \to \mathcal{A}, \quad (g, A) \mapsto \Phi_{g^{-1}}^* A \\ \implies \quad \mathcal{A}_{\mathrm{red}} = \{A \in \mathcal{A} \mid \mathrm{Stab}_{\theta}(A) = G\} \end{array}$$

(*P*, *π*, *M*, *S*)

Symmetry: Lie group (G, Φ) in Aut(P)

Classical Reduction

- $\blacktriangleright \ \mathcal{A}_{\mathrm{red}} := \{ A \in \mathcal{A} \mid \Phi_g^* A = A \ \forall \ g \in G \}$
- $\begin{array}{l} \blacktriangleright \ \overline{\mathcal{A}_{\mathrm{red}}} := \mathrm{Spec}(\mathfrak{C}_{\mathrm{red}}) \\ \\ \mathfrak{C}_{\mathrm{red}} \subseteq \mathcal{B}(\mathcal{A}_{\mathrm{red}}) \text{ separating} \end{array}$

$$\Phi_g \in \operatorname{Aut}(P) \qquad \forall \, g \in G$$

$$\bullet \ \theta \colon G \times \mathcal{A} \to \mathcal{A}, \quad (g, A) \mapsto \Phi_{g^{-1}}^* A \\ \implies \qquad \mathcal{A}_{\mathrm{red}} = \{A \in \mathcal{A} \mid \mathrm{Stab}_{\theta}(A) = G\}$$

Idea: Extend θ to $\overline{\mathcal{A}}$ and reduce on quantum level:

 $\overline{\mathcal{A}}_{\mathrm{red}} = \{ \ \overline{\mathcal{A}} \in \overline{\mathcal{A}} \ | \ \mathrm{Stab}_{\Theta}(\overline{\mathcal{A}}) = \mathcal{G} \}$

(*P*, *π*, *M*, *S*)

Symmetry: Lie group (G, Φ) in Aut(P)

Classical Reduction

- $\blacktriangleright \ \mathcal{A}_{\mathrm{red}} := \{ A \in \mathcal{A} \mid \Phi_g^* A = A \ \forall \, g \in G \}$
- $\begin{array}{l} \blacktriangleright \ \overline{\mathcal{A}_{\mathrm{red}}} := \mathrm{Spec}(\mathfrak{C}_{\mathrm{red}}) \\ \\ \mathfrak{C}_{\mathrm{red}} \subseteq \mathcal{B}(\mathcal{A}_{\mathrm{red}}) \text{ separating} \end{array}$

 $\Phi_g \in \operatorname{Aut}(P) \qquad \forall \, g \in G$

• $\varphi \colon G \times M \to M$, $(\pi \circ \Phi)(g, p(m))$

Observation: $\theta_g^*(\mathfrak{C}) \subseteq \mathfrak{C}$ if $\varphi_g \circ \gamma \in \mathcal{P}$ $\forall g \in G, \gamma \in \mathcal{P}$

Observation: $\theta_g^*(\mathfrak{C}) \subseteq \mathfrak{C}$ if $\varphi_g \circ \gamma \in \mathcal{P}$ $\forall \ g \in G, \ \gamma \in \mathcal{P}$ In general: $\theta: \ G \times X \to X$ $\mathfrak{C} \subseteq B(X)$ $\overline{X} := \operatorname{Spec}(\mathfrak{C})$

 $heta_g^*(\mathfrak{C})\subseteq\mathfrak{C}$

$$\begin{array}{lll} \text{Observation:} & \theta_g^*(\mathfrak{C}) \subseteq \mathfrak{C} & \text{if} & \varphi_g \circ \gamma \in \mathcal{P} & \forall \ g \in G, \ \gamma \in \mathcal{P} \\ \text{In general:} & \theta \colon G \times X \to X & \mathfrak{C} \subseteq B(X) & \overline{X} := \operatorname{Spec}(\mathfrak{C}) \end{array}$$

$$X_{\mathrm{red}} := \{x \in X \mid \mathrm{Stab}_{\theta}(x) = G\}$$
 $\overline{X}_{\mathrm{red}} := \{\overline{x} \in \overline{X} \mid \mathrm{Stab}_{\Theta}(\overline{x}) = G\}$

$$\begin{array}{lll} \text{Observation:} & \theta_g^*(\mathfrak{C}) \subseteq \mathfrak{C} & \text{if} & \varphi_g \circ \gamma \in \mathcal{P} & \forall \ g \in G, \ \gamma \in \mathcal{P} \\ \text{In general:} & \theta \colon G \times X \to X & \mathfrak{C} \subseteq B(X) & \overline{X} := \operatorname{Spec}(\mathfrak{C}) \end{array}$$

$$egin{aligned} X_{ ext{red}} &:= \{x \in X \mid \operatorname{Stab}_{ heta}(x) = G\} & \overline{X}_{ ext{red}} := \{\overline{x} \in \overline{X} \mid \operatorname{Stab}_{\Theta}(\overline{x}) = G\} \ & \overline{\iota(X_{ ext{red}})} \subseteq \overline{X}_{ ext{red}} \end{aligned}$$

$$\begin{array}{lll} \text{Observation:} & \theta_g^*(\mathfrak{C}) \subseteq \mathfrak{C} & \text{if} & \varphi_g \circ \gamma \in \mathcal{P} & \forall \ g \in G, \ \gamma \in \mathcal{P} \\ \text{In general:} & \theta \colon G \times X \to X & \mathfrak{C} \subseteq B(X) & \overline{X} := \operatorname{Spec}(\mathfrak{C}) \end{array}$$

$$egin{aligned} X_{ ext{red}} &:= \{x \in X \mid \operatorname{Stab}_{ heta}(x) = G\} & \overline{X}_{ ext{red}} &:= \{\overline{x} \in \overline{X} \mid \operatorname{Stab}_{\Theta}(\overline{x}) = G\} \ & \overline{\iota(X_{ ext{red}})} \subseteq \overline{X}_{ ext{red}} & \mathfrak{C}_{ ext{red}} &:= \overline{\mathfrak{C}}|_{X_{ ext{red}}} \end{aligned}$$

$$\begin{array}{lll} \text{Observation:} & \theta_g^*(\mathfrak{C}) \subseteq \mathfrak{C} & \text{if} & \varphi_g \circ \gamma \in \mathcal{P} & \forall \ g \in G, \ \gamma \in \mathcal{P} \\ \text{In general:} & \theta \colon G \times X \to X & \mathfrak{C} \subseteq B(X) & \overline{X} := \operatorname{Spec}(\mathfrak{C}) \end{array}$$

$$X_{\text{red}} := \{ x \in X \mid \text{Stab}_{\theta}(x) = G \} \qquad \overline{X}_{\text{red}} := \{ \overline{x} \in \overline{X} \mid \text{Stab}_{\Theta}(\overline{x}) = G \}$$

 $\overset{\text{unital}}{\Longrightarrow} \quad \overline{X_{\mathrm{red}}} := \mathrm{Spec}\big(\mathfrak{C}_{\mathbf{red}}\big) \cong \iota(X_{\mathrm{red}}) \subseteq \overline{X}_{\mathrm{red}} = \mathsf{compact}$

- ▶ Θ exists if \mathcal{P} invariant: $\varphi_g \circ \gamma \in \mathcal{P}$ for all $\gamma \in \mathcal{P}$, $g \in G$
- \blacktriangleright usually fulfilled as φ and ${\mathcal P}$ smooth or analytic

Quantization vs. Reduction

Construct $\overline{A} \in \overline{\mathcal{A}}_{\mathrm{red}} \setminus \overline{\mathcal{A}}_{\mathrm{red}}$ explicitly:

- ► $\overline{\mathcal{A}} \cong \operatorname{Hom}(\mathcal{P}, S) \longrightarrow \overline{\mathcal{A}}_{\operatorname{red}} \cong \operatorname{invariant}$ homomorphisms
- Modify \overline{A} along some γ : $\overline{A}'(\gamma) \notin \overline{\mathcal{A}_{\mathrm{red}}}(\gamma) = \{\overline{A}(\gamma) \mid \overline{A} \in \overline{\mathcal{A}_{\mathrm{red}}}\}$

Quantization vs. Reduction

Construct $\overline{A} \in \overline{\mathcal{A}}_{\mathrm{red}} \setminus \overline{\mathcal{A}}_{\mathrm{red}}$ explicitly:

- ► $\overline{\mathcal{A}} \cong \operatorname{Hom}(\mathcal{P}, S) \longrightarrow \overline{\mathcal{A}}_{\operatorname{red}} \cong \operatorname{invariant} \operatorname{homomorphisms}$
- $\blacktriangleright \text{ Modify } \overline{A} \text{ along some } \gamma : \qquad \overline{A}'(\gamma) \notin \overline{\mathcal{A}_{\mathrm{red}}}(\gamma) = \left\{ \overline{A}(\gamma) \mid \overline{A} \in \overline{\mathcal{A}_{\mathrm{red}}} \right\}$

Loop Quantum Cosmology: $P = \mathbb{R}^3 imes SU(2)$

LQC	linear curves	analytic curves
(semi-)homogeneous	$\overline{\mathcal{A}}_{\mathrm{red}} \supsetneq \overline{\mathcal{A}}_{\mathrm{red}}$	$\overline{\mathcal{A}}_{\mathrm{red}} \supsetneq \overline{\mathcal{A}}_{\mathrm{red}}$
homogeneous isotropic	$\overline{\mathcal{A}}_{\mathrm{red}} = \overline{\mathcal{A}}_{\mathrm{red}}$	$\overline{\mathcal{A}}_{\mathrm{red}} \supsetneq \overline{\mathcal{A}}_{\mathrm{red}}$

$$\overline{A}(\gamma) = egin{cases} \exp(2\pi au f(r)\cdot\langleec{n},ec{\sigma}
angle) & ext{if } \gamma ext{ circular} \ 1 & ext{else} \end{cases}$$

Homogeneous Isotropic LQC:

 $\Phi-\text{euclidean group}$

	curves	$\overline{\mathcal{A}_{ ext{red}}}$
ABL:	linear	$\mathbb{R}_{ ext{Bohr}}$
F:	analytic	$\mathbb{R} \sqcup \mathbb{R}_{\mathrm{Bohr}}$

$$\mathcal{A}_{\mathrm{red}} \cong \mathbb{R} \qquad P = \mathbb{R}^3 \times \mathrm{SU}(2)$$

Homogeneous Isotropic LQC:

 Φ – euclidean group

	curves	$\overline{\mathcal{A}_{ ext{red}}}$
ABL:	linear	$\mathbb{R}_{\mathrm{Bohr}}$
F:	analytic	$\mathbb{R} \sqcup \mathbb{R}_{\mathrm{Bohr}}$

Single out $L^{2}(\mathbb{R}_{Bohr}, \mu_{Bohr})$: $\mathcal{A}_{red} \cong \mathbb{R}$ $P = \mathbb{R}^{3} \times SU(2)$ Action: $+: \mathbb{R} \times \mathcal{A}_{red} \rightarrow \mathcal{A}_{red}$ $+: \mathbb{R} \times \overline{\mathcal{A}_{red}} \rightarrow \overline{\mathcal{A}_{red}}$

Homogeneous Isotropic LQC:

 Φ – euclidean group

	curves	$\overline{\mathcal{A}_{ ext{red}}}$
ABL:	linear	$\mathbb{R}_{ ext{Bohr}}$
F:	analytic	$\mathbb{R} \sqcup \mathbb{R}_{\mathrm{Bohr}}$

Single out $L^{2}(\mathbb{R}_{Bohr}, \mu_{Bohr})$: $\mathcal{A}_{red} \cong \mathbb{R}$ $P = \mathbb{R}^{3} \times SU(2)$ Action: $+: \mathbb{R} \times \mathcal{A}_{red} \rightarrow \mathcal{A}_{red}$ $+: \mathbb{R} \times \overline{\mathcal{A}_{red}} \rightarrow \overline{\mathcal{A}_{red}}$

 μ normalized Radon measure \implies on $L^2(\overline{\mathcal{A}_{red}}, \mu)$ [MH14] + $_t^*: \phi \mapsto \phi(t + \cdot)$ unitary $\forall t \in \mathbb{R} \iff \mu = \mu_{Bohr}$ $\implies L^2(\mathbb{R}_{Bohr}, \mu_{Bohr})$

Homogeneous Isotropic LQC:

 Φ – euclidean group

	curves	$\overline{\mathcal{A}_{ ext{red}}}$
ABL:	linear	$\mathbb{R}_{ ext{Bohr}}$
F:	analytic	$\mathbb{R} \sqcup \mathbb{R}_{\mathrm{Bohr}}$

Single out $L^2(\mathbb{R}_{Bohr}, \mu_{Bohr})$: $\mathcal{A}_{red} \cong \mathbb{R}$ $P = \mathbb{R}^3 \times SU(2)$ Action: $+: \mathbb{R} \times \mathcal{A}_{red} \rightarrow \mathcal{A}_{red}$ $+: \mathbb{R} \times \overline{\mathcal{A}_{red}} \rightarrow \overline{\mathcal{A}_{red}}$

 $\mu \text{ normalized Radon measure} \implies \text{ on } L^2(\overline{\mathcal{A}_{\text{red}}}, \mu) \qquad [\text{MH14}]$ $+_t^* \colon \phi \mapsto \phi(t + \cdot) \text{ unitary } \forall t \in \mathbb{R} \iff \mu = \mu_{\text{Bohr}}$ $\implies L^2(\mathbb{R}_{\text{Bohr}}, \mu_{\text{Bohr}})$

ABL: $+_t^*$ exponentiated reduced fluxes on $L^2(\mathbb{R}_{Bohr}, \mu_{Bohr})$ $\{+_t^*\}_{t \in \mathbb{R}}$ strongly continuous 1-parameter group of unitaries

- $\mathcal{P} =$ embedded analytic curves
- $\blacktriangleright \ \varphi$ analytic and pointwise proper

(M analytic) $(\varphi_m \text{ proper})$

S compact + connected

S compact + connected

- \mathcal{P} = embedded analytic curves
- $\blacktriangleright \ \varphi$ analytic and pointwise proper

(M analytic) $(\varphi_m \text{ proper})$

- $\mathcal{P} =$ embedded analytic curves
- $\blacktriangleright \ \varphi$ analytic and pointwise proper

(M analytic) $(\varphi_m \text{ proper})$

$$\Rightarrow \quad \overline{\mathcal{A}}_{\text{red}} \cong \overline{\mathcal{A}}_{\text{red}} \times \overline{\mathcal{A}}_{\text{red}} \times \overline{\mathcal{A}}_{\text{red}} \qquad (\text{Radon product measure})$$

S compact + connected

- $\mathcal{P} =$ embedded analytic curves
- φ analytic and pointwise proper

S compact + connected

(M analytic) $(\varphi_m \text{ proper})$

- $\mathcal{P} =$ embedded analytic curves
- φ analytic and pointwise proper

S compact + connected

(M analytic) $(\varphi_m \text{ proper})$

 $ightarrow \overline{\mathcal{A}}_{\mathrm{red}}\cong\overline{\mathcal{A}}_{\mathrm{red}} imes\overline{\mathcal{A}}_{\mathrm{red}} imes\overline{\mathcal{A}}_{\mathrm{red}}$

(Radon product measure)

Homogeneous Isotropic LQC: $\mathcal{P}_{g} \stackrel{?}{=} \mathcal{P}_{cont}$

 $\overline{\mathcal{A}}_{\mathrm{red}}\cong \mathbb{R}_{\mathrm{Bohr}}\times \left[\mathbb{R}_{\mathrm{Bohr}}\widetilde{\times}\mathrm{S}^1\right]^{|\mathbb{R}\times\mathbb{R}_{>0}|}$

 $\operatorname{Hom}(\mathcal{P}, \operatorname{Iso}_F) \cong \overline{\mathcal{A}}$

 $\blacktriangleright \overline{A}(\gamma) \colon F_{\gamma(0)} \to F_{\gamma(1)}$

generalized parallel transport

 $\overline{\mathcal{A}}_{\mathrm{red}}\cong\mathrm{Hom}_{\mathrm{red}}(\mathcal{P},\mathrm{Iso}_{\mathcal{F}})\subseteq\mathrm{Hom}(\mathcal{P},\mathrm{Iso}_{\mathcal{F}})\cong\overline{\mathcal{A}}$

 $\blacktriangleright \overline{A}(\gamma) \colon F_{\gamma(0)} \to F_{\gamma(1)}$

$$\bullet \ \overline{A}(\varphi_g \circ \gamma) = \Phi_g \circ \overline{A}(\gamma) \circ \Phi_{g^{-1}}$$

generalized parallel transport

$$\Theta_g(\overline{A}) = \overline{A}$$

 $\overline{\mathcal{A}}_{\mathrm{red}} \cong \mathrm{Hom}_{\mathrm{red}}(\mathcal{P}, \mathrm{Iso}_{\mathcal{F}}) \subseteq \mathrm{Hom}(\mathcal{P}, \mathrm{Iso}_{\mathcal{F}}) \cong \overline{\mathcal{A}}$

A(γ): *F*_{γ(0)} → *F*_{γ(1)} generalized parallel transport
 A(φ_g ∘ γ) = Φ_g ∘ *A*(γ) ∘ Φ_{g⁻¹} Θ_g(*A*) = *A*

 $\operatorname{Hom}_{\operatorname{red},\mathcal{G}}(\mathcal{P},\operatorname{Iso}_F)$:

$$\blacktriangleright \ \mathcal{G} := \{ \sigma \colon P \to P \mid \pi \circ \sigma = \pi, \ \sigma(p \cdot s) = \sigma(p) \cdot s \}$$

 $\bullet \ \overline{A}(\varphi_g \circ \gamma) = \Phi_g \circ \sigma_g \circ \overline{A}(\gamma) \circ \sigma_g^{-1} \circ \Phi_{g^{-1}} \qquad \Theta_g(\overline{A}) = \sigma_g(\overline{A})$

 $\overline{\mathcal{A}}_{\mathrm{red}} \cong \mathrm{Hom}_{\mathrm{red}}(\mathcal{P}, \mathrm{Iso}_{\mathcal{F}}) \subseteq \mathrm{Hom}(\mathcal{P}, \mathrm{Iso}_{\mathcal{F}}) \cong \overline{\mathcal{A}}$

- ► $\overline{A}(\gamma)$: $F_{\gamma(0)} \to F_{\gamma(1)}$ generalized parallel transport $\overline{A}(\gamma)$: $\overline{A}(\gamma)$ = $\overline{A}(\gamma)$ =
- $\bullet \ \overline{A}(\varphi_g \circ \gamma) = \Phi_g \circ \overline{A}(\gamma) \circ \Phi_{g^{-1}} \qquad \Theta_g(\overline{A}) = \overline{A}$

 $\operatorname{Hom}_{\operatorname{red},\mathcal{G}}(\mathcal{P},\operatorname{Iso}_F)$:

$$\blacktriangleright \ \mathcal{G} := \{ \sigma \colon P \to P \mid \pi \circ \sigma = \pi, \ \sigma(p \cdot s) = \sigma(p) \cdot s \}$$

- $\bullet \ \overline{A}(\varphi_g \circ \gamma) = \Phi_g \circ \sigma_g \circ \overline{A}(\gamma) \circ \sigma_g^{-1} \circ \Phi_{g^{-1}} \qquad \Theta_g(\overline{A}) = \sigma_g(\overline{A})$
- compact and more physical than $\operatorname{Hom}_{\operatorname{red}}(\mathcal{P}_A, \operatorname{Iso}_F)$

 $\overline{\mathcal{A}}_{\mathrm{red}}\cong\mathrm{Hom}_{\mathrm{red}}(\mathcal{P},\mathrm{Iso}_{\mathcal{F}})\subseteq\mathrm{Hom}(\mathcal{P},\mathrm{Iso}_{\mathcal{F}})\cong\overline{\mathcal{A}}$

- *A*(γ): *F*_{γ(0)} → *F*_{γ(1)} generalized parallel transport
 A(φ_g ∘ γ) = Φ_g ∘ *A*(γ) ∘ Φ_{g-1} Θ_g(*A*) = *A*

 $\operatorname{Hom}_{\operatorname{red},\mathcal{G}}(\mathcal{P},\operatorname{Iso}_{\mathcal{F}})$:

- $\blacktriangleright \mathcal{G} := \{ \sigma \colon P \to P \mid \pi \circ \sigma = \pi, \ \sigma(p \cdot s) = \sigma(p) \cdot s \}$
- $\bullet \ \overline{A}(\varphi_g \circ \gamma) = \Phi_g \circ \sigma_g \circ \overline{A}(\gamma) \circ \sigma_g^{-1} \circ \Phi_{g^{-1}} \qquad \Theta_g(\overline{A}) = \sigma_g(\overline{A})$
- compact and more physical than $\operatorname{Hom}_{\operatorname{red}}(\mathcal{P}_A, \operatorname{Iso}_F)$
- ► contains $\operatorname{Hom}_{\operatorname{red}}(\mathcal{P}_A, \operatorname{Iso}_F)$; usually much larger: $\sigma \in \mathcal{G} + \overline{A} \in \operatorname{Hom}_{\operatorname{red}}(\mathcal{P}_A, \operatorname{Iso}_F) \implies \sigma(\overline{A}) \in \operatorname{Hom}_{\operatorname{red},\mathcal{G}}(\mathcal{P}, \operatorname{Iso}_F)$ $\sigma(\overline{A})(\gamma) := \sigma \circ \overline{A}(\gamma) \circ \sigma^{-1}$

 $\overline{\mathcal{A}}_{\mathrm{red}}\cong\mathrm{Hom}_{\mathrm{red}}(\mathcal{P},\mathrm{Iso}_{\mathcal{F}})\subseteq\mathrm{Hom}(\mathcal{P},\mathrm{Iso}_{\mathcal{F}})\cong\overline{\mathcal{A}}$

- ► $\overline{A}(\gamma)$: $F_{\gamma(0)} \to F_{\gamma(1)}$ generalized parallel transport
- $\bullet \ \overline{A}(\varphi_g \circ \gamma) = \Phi_g \circ \overline{A}(\gamma) \circ \Phi_{g^{-1}} \qquad \Theta_g(\overline{A}) = \overline{A}$

 $\operatorname{Hom}_{\operatorname{red},\mathcal{G}}(\mathcal{P},\operatorname{Iso}_F)$:

- $\blacktriangleright \ \mathcal{G} := \{ \sigma \colon P \to P \mid \pi \circ \sigma = \pi, \ \sigma(p \cdot s) = \sigma(p) \cdot s \}$
- $\bullet \ \overline{A}(\varphi_g \circ \gamma) = \Phi_g \circ \sigma_g \circ \overline{A}(\gamma) \circ \sigma_g^{-1} \circ \Phi_{g^{-1}} \qquad \Theta_g(\overline{A}) = \sigma_g(\overline{A})$
- compact and more physical than $\operatorname{Hom}_{\operatorname{red}}(\mathcal{P}_A, \operatorname{Iso}_F)$
- ► contains $\operatorname{Hom}_{\operatorname{red}}(\mathcal{P}_A, \operatorname{Iso}_F)$; usually much larger: $\sigma \in \mathcal{G} + \overline{A} \in \operatorname{Hom}_{\operatorname{red}}(\mathcal{P}_A, \operatorname{Iso}_F) \implies \sigma(\overline{A}) \in \operatorname{Hom}_{\operatorname{red},\mathcal{G}}(\mathcal{P}, \operatorname{Iso}_F)$ $\sigma(\overline{A})(\gamma) := \sigma \circ \overline{A}(\gamma) \circ \sigma^{-1}$
- seems easier to construct measures on this space

Conclusions

Homogeneous Isotropic LQC:

- µ_{Bohr} unique normalized Radon measure on ℝ_{Bohr} and ℝ ⊔ ℝ_{Bohr} for which +^{*}_t unitary on respective Hilbert space.
- Lie algebra part of quantum-reduced space:

 $\mathbb{R}_{\mathrm{Bohr}} \times \left[\mathbb{R}_{\mathrm{Bohr}} \widetilde{\times} \mathrm{S}^{1} \right]^{|\mathbb{R} \times \mathbb{R}_{>0}|}$

Conclusions

Homogeneous Isotropic LQC:

- μ_{Bohr} unique normalized Radon measure on ℝ_{Bohr} and ℝ ⊔ ℝ_{Bohr} for which +^{*}_t unitary on respective Hilbert space.
- Lie algebra part of quantum-reduced space:

 $\mathbb{R}_{\mathrm{Bohr}} \times \left[\mathbb{R}_{\mathrm{Bohr}} \widetilde{\times} \mathrm{S}^1 \right]^{|\mathbb{R} \times \mathbb{R}_{>0}|}$

Reduction on Quantum Level:

- \blacktriangleright Usually gives more than quantization of reduced classical space. \longrightarrow (Semi-)homogeneous + homogeneous isotropic LQC
- ▶ Splitting up *P* allows to factorize quantum-reduced space.
 → define measure on each factor separately Non-trivial conditions on symmetry and structure group.

Conclusions

Homogeneous Isotropic LQC:

- µ_{Bohr} unique normalized Radon measure on ℝ_{Bohr} and ℝ ⊔ ℝ_{Bohr} for which +^{*}_t unitary on respective Hilbert space.
- Lie algebra part of quantum-reduced space:

 $\mathbb{R}_{\mathrm{Bohr}} \times \left[\mathbb{R}_{\mathrm{Bohr}} \widetilde{\times} \mathrm{S}^1 \right]^{|\mathbb{R} \times \mathbb{R}_{>0}|}$

Reduction on Quantum Level:

- \blacktriangleright Usually gives more than quantization of reduced classical space. \longrightarrow (Semi-)homogeneous + homogeneous isotropic LQC
- ▶ Splitting up *P* allows to factorize quantum-reduced space.
 → define measure on each factor separately Non-trivial conditions on symmetry and structure group.

Outlook:

- uniqueness of measures + measures on $\operatorname{Hom}_{\operatorname{red},\mathcal{G}}(\mathcal{P},\operatorname{Iso}_{\mathcal{F}})$
- embedding of states + dynamics

Thank you for your attention!