First-order Dipole Cosmology

Marcin Kisielowski

Institute for Quantum Gravity, University of Erlangen-Nürnberg

Tux, February 2015

Outline

- 1 Bianchi-Rovelli-Vidotto model: a brief review
- 2 The foams contributing in the first order
- The transition amplitude
 Face amplitudes
 Vertex amplitudes (examples)
 Sketch of the proof
- 4 Summary and Outlook

Bianchi-Rovelli-Vidotto model: a brief review

Initial and final state

Initial and final graphs.

In Dipole Cosmology model one calculates transition amplitudes between initial and final coherent states defined by $\Psi_{\rm in/out} \in {\rm L}^2 \left({\it SU}(2)^4 \right) :$

$$\Psi_{\mathrm{in/out}}(U) = \int \prod_{n \in \Gamma_{\mathrm{in/out}}^{(0)}} dg_n \prod_{\ell \in \Gamma_{\mathrm{in/out}}^{(1)}} K_t \left(g_{s(\ell)}^{-1} U_\ell g_{t(\ell)} H_\ell^{-1} \right),$$

where $g: \Gamma_{\mathrm{in/out}}^{(0)} \to SU(2)$, $U: \Gamma_{\mathrm{in/out}}^{(1)} \to SU(2)$, K_t is the analytic continuation to SL(2, \mathbb{C}) of a heat kernel on SU(2).

Initial and final state

The initial and final states are peaked on homogeneous and isotropic geometry:

$$H_{\ell} = n_{\ell} e^{-\frac{i}{2} z_{\mathrm{in/out}} \sigma_3} n_{\ell}^{-1},$$

where $n_{\ell} \in \mathrm{SU}(2)/\mathrm{U}(1) = \mathbb{S}^2$.

Initial and final state

The initial and final states are peaked on homogeneous and isotropic geometry:

$$H_{\ell} = n_{\ell} e^{-\frac{i}{2} z_{\mathrm{in/out}} \sigma_3} n_{\ell}^{-1},$$

where $n_{\ell} \in SU(2)/U(1) = \mathbb{S}^2$. n_{ℓ} have interpretation of normals to faces of regular tetrahedron $(\vec{n}_{\ell} \cdot \vec{n}_{\ell'} = -\frac{1}{3} \text{ if } \ell \neq \ell')$, topology of space is \mathbb{S}^3

$${
m Re}(z_{
m in/out})\sim \dot{a}_{
m in/out}, \quad {
m Im}(z_{
m in/out})\sim a_{
m in/out}.$$

The transition amplitude

BRV foam

The transition amplitude

BRV foam

The transition amplitude calculated using the EPRL spin foam model gives the correct Friedmann dynamics in the classical limit (in the absence of matter).

The goal

• Find other foams contributing to the Dipole Cosmology amplitude in the first order of vertex and edge expansion.

The goal

• Find other foams contributing to the Dipole Cosmology amplitude in the first order of vertex and edge expansion.

• Show that in the limit of large volume of the universe the Bianchi-Rovelli-Vidotto contribution is dominating the transition amplitude.

Graph diagrams

Graph Diagrams

Graph Diagrams:

 Oriented, connected, closed graphs

Graph Diagrams

Graph Diagrams:

- Oriented, connected, closed graphs
- Node relation

Graph Diagrams

Graph Diagrams:

- Oriented, connected, closed graphs
- Node relation
- Link relations

Graph diagrams and foams

Graph diagrams and foams

Graph diagrams and foams

Face relation

First order of vertex and edge expansion

First order of vertex and edge expansion

We find all foams having two dipole graph as the boundary graph, one internal vertex, and four internal edges.

First order of vertex and edge expansion

We find all foams having two dipole graph as the boundary graph, one internal vertex, and four internal edges.

The interaction graphs

Ambiguity in node relations

Ambiguity in link relations

The transition amplitude

Boundary spin network

$$\iota_{n_4}^{\mathrm{LS}} = (\iota_{n_3}^{\mathrm{LS}})^{\dagger}, \quad \iota_{n_1}^{\mathrm{LS}} = (\iota_{n_2}^{\mathrm{LS}})^{\dagger}.$$

Livine-Speziale coherent intertwiners

Livine-Speziale coherent intertwiners:

$$\iota_{n_2}^{\mathrm{LS}} = \int d\mu_{\mathrm{H}}(g) \bigotimes_{\mathsf{l}=1}^{4} \rho_{k_\mathsf{l}}(g) |k_\mathsf{l}\vec{n}_\mathsf{l}\rangle, \ \iota_{n_3}^{\mathrm{LS}} = \int d\mu_{\mathrm{H}}(g) \bigotimes_{\mathsf{l}=5}^{8} \rho_{k_\mathsf{l}}(g) |k_\mathsf{l}\vec{n}_{\mathsf{l}-4}\rangle.$$

Perelomov coherent states:

t

$$|k\vec{n}\rangle = \rho^{\kappa}(g(\vec{n}))|kk\rangle,$$

where $g(\vec{n}) = \begin{pmatrix} \cos(\frac{\theta}{2}) & \sin(\frac{\theta}{2})e^{-i\phi} \\ -\sin(\frac{\theta}{2})e^{i\phi} & \cos(\frac{\theta}{2}) \end{pmatrix}$ is an SU(2) element
that transforms the vector $(0, 0, 1)$ into the vector
 $\vec{n} = (\cos(\phi)\sin(\theta), \sin(\phi)\sin(\theta), \cos(\theta)).$

1

Orientations of the links

Operation of *flipping orientation* of a link of a spin network: Being given a spin network $s = (\gamma, \rho, \iota)$, let a graph γ' be obtained by flipping the orientation of one of the links, say $\ell_0 \in \gamma^{(1)}$. The flipped orientation link is denoted by ℓ_0^{-1} . On γ' we define a spin network $s' := (\gamma', \rho', \iota')$, where:

$$\begin{split} \iota' &:= \iota \\ \rho'_{\ell} &:= \begin{cases} (\rho_{\ell_0})^*, \text{ if } \ell = \ell_0^{-1}, \\ \rho_{\ell}, \text{ otherwise.} \end{cases} \end{split}$$

Orientations of the links

For SU(2) group the irreducible representations ρ and ρ^* are equivalent, i.e. there exists an isomorphism $\epsilon : \mathcal{H}_{\rho} \to \mathcal{H}_{\rho}^*$ such that

$$\epsilon \rho(g) = \rho^*(g) \epsilon.$$

On γ' we can define a spin network $\tilde{s} := (\gamma', \tilde{\rho}, \tilde{\iota})$, where:

 $\rho_{\ell} := \rho_{\ell}.$

$$\widetilde{\iota}_n := \begin{cases} (id \otimes \ldots \otimes \epsilon^{-1} \otimes \ldots \otimes id)(\iota_n), \text{ if } n = t(\ell_0^{-1}), \\ (id \otimes \ldots \otimes \epsilon^* \otimes \ldots \otimes id)(\iota_n), \text{ if } n = s(\ell_0^{-1}), \\ \iota_n \text{ otherwise.} \end{cases}$$

Orientations of the links

The spin-foam amplitudes are calculated using equivalent spin-networks on the boundary.

Possible colorings

 $\delta_{\text{comp}}(k) = \begin{cases} 1 \text{ if } k \text{ is compatible with the graph diagram,} \\ 0 \text{ otherwise.} \end{cases}$

Interaction spin network

The vertex amplitude

Given
$$\gamma \in \mathbb{Q}$$
 and $k_{l} \in \frac{1}{2}\mathbb{N}$, $l \in \{1, ..., N\}$ such that
 $\forall_{l} \quad j_{l}^{\pm} := \frac{|1 \pm \gamma|}{2} k_{l} \in \frac{1}{2}\mathbb{N}$, the map
 $\iota_{\text{EPRL}} : \text{Inv} (\mathcal{H}_{k_{1}} \otimes \cdots \otimes \mathcal{H}_{k_{N}}) \to \text{Inv} (\mathcal{H}_{j_{1}^{+}} \otimes \cdots \otimes \mathcal{H}_{j_{N}^{+}}) \otimes \text{Inv} (\mathcal{H}_{j_{1}^{-}} \otimes \cdots \otimes \mathcal{H}_{j_{N}^{-}})$
defined as follows:

$$\iota_{\rm EPRL}(\mathcal{I})^{A_1^+ \dots A_N^+ A_1^- \dots A_N^-} := P_{D_1^+ \dots D_N^+}^{A_1^+ \dots A_N^+} P_{D_1^- \dots D_N^-}^{A_1^- \dots A_N^-} C_{B_1}^{D_1^+ D_1^-} \dots C_{B_N}^{D_N^+ D_N^-} \mathcal{I}^{B_1 \dots B_N}$$

will be called the Engle-Pereira-Rovelli-Livine map (EPRL map in short) and denoted by $\iota_{\rm EPRL}.$

The vertex amplitude

$$\mathcal{A}_{12}^{\text{EPRL}}(\boldsymbol{s}_{12}) = \iota_{\text{EPRL}}(\iota_{n_{1}}^{\text{LS}})^{A_{1}^{+}A_{1}^{-}A_{2}^{+}A_{2}^{-}A_{3}^{+}A_{3}^{-}A_{4}^{+}A_{4}^{-}} \iota_{\text{EPRL}}(\iota_{n_{2}}^{\text{LS}})_{A_{1}^{+}A_{1}^{-}A_{2}^{+}A_{2}^{-}A_{3}^{+}A_{3}^{-}A_{5}^{+}A_{5}^{-}} \\ \iota_{\text{EPRL}}(\iota_{n_{3}}^{\text{LS}})_{A_{4}^{+}A_{4}^{-}A_{6}^{+}A_{6}^{-}}^{A_{6}^{+}A_{6}^{-}A_{8}^{+}A_{8}^{-}} \iota_{\text{EPRL}}(\iota_{n_{4}}^{\text{LS}})_{A_{8}^{+}A_{8}^{-}A_{7}^{+}A_{7}^{-}}^{A_{7}^{+}A_{5}^{+}A_{5}^{-}}$$

The transition amplitude

$$egin{aligned} & \mathcal{W}(z_{ ext{in}}, z_{ ext{out}}) = \sum_k \prod_{\ell \in \Gamma^{(1)}} e^{-k_\ell (k_\ell+1)t - ext{i} z_\ell k_\ell} \ & \delta_{ ext{comp}}(k) \prod_{[\ell] \in \mathfrak{F}_{ ext{closed}}} (2k_{[\ell]}+1) \mathcal{A}_{ ext{int}}^{ ext{EPRL}}\left(s_{ ext{int}}
ight) \end{aligned}$$

Face amplitudes $\prod_{[\ell]\in\mathfrak{F}_{\mathrm{closed}}}(2k_{[\ell]}+1)$

$$\pi = (1)(2)(3)(45)(6)(7)(8)$$

In particular: number of cycles=number of closed faces.

In particular: number of cycles=number of closed faces. Number of cycles \leq 8 and equals 8 only for $\pi = id$.

In particular: number of cycles=number of closed faces. Number of cycles \leq 8 and equals 8 only for $\pi = id$. As a result the product of face amplitudes is a polynomial of degree:

$$\deg \prod_{[\ell] \in \mathfrak{F}_{ ext{closed}}} (2k_{[\ell]} + 1) \leq 8$$

and deg $\prod_{[\ell]\in\mathfrak{F}_{\mathrm{closed}}}(2k_{[\ell]}+1)=8$ only in the BRV foam.

Vertex amplitudes $\mathcal{A}_{\mathrm{int}}^{\mathrm{EPRL}}(\mathbf{s}_{\mathrm{int}})$

The first example

The first example

$$egin{aligned} |\mathcal{A}_{12}^{ ext{EPRL}}(s_{12})| &= \delta_{k_4k_8} rac{1}{(2j_4^+ + 1)^2(2j_4^- + 1)^2} |ig\langle k_4 - ec{n}_4 | k_4ec{n}_8 ig
angle |^2 |ig\langle k_6 - ec{n}_6 | k_6ec{n}_7 ig
angle |^2 \cdot & \ & \quad \cdot ig\langle \iota_{ ext{EPRL}}(\iota_{n_2}^{ ext{LS}}) | \iota_{ ext{EPRL}}(\iota_{n_2}^{ ext{LS}}) ig
angle , \end{aligned}$$

where $j_4^{\pm} = \frac{|1 \pm \gamma|}{2} k_4$. Since the tetrahedra associated to the nodes are regular, it follows that $\vec{n}_4 \cdot \vec{n}_8 = -\frac{1}{3}$, $\vec{n}_6 \cdot \vec{n}_7 = -\frac{1}{3}$ and

$$|\langle k_4 - \vec{n}_4 | k_4 \vec{n}_8 \rangle |^2 |\langle k_6 - \vec{n}_6 | k_6 \vec{n}_7 \rangle |^2 =$$

$$= \left(\frac{1 - \vec{n}_4 \cdot \vec{n}_8}{2}\right)^{2k_4} \left(\frac{1 - \vec{n}_6 \cdot \vec{n}_7}{2}\right)^{2k_6} = \left(\frac{2}{3}\right)^{2(k_4 + k_6)}$$

As a result the amplitude as a function of the spins decays exponentially. The amplitude of a BRV operator spin-network diagram with the same coloring ρ_k is

$$\mathcal{A}_{19}^{\mathrm{EPRL}}(s_{19}) = \left\langle \iota_{\mathrm{EPRL}}(\iota_{n_3}^{\mathrm{LS}}) | \iota_{\mathrm{EPRL}}(\iota_{n_3}^{\mathrm{LS}}) \right\rangle \left\langle \iota_{\mathrm{EPRL}}(\iota_{n_2}^{\mathrm{LS}}) | \iota_{\mathrm{EPRL}}(\iota_{n_2}^{\mathrm{LS}}) \right\rangle.$$

The first example

Whenever there is a loop in the interaction graph, the corresponding contribution can be neglected.

We use the observation that to each graph diagram there corresponds a permutation $\pi \in S_8$. In this example, the vertex amplitude can be written in the following form:

$$\left\langle \Psi \right| \mathcal{A}_{\pi} \left| \Psi \right\rangle,$$

where $|\Psi\rangle = \iota_{\mathrm{EPRL}}(\iota_{n_2}^{\mathrm{LS}}) \otimes \iota_{\mathrm{EPRL}}(\iota_{n_3}^{\mathrm{LS}})$ and $\mathcal{A}_{\pi} : \bigotimes_{\ell \in \Gamma^{(1)}} \mathcal{H}_{j_{\ell}^+ j_{\ell}^-} \to \bigotimes_{\ell \in \Gamma^{(1)}} \mathcal{H}_{j_{\ell}^+ j_{\ell}^-}$ is the operator permuting the indices:

$$(\mathcal{A}_{\pi})_{B_{1}^{+}\dots B_{8}^{+}B_{1}^{-}\dots B_{8}^{-}}^{A_{\pi}^{+}(1)} = \delta_{B_{1}^{+}}^{A_{\pi}^{+}(1)} \cdots \delta_{B_{8}^{+}}^{A_{\pi}^{+}(8)} \delta_{B_{1}^{-}}^{A_{\pi}^{-}(1)} \cdots \delta_{B_{8}^{-}}^{A_{\pi}^{-}(8)}.$$

Since A_{π} is unitary:

$$|ig\langle \Psi | \, \mathcal{A}_{\pi} \, | \Psi
angle | \leq \langle \Psi | \Psi
angle = \mathcal{A}^{ ext{EPRL}}_{19'}(extsf{s}_{19'}),$$

 $|\mathcal{A}_{18}^{\mathrm{EPRL}}(\textit{s}_{18})| \leq \mathcal{A}_{19'}^{\mathrm{EPRL}}(\textit{s}_{19'})$

We define:

$$\begin{split} \Psi_{1}^{A_{1}^{+}A_{1}^{-}} & \stackrel{A_{8}^{+}A_{8}^{-}}{} = \\ &= \iota_{\mathrm{EPRL}}(\iota_{n_{2}}^{\mathrm{LS}})^{A_{1}^{+}A_{1}^{-}} & \stackrel{A_{3}^{+}A_{3}^{-}A_{4}^{+}A_{4}^{-}}{} \iota_{\mathrm{EPRL}}(\iota_{n_{4}}^{\mathrm{LS}})_{A_{3}^{+}A_{3}^{-}A_{4}^{+}A_{4}^{-}} & \stackrel{A_{8}^{+}A_{8}^{-}}{} . \end{split}$$

In this notation the vertex amplitude is of the following form:

$$\mathcal{A}_{20}^{\mathrm{EPRL}}(s_{20}) = \langle \Psi_1 | \mathcal{A}_1 | \Psi_1 \rangle \,,$$

where

$$(\mathcal{A}_{1})_{A_{1}^{+}A_{1}^{-}B_{2}^{+}B_{2}^{-}B_{7}^{+}B_{7}^{-}A_{8}^{+}A_{8}^{-}}^{B_{1}^{+}B_{1}^{-}} = \delta_{A_{1}^{+}}^{B_{1}^{+}}\delta_{A_{1}^{-}}^{B_{1}^{-}}\delta_{B_{7}^{+}}^{A_{2}^{+}}\delta_{B_{7}^{-}}^{A_{7}^{+}}\delta_{B_{2}^{-}}^{A_{7}^{+}}\delta_{B_{2}^{-}}^{B_{8}^{+}}\delta_{A_{8}^{-}}^{B_{8}^{+}}\delta_{A_{8}^{-}}^{B_{8}^{+}}$$

is a unitary operator

$$\mathcal{A}_{1}:\mathcal{H}_{j_{\ell_{1}}^{+}j_{\ell_{1}}^{-}}\otimes\mathcal{H}_{j_{\ell_{2}}^{+}j_{\ell_{2}}^{-}}^{*}\otimes\mathcal{H}_{j_{\ell_{7}}^{+}j_{\ell_{7}}^{-}}^{*}\otimes\mathcal{H}_{j_{\ell_{8}}^{+}j_{\ell_{8}}^{-}}\to\mathcal{H}_{j_{\ell_{1}}^{+}j_{\ell_{1}}^{-}}\otimes\mathcal{H}_{j_{\ell_{2}}^{+}j_{\ell_{2}}^{-}}^{*}\otimes\mathcal{H}_{j_{\ell_{7}}^{+}j_{\ell_{7}}^{-}}^{*}\otimes\mathcal{H}_{j_{\ell_{8}}^{+}j_{\ell_{7}}^{-}}^{*}\otimes\mathcal{H}_{j_{\ell_{8}}^{+}j_{\ell_{8}}^{-}}^{*}\to\mathcal{H}_{j_{\ell_{1}}^{+}j_{\ell_{1}}^{-}}^{*}\otimes\mathcal{H}_{j_{\ell_{7}}^{+}j_{\ell_{7}}^{-}}^{*}\otimes\mathcal{H}_{j_{\ell_{8}}^{+}j_{\ell_{7}}^{-}}^{*}\otimes\mathcal{H}_{j_{\ell_{8}}^{+}j_{\ell_{8}}^{-}}^{*}\to\mathcal{H}_{j_{\ell_{1}}^{+}j_{\ell_{1}}^{-}}^{*}\otimes\mathcal{H}_{j_{\ell_{7}}^{+}j_{\ell_{7}}^{-}}^{*}\otimes\mathcal{H}_{j_{\ell_{8}}^{+}j_{\ell_{8}}^{-}}^{*}\to\mathcal{H}_{j_{\ell_{8}}^{+}j_{\ell_{8}}^{-}}^{*}$$

It follows that

$$|\mathcal{A}_{17}^{\mathrm{EPRL}}(\mathit{s}_{17})| = |\langle \Psi_1 | \mathcal{A}_1 | \Psi_1 \rangle| \leq \langle \Psi_1 | \Psi_1
angle = \mathcal{A}_{18'}^{\mathrm{EPRL}}(\mathit{s}_{18'}).$$

Now, we use an argument similar to the one used in the previous subsection. We define

$$\Psi_2 = \iota_{\mathrm{EPRL}}(\iota_{n_2}^{\mathrm{LS}}) \otimes \iota_{\mathrm{EPRL}}(\iota_{n_3}^{\mathrm{LS}})$$

and note that

$$\mathcal{A}_{18'}^{\mathrm{EPRL}}(\textit{s}_{18'}) = \left< \Psi_2 | \mathcal{A}_2 | \Psi_2 \right>,$$

where \mathcal{A}_2 is an operator permuting the indices. As a result,

$$\mathcal{A}_{18'}^{\mathrm{EPRL}}(\boldsymbol{\mathit{s}}_{18'}) = |\langle \Psi_2 | \mathcal{A}_2 | \Psi_2 \rangle| \leq \langle \Psi_2 | \Psi_2 \rangle = \mathcal{A}_{19''}^{\mathrm{EPRL}}(\boldsymbol{\mathit{s}}_{19''}).$$

In summary: $|\mathcal{A}_{20}^{\mathrm{EPRL}}(s_{20})| \leq \mathcal{A}_{18'}^{\mathrm{EPRL}}(s_{18'}) \leq \mathcal{A}_{19''}^{\mathrm{EPRL}}(s_{19''}).$

Sketch of the proof

Orientation of the links

$$|\mathcal{A}^{\mathrm{EPRL}}_{20}(\mathit{s}_{20})| = |\mathcal{A}^{\mathrm{EPRL}}_{\widetilde{20}}(\widetilde{\mathit{s}}_{20})|.$$

Closure condition

If the closure condition:

$$\sum_{\ell:\ell\cap n=\emptyset}k_\ell\vec{n}_\ell=0$$

is not satisfied, then the amplitude is exponentially supressed. Since the tetrahedron is regular

ļ

$$\sum_{\ell:\ell\cap n=\emptyset}\vec{n}_\ell=0,$$

it follows that $k_{\ell} = k$ for any link ℓ intersecting the node *n*.

Interaction graphs

$$a + b + c = 4$$
, $a, b, c \in \{0, 1, 2, 3, 4\}$.

Interaction graphs

Interaction graphs

Special case

As in example 2.

$$\mathcal{A}^{\mathrm{EPRL}}(s) = ra{\Psi} \mathcal{A}_{\pi} \ket{\Psi},$$

where $|\Psi\rangle = \iota_{\rm EPRL}(\iota_{n_2}^{\rm LS}) \otimes \iota_{\rm EPRL}(\iota_{n_3}^{\rm LS})$ and \mathcal{A}_{π} is a unitary operator. Therefore

$$|raket{\Psi} \mathcal{A}_{\pi} \ket{\Psi}| \leq raket{\Psi} = \mathcal{A}_{ ext{BRV}}^{ ext{EPRL}}(extsf{s}_{ ext{BRV}}),$$

Rotation of the normal vectors

Consider four vectors $(\vec{n}_1, \vec{n}_2, \vec{n}_3, \vec{n}_4)$ and four rotated vectors $(\vec{n}'_1, \vec{n}'_2, \vec{n}'_3, \vec{n}'_4) = (g \cdot \vec{n}_1, g \cdot \vec{n}_2, g \cdot \vec{n}_3, g \cdot \vec{n}_4)$, where $g \in SO(3)$. The Livine-Speziale coherent intwertwiners:

$$\iota^{\mathrm{LS}} = \int d\mu_{\mathrm{H}}(g) \bigotimes_{\mathsf{I}=1}^{4}
ho_{k_{\mathsf{I}}}(g) \ket{k_{\mathsf{I}} ec{n}_{\mathsf{I}}}.$$

and

$$\iota^{\mathrm{LS}'} = \int d\mu_{\mathrm{H}}(g) \bigotimes_{\mathsf{I}=1}^{4} \rho_{k_{\mathsf{I}}}(g) \left| k_{\mathsf{I}} \vec{n}_{\mathsf{I}}' \right\rangle.$$

coincide

$$\iota^{\rm LS} = \iota^{\rm LS'}.$$

General case

As in example 3. We define $\Psi_{1}^{A_{1}^{+}A_{1}^{-}...A_{a}^{+}A_{a}^{-}A_{a+1}^{+}A_{a+1}^{-}...A_{a+c}^{+}A_{a+c}^{-}B_{1}^{+}B_{1}^{-}...B_{c}^{+}B_{c}^{-}B_{c+1}^{+}B_{c+1}^{-}...B_{a+c}^{+}B_{a+c}^{-}} = \\
= \iota_{\text{EPRL}}(\iota_{n_{2}}^{\text{LS}})^{A_{1}^{+}A_{1}^{-}}...A_{a}^{+}A_{a}^{-}A_{a+1}^{+}A_{a+1}^{-}...A_{a+c}^{+}A_{a+c}^{-}A_{a+c}^{+}A_{a+c+1}^{-}A_{a+c+1}^{-}...A_{a+b+c}^{+}A_{a+b+c}^{-}A_{a+b+c}^{-} \\
\iota_{\text{EPRL}}(\iota_{n_{4}}^{\text{LS}})_{A_{a+c+1}^{+}A_{a+c+1}^{-}...A_{a+b+c}^{+}A_{a+b+c}^{-}}.$

General case

$$\mathcal{A}^{ ext{EPRL}}(s) = ra{\Psi_1} \mathcal{A}_\sigma \ket{\Psi_1},$$

where $\sigma \in S_{2(a+c)}$ and \mathcal{A}_{σ} is a unitary operator permuting the inidices. Therefore

$$|\mathcal{A}^{ ext{EPRL}}(s)| = |\langle \Psi_1 | \, \mathcal{A}_\sigma \, | \Psi_1
angle | \leq \langle \Psi_1 | \Psi_1
angle = |\mathcal{A}^{ ext{EPRL}}(s')| \leq \mathcal{A}_{ ext{BRV}}^{ ext{EPRL}}(s_{ ext{BRV}})$$

Summary

• We found all foams with the boundary graph formed by two dipole graphs, with one internal vertex and four internal edges.

Summary

- We found all foams with the boundary graph formed by two dipole graphs, with one internal vertex and four internal edges.
- We showed that in the limit of large volume of the universe the transition amplitude is dominated by the Bianchi-Rovelli-Vidotto contribution.

Outlook

• Extend the calculations to n-valent theta graphs (many-links dipole graph).

Outlook

- Extend the calculations to n-valent theta graphs (many-links dipole graph).
- Find the subleading order of the large volume of the universe approximation.

Outlook

- Extend the calculations to n-valent theta graphs (many-links dipole graph).
- Find the subleading order of the large volume of the universe approximation.
- Justify vertex expansion, find weights and higher order contributions.
Outlook

- Extend the calculations to n-valent theta graphs (many-links dipole graph).
- Find the subleading order of the large volume of the universe approximation.
- Justify vertex expansion, find weights and higher order contributions.
- Do the calculations in the Lorentzian case.

Outlook

- Extend the calculations to n-valent theta graphs (many-links dipole graph).
- Find the subleading order of the large volume of the universe approximation.
- Justify vertex expansion, find weights and higher order contributions.
- Do the calculations in the Lorentzian case.
- Couple the model to matter.

Thank you for your attention!