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Bianchi-Rovelli-Vidotto
model: a brief review
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Initial and final state

Initial and final graphs.

In Dipole Cosmology model one calculates transition amplitudes
between initial and final coherent states defined by
Ψin/out ∈ L2

(
SU(2)4

)
:

Ψin/out(U) =

∫ ∏
n∈Γ

(0)
in/out

dgn
∏

`∈Γ
(1)
in/out

Kt

(
g−1
s(`)U`gt(`)H

−1
`

)
,

where g : Γ
(0)
in/out → SU(2), U : Γ

(1)
in/out → SU(2), Kt is the analytic

continuation to SL(2,C) of a heat kernel on SU(2).
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Initial and final state

The initial and final states are peaked on homogeneous and
isotropic geometry:

H` = n`e
− i

2
zin/outσ3n−1

` ,

where n` ∈ SU(2)/U(1) = S2.

n` have interpretation of normals to faces of
tetrahedron, topology of space is S3

Re(zin/out) ∼ ȧin/out, Im(zin/out) ∼ ain/out.
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Boundary graph and BRV foam

Boundary graph:

Γ = Γin ∪ Γout.

BRV foam (one internal vertex)
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Transition amplitude

Transition amplitude of the extended Engle-Pereira-Rovelli-Livine
model in large volume approximation:

W (zin, zout) = N2zinzoute
− 1

2t~ (z2
in+z2

out).

It satisfies equation:

3

8πG (4αβγ)2

(
z2 − t2~2 d2

dz2
− 3t~

)2

W (z , z ′) = 0

It can be shown, that it is a quantization of Friedmann hamiltonian
constraint in the absence of matter (when volume is large).
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The goal

• Find other foams contributing to the Dipole Cosmology
amplitude in the first order of vertex and edge expansion.

• Find the corresponding transition amplitude. (work in
progress)
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Graph Diagrams



www.fuw.edu.pl/˜mpd/

What are Graph Diagrams?

Graph Diagrams:

• Oriented,
connected,
closed graphs

• Node relation

• Link relations



www.fuw.edu.pl/˜mpd/

What are Graph Diagrams?

Graph Diagrams:

• Oriented,
connected,
closed graphs

• Node relation

• Link relations



www.fuw.edu.pl/˜mpd/

What are Graph Diagrams?

Graph Diagrams:

• Oriented,
connected,
closed graphs

• Node relation

• Link relations



www.fuw.edu.pl/˜mpd/

Graph diagrams and foams
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Graph diagrams and foams
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First order of vertex and
edge expansion
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First order of vertex and edge expansion

We find all foams having two dipole graph as the boundary graph,
one internal vertex, and no edges connecting this vertex with itself.
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Step 1: choose orientation of each link
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Step 2: construct a squid set SΓ
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Step 3: construct interaction diagram Dint
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Step 4: construct a graph diagram
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Step 4: construct a graph diagram
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How to find all interaction graphs?

We obtain each interaction graph Γint by assigning an orientation
to each link of an (unoriented) graph |Γint| defined by the following
two properties:

• each graph |Γint| has exactly 4 nodes,

• each node of |Γint| is precisely four-valent.
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The transition amplitude
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The transition amplitude

W(G,R)(zin, zout) =
∑
j`

∏
`∈G(1)

e−2t~j`(j`+1)−iz`j`Z(G,R,ρ,P,A),

where z` = zin if ` ∈ Γin, z` = zout if ` ∈ Γout.
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Coherent states

Perelomov coherent states:

|j~n〉 = ρj(g(~n)) |jj〉 ,

where g(~n) =

(
cos( θ2 ) sin( θ2 )e−iφ

− sin( θ2 )e iφ cos( θ2 )

)
is an SU(2) element

that transforms the vector (0, 0, 1) into the vector
~n = (cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)).
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Euclidean EPRL embedding

Let γ 6= ±1 be the Barbero-Immirzi parameter. Let
ρj+j− = ρj+ ⊗ ρj− be a unitary irreducible representation of the
group Spin(4)=SU(2)+×SU(2)−, (j , j+, j−) satisfy triangle

inequalities, j + j+ + j− ∈ N, j± := |1±γ|
2 j . We define a function

ρj
j+j− : Spin(4)→ Hj ⊗H∗j ,(

ρj
j+j−(g+, g−)

)A
B

:= CA
A+A−ρj+(g+)A

+

B+ρj−(g−)A
−

B−C
B+B−
B .
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First example
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First example

Z(G,R,ρ,P,A) = δju1 j1δju2 j1δju3 j2δju4 j2

δjd1 j3
δjd2 j3

δjd3 j4
δjd4 j4

Z̃(G,R,ρ,P,A)
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First example

Z̃(G,R,ρ,P,A) =
∏4

i=1(2ji + 1)
∫ ∏

n dg
+
n dg−n

〈ju1~nu1 | ρ
j1
j+
1 j−1

((g+
n1

)−1g+
n1
, (g−n1

)−1g−n1
) |ju2~nu2〉

〈ju2~nu2 | ρ
j1
j+
1 j−1

((g+
n2

)−1g+
n2
, (g−n2

)−1g−n2
) |ju1~nu1〉

〈ju3~nu3 | ρ
j2
j+
2 j−2

((g+
n1

)−1g+
n1
, (g−n1

)−1g−n1
) |ju4~nu4〉

〈ju4~nu4 | ρ
j2
j+
2 j−2

((g+
n2

)−1g+
n2
, (g−n2

)−1g−n2
) |ju3~nu3〉〈

jd2 ~n
d
2

∣∣ ρj3
j+
3 j−3

((g+
n4

)−1g+
n4
, (g−n4

)−1g−n4
)
∣∣jd1 ~nd1 〉〈

jd1 ~n
d
1

∣∣ ρj3
j+
3 j−3

((g+
n3

)−1g+
n3
, (g−n3

)−1g−n3
)
∣∣jd2 ~nd2 〉〈

jd4 ~n
d
4

∣∣ ρj4
j+
4 j−4

((g+
n4

)−1g+
n4
, (g−n4

)−1g−n4
)
∣∣jd3 ~nd3 〉〈

jd3 ~n
d
3

∣∣ ρj4
j+
4 j−4

((g+
n3

)−1g+
n3
, (g−n3

)−1g−n3
)
∣∣jd4 ~nd4 〉 .
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First example

Z̃(G,R,ρ,P,A) =
∏4

i=1(2ji + 1)

| 〈ju1~nu1 |ju2~nu2〉 |2| 〈ju3~nu3 |ju4~nu4〉 |2

|
〈
jd2 ~n

d
2 |jd1 ~nd1

〉
|2|
〈
jd4 ~n

d
4 |jd3 ~nd3

〉
|2
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First example

Z̃(G,R,ρ,P,A) =
∏4

i=1(2ji + 1)
(

1+~nu1 ·~nu2
2

)2j1 (1+~nu3 ·~nu4
2

)2j2

(
1+~nd1 ·~nd2

2

)2j3 (1+~nd3 ·~nd4
2

)2j4
.

The amplitude is exponentially supressed, unless ~nu1 = ~nu2 , ~nu3 = ~nu4 ,
~nd1 = ~nd2 , ~nd3 = ~nd4 .

The cofigurations correspond to degenerate
tetrahedra.



www.fuw.edu.pl/˜mpd/

First example

Z̃(G,R,ρ,P,A) =
∏4

i=1(2ji + 1)
(

1+~nu1 ·~nu2
2

)2j1 (1+~nu3 ·~nu4
2

)2j2

(
1+~nd1 ·~nd2

2

)2j3 (1+~nd3 ·~nd4
2

)2j4
.

The amplitude is exponentially supressed, unless ~nu1 = ~nu2 , ~nu3 = ~nu4 ,
~nd1 = ~nd2 , ~nd3 = ~nd4 .The cofigurations correspond to degenerate
tetrahedra.



www.fuw.edu.pl/˜mpd/

Degenerate tetrahedra

Minkowski theorem: If ~n1, . . . ,~nN are non-coplanar unit vectors
and j1, . . . , jN are positive numbers such that

j1~n1 + . . .+ jN~nN = 0,

then there exists a closed convex polyhedron whose faces have
outwards normals ~ni and areas ji .
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An observation

Whenever there is a loop in the diagram, the amplitude of a
non-degenerate configuration is exponentially suppressed.
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Second example
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Second example

Z(G,R,ρ,P,A) = δju1 j1δjd1 j1
δju1 j2δjd1 j2

Z̃(G,R,ρ,P,A)
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Second example: the sum over spins

The transition amplitude is:

W(G,R)(zin, zout) =
∑
j`

∏
`∈G(1)

e−2t~j`(j`+1)−iz`j`δju1 j1δjd1 j1
δju1 j2δjd1 j2

Z̃(G,R,ρ,P,A).

Therefore:

W(G,R)(zin, zout) = e−
zin

2+zout
2

2t~ e−
(izin−izout)2

16t~ ·

·
∑

j1, j
u/d
2 , j

u/d
3 , j

u/d
4

e−4t~(j1+i
zin+zout

8t~ )2 ∏4
i=2 e

−2t~(jdi +i
zin
4t~ )2

e−2t~(jui +i
zout
4t~ )2

Z̃(G,R,ρ,P,A).

The Bianchi-Rovelli-Vidotto transition amplitude:

W(GBRV,RBRV)(zin, zout) = e−
zin

2+zout
2

2t~ ·

·
∑

j
u/d
i

∏4
i=1 e

−2t~(jdi +i
zin
4t~ )2

e−2t~(jui +i
zout
4t~ )2

Z̃(GBRV,RBRV,ρ,P,A) ≈

≈ e−
zin

2+zout
2

2t~ N2zinzout.



www.fuw.edu.pl/˜mpd/

Second example: the sum over spins

The transition amplitude is:

W(G,R)(zin, zout) =
∑
j`

∏
`∈G(1)

e−2t~j`(j`+1)−iz`j`δju1 j1δjd1 j1
δju1 j2δjd1 j2

Z̃(G,R,ρ,P,A).

Therefore:

W(G,R)(zin, zout) = e−
zin

2+zout
2

2t~ e−
(izin−izout)2

16t~ ·

·
∑

j1, j
u/d
2 , j

u/d
3 , j

u/d
4

e−4t~(j1+i
zin+zout

8t~ )2 ∏4
i=2 e

−2t~(jdi +i
zin
4t~ )2

e−2t~(jui +i
zout
4t~ )2

Z̃(G,R,ρ,P,A).

The Bianchi-Rovelli-Vidotto transition amplitude:

W(GBRV,RBRV)(zin, zout) = e−
zin

2+zout
2

2t~ ·

·
∑

j
u/d
i

∏4
i=1 e

−2t~(jdi +i
zin
4t~ )2

e−2t~(jui +i
zout
4t~ )2

Z̃(GBRV,RBRV,ρ,P,A) ≈

≈ e−
zin

2+zout
2

2t~ N2zinzout.



www.fuw.edu.pl/˜mpd/

Face amplitudes

The example:

Aface = (2j1 + 1)(2ju2 + 1)(2ju3 + 1)(2ju4 + 1)(2jd2 + 1)(2jd3 + 1)(2jd4 + 1)

Bianchi-Rovelli-Vidotto spin foam:

ABRV
face = (2ju1 + 1)(2jd1 + 1)(2ju2 +1)(2ju3 +1)(2ju4 +1)(2jd2 +1)(2jd3 +1)(2jd4 +1)
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Vertex amplitude

Avertex = δju1 jd1
1

(|1 + γ|j1 + 1)(|1− γ|j1 + 1)
ABRV
vertex

(F. Hellmann Phys. Rev. D84, 103516, arXiv:1105.1334)
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A conclusion

The transition amplitude calculated in this example is dominated
by the BRV transition amplitude in the limit of large volume of the
universe.
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Third example
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Ambiguity in node relations
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Ambiguity in node relations
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Ambiguity in link relations
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Ambiguity in link relations
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Third example

We perform the first step of the algorithm:
1. Choose orientation of each link of the two dipole graphs.
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A possible graph diagram
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Numbering of boundary links
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Numbering of links of interaction diagram

The numbering induces two numberings: a red numbering of links
of the interaction graph,
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Numbering of links of interaction diagram

The numbering induces two numberings: a red numbering of links
the interaction graph, a blue numbering of the links of interaction
graph. These two numberings in general do not coincide.
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We can omit drawing node and link
relations
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A permutation corresponding to a graph
diagram

We can assign a permutation to the graph diagram.

σ =

(
1 2 3 4 5 6 7 8
8 2 3 4 5 6 7 1

)
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The permutation depends on link relations

σ =

(
1 2 3 4 5 6 7 8
8 2 4 3 5 6 7 1

)
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The permutation depends on node relation

σ =

(
1 2 3 4 5 6 7 8
5 6 7 1 8 2 3 4

)
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The permutation depends on a structure
of interaction graph

σ =

(
1 2 3 4 5 6 7 8
8 7 3 4 5 6 2 1

)
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The permutation depends on a structure
of interaction graph

σ =

(
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

)
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Permutations and diagrams
For every permutation there is a graph diagram, and every graph
diagram is defined by a permutation
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Cycles=faces

σ = (18)(27)(3)(4)(5)(6)
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Cycles=faces

In particular: number of cycles=number of faces.

Number of cycles ≤ 8 and equals 8 only for σ = id .
As a result

degAface(j`) ≤ 8

and degAface(j`) = 8 only in the BRV foam.
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The Euclidean EPRL map

Given γ ∈ Q and ki ∈ 1
2N, i ∈ {1, . . . , n} such that

∀i j±i := |1±γ|
2 ki ∈ 1

2N, the Engle-Pereira-Rovelli-Livine map

ιj1...jn : Inv (Hj1 ⊗ · · · ⊗ Hkn )→ Inv
(
Hj+1
⊗ · · · ⊗ Hj+n

)
⊗ Inv

(
H

j−1
⊗ · · · ⊗ H

j−n

)
is defined as follows:

ιj1...jn (I)A
+
1 ...A

+
n A−

1 ...A
−
n = IA1...AnC

B+
1 B−

1
A1

· · ·CB+
n B−

n
An

P+A+
1 ...A

+
n

B+
1 ...B

+
n
P−

A−
1 ...A

−
n

B−
1 ...B

−
n
,

where P+ : Hj+1
⊗ · · · ⊗ Hj+n

→ Inv
(
Hj+1
⊗ · · · ⊗ Hj+n

)
,

P− : H
j−1
⊗ · · · ⊗ H

j−n
→ Inv

(
H

j−1
⊗ · · · ⊗ H

j−n

)
are standing for the

orthogonal projections.
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The vertex amplitude

Let Pj1...j4 : Hj1 ⊗ · · · ⊗ Hj4 → Inv (Hj1 ⊗ · · · ⊗ Hj4 ),

Pj5...j8 : Hj5 ⊗ · · · ⊗ Hj8 → Inv (Hj5 ⊗ · · · ⊗ Hj8 ) stand for the orthogonal
projections.
We denote by

|Γ, j ,~n〉 = ιj1...j4 (Pj1...j4 |j1,~n1〉⊗. . .⊗|j4,~n4〉)⊗ιj5...j8 (Pj5...j8 |k5,~n5〉⊗. . .⊗|k8,~n8〉)

the invariants corresponding to the two nodes of Γ such that all
links are outgoing at those nodes.
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The vertex amplitude

|Γ, j ,~n〉
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The vertex amplitude

〈Γ, j ,~n|
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The vertex amplitude

Let j±i = j±σ(i). Denote by

Aσ : Hj+
1
⊗· · ·⊗Hj+

8
⊗Hj−1

⊗· · ·⊗Hj−8
→ Hj+

1
⊗· · ·⊗Hj+

8
⊗Hj−1

⊗· · ·⊗Hj−8

an operator such that

(Aσ)
A+

1 ...A
+
8 A−1 ...A

−
8

B+
1 ...B

+
8 B−1 ...B

−
8

= δ
A+
σ(1)

B+
1

· · · δ
A+
σ(8)

B+
8

δ
A−
σ(1)

B−1
· · · δ

A−
σ(8)

B−8
.

The vertex amplitude is:

Aσvertex = 〈Γ, j ,~n| Aσ |Γ, j ,~n〉 .
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The vertex amplitude

Aσvertex = 〈Γ, j ,~n|Aσ|Γ, j ,~n〉
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An observation

The operator: Aσ is a unitary operator acting in
Hj+

1
⊗ · · · ⊗ Hj+

8
⊗Hj−1

⊗ · · · ⊗ Hj−8
, where ji = jσ(i).

In particular

|Aσvertex| = | 〈Γ, j ,~n| Aσ |Γ, j ,~n〉 | ≤ 〈Γ, j ,~n|Γ, j ,~n〉 = ABRV
vertex.
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, where ji = jσ(i).

In particular
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A conclusion

The BRV transition amplitude is dominating
all other contributions considered in this
example (in the limit of large volume of the
universe).



www.fuw.edu.pl/˜mpd/



www.fuw.edu.pl/˜mpd/

Summary

• We applied a general procedure for finding all foams with
given boundary graph to Dipole Cosmology model. We found
all foams with the boundary graph being two dipole graphs,
with one internal vertex, and no edges connecting this vertex
with itself.

• We used graph diagrams. This allowed us to find all the
foams systematically.
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Summary

• We obtained that for non-degenerate configurations the
amplitudes corresponding to diagrams with loops are
suppressed. This observation showed that 16 out of 20
possible interaction graphs (in the first order of vertex and
edge expansion) give negligibly small contributions to the
transition amplitude of Dipole Cosmology (in the large volume
limit).

• We analysed a case, where the boundary of the foam has a
chosen fixed orientation. It this case the BRV transition
amplitude is dominating the total transition amplitude in the
limit of large universe.
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Outlook

• Find weights (summing=refining, GFT).

• Check whether the weighted sum of the amplitudes
corresponding to the OSN diagrams still satisfies the quantum
Friedmann constraint (in the limit of large universe). Check
whether the Bianchi-Rovelli-Vidotto amplitude is dominating
the transition amplitude in the limit of large universe.

• Do the calculations in the Lorentzian case (Jacek’s talk).
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