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Bianchi-Rovelli-Vidotto
model: a brief review



Initial and final state

Initial and final graphs.

In Dipole Cosmology model one calculates transition amplitudes
between initial and final coherent states defined by
Ψin/out ∈ L2

(
SU(2)4

)
:

Ψin/out(U) =

∫ ∏
n∈Γ

(0)
in/out

dgn
∏

`∈Γ
(1)
in/out

Kt

(
g−1
s(`)U`gt(`)H

−1
`

)
,

where g : Γ
(0)
in/out → SU(2), U : Γ

(1)
in/out → SU(2), Kt is the analytic

continuation to SL(2,C) of a heat kernel on SU(2).



Initial and final state

The initial and final states are peaked on homogeneous and
isotropic geometry:

H` = n`e
− i

2
zin/outσ3n−1

` ,

where n` ∈ SU(2)/U(1) = S2.

n` have interpretation of normals to faces of
regular tetrahedron (~n` · ~n`′ = −1

3 if ` 6= `′),
topology of space is S3

Re(zin/out) ∼ ȧin/out, Im(zin/out) ∼ ain/out.
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model gives the correct Friedmann dynamics in the classical limit
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The goal

• Find other foams contributing to the Dipole Cosmology
amplitude in the first order of vertex and edge expansion.

• Show that in the limit of large volume of the universe the
Bianchi-Rovelli-Vidotto contribution is dominating the
transition amplitude.
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Face relation



First order of vertex and
edge expansion



First order of vertex and edge expansion

We find all foams having two dipole graph as the boundary graph,
one internal vertex, and four internal edges.
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The interaction graphs
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Ambiguity in node relations



Ambiguity in link relations



The transition amplitude



Boundary spin network

ιLSn4
= (ιLSn3

)†, ιLSn1
= (ιLSn2

)†.



Livine-Speziale coherent intertwiners

Livine-Speziale coherent intertwiners:

ιLSn2
=

∫
dµH(g)

4⊗
I=1

ρkI
(g) |kI~nI〉 , ιLSn3

=

∫
dµH(g)

8⊗
I=5

ρkI
(g) |kI~nI−4〉 .

Perelomov coherent states:

|k~n〉 = ρk(g(~n)) |kk〉 ,

where g(~n) =

(
cos( θ2 ) sin( θ2 )e−iφ

− sin( θ2 )e iφ cos( θ2 )

)
is an SU(2) element

that transforms the vector (0, 0, 1) into the vector
~n = (cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)).



Orientations of the links

Operation of flipping orientation of a link of a spin network:
Being given a spin network s = (γ, ρ, ι), let a graph γ′ be obtained
by flipping the orientation of one of the links, say `0 ∈ γ(1). The
flipped orientation link is denoted by `−1

0 . On γ′ we define a spin
network s ′ := (γ′, ρ′, ι′), where:

ι′ := ι

ρ′` :=

{
(ρ`0)∗, if ` = `−1

0 ,

ρ`, otherwise.



Orientations of the links

For SU(2) group the irreducible representations ρ and ρ∗ are
equivalent, i.e. there exists an isomorphism ε : Hρ → H∗ρ such that

ερ(g) = ρ∗(g)ε.

On γ′ we can define a spin network s̃ := (γ′, ρ̃, ι̃), where:

ι̃n :=


(id ⊗ . . .⊗ ε−1 ⊗ . . .⊗ id)(ιn), if n = t(`−1

0 ),

(id ⊗ . . .⊗ ε∗ ⊗ . . .⊗ id)(ιn), if n = s(`−1
0 ),

ιn otherwise.

ρ̃` := ρ`.



Orientations of the links

The spin-foam amplitudes are calculated using equivalent
spin-networks on the boundary.



Possible colorings

δcomp(k) =

{
1 if k is compatible with the graph diagram,

0 otherwise.



Interaction spin network



The vertex amplitude

Given γ ∈ Q and kI ∈ 1
2N, I ∈ {1, . . . ,N} such that

∀I j±I := |1±γ|
2 kI ∈ 1

2N, the map

ιEPRL : Inv (Hk1 ⊗ · · · ⊗ HkN )→ Inv
(
Hj+1
⊗ · · · ⊗ Hj+

N

)
⊗Inv

(
H

j−1
⊗ · · · ⊗ H

j−
N

)
defined as follows:

ιEPRL(I)A
+
1 ...A

+
N
A−

1 ...A
−
N := P+A+

1 ...A
+
N

D+
1 ...D

+
N

P−
A−

1 ...A
−
N

D−
1 ...D

−
N

C
D+

1 D−
1

B1
...C

D+
N
D−
N

BN
IB1...BN

will be called the Engle-Pereira-Rovelli-Livine map (EPRL map in
short) and denoted by ιEPRL.



The vertex amplitude

AEPRL
12 (s12) = ιEPRL(ιLSn1

)A
+
1 A

−
1 A+

2 A
−
2 A+

3 A
−
3 A+

4 A
−
4 ιEPRL(ιLSn2

)
A+

1 A
−
1 A+

2 A
−
2 A+

3 A
−
3 A+

5 A
−
5

ιEPRL(ιLSn3
)

A+
6 A

−
6 A+

8 A
−
8

A+
4 A

−
4 A+

6 A
−
6

ιEPRL(ιLSn4
)

A+
7 A

−
7 A+

5 A
−
5

A+
8 A

−
8 A+

7 A
−
7



The transition amplitude

W (zin, zout) =
∑
k

∏
`∈Γ(1)

e−k`(k`+1)t−iz`k`

δcomp(k)
∏

[`]∈Fclosed

(2k[`] + 1)AEPRL
int (sint)



Face amplitudes∏
[`]∈Fclosed

(2k[`] + 1)



Parametrization by permutations
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Cycles=closed faces

π = (1)(2)(3)(45)(6)(7)(8)



Cycles=closed faces

In particular: number of cycles=number of closed faces.

Number of cycles ≤ 8 and equals 8 only for π = id .
As a result the product of face amplitudes is a polynomial of
degree:

deg
∏

[`]∈Fclosed

(2k[`] + 1) ≤ 8

and deg
∏

[`]∈Fclosed
(2k[`] + 1) = 8 only in the BRV foam.
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Vertex amplitudes

AEPRL
int (sint)



The first example



The first example

|AEPRL
12 (s12)| = δk4k8

1

(2j+
4 + 1)2(2j−4 + 1)2

| 〈k4−~n4|k4~n8〉 |2| 〈k6−~n6|k6~n7〉 |2·

·
〈
ιEPRL(ιLSn2

)|ιEPRL(ιLSn2
)
〉
,

where j±4 = |1±γ|
2 k4. Since the tetrahedra associated to the nodes

are regular, it follows that ~n4 · ~n8 = −1
3 , ~n6 · ~n7 = −1

3 and

| 〈k4−~n4|k4~n8〉 |2| 〈k6−~n6|k6~n7〉 |2 =

=

(
1− ~n4 · ~n8

2

)2k4
(

1− ~n6 · ~n7

2

)2k6

=

(
2

3

)2(k4+k6)

.

As a result the amplitude as a function of the spins decays
exponentially. The amplitude of a BRV operator spin-network
diagram with the same coloring ρk is

AEPRL
19 (s19) =

〈
ιEPRL(ιLSn3

)|ιEPRL(ιLSn3
)
〉 〈
ιEPRL(ιLSn2

)|ιEPRL(ιLSn2
)
〉
.



The first example

1) 2) 3)

4) 5) 6)

7) 8) 9)

10) 11) 12)

13) 14) 15)

16) 17) 18)

19) 20)

Whenever there is a loop in the interaction graph, the
corresponding contribution can be neglected.



The second example



The second example

We use the observation that to each graph diagram there
corresponds a permutation π ∈ S8. In this example, the vertex
amplitude can be written in the following form:

〈Ψ| Aπ |Ψ〉 ,

where |Ψ〉 = ιEPRL(ιLSn2
)⊗ ιEPRL(ιLSn3

) and
Aπ :

⊗
`∈Γ(1) Hj+

` j
−
`
→
⊗

`∈Γ(1) Hj+
` j
−
`

is the operator permuting the

indices:

(Aπ)
A+

1 ...A
+
8 A−1 ...A

−
8

B+
1 ...B

+
8 B−1 ...B

−
8

= δ
A+
π(1)

B+
1

· · · δ
A+
π(8)

B+
8

δ
A−
π(1)

B−1
· · · δ

A−
π(8)

B−8
.

Since Aπ is unitary:

| 〈Ψ| Aπ |Ψ〉 | ≤ 〈Ψ|Ψ〉 = AEPRL
19′ (s19′),



The second example

|AEPRL
18 (s18)| ≤ AEPRL

19′ (s19′)



The second example
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The third example
We define:

Ψ
A+

1 A−1 A+
8 A−8

1 A+
2 A−2 A+

7 A−7
=

= ιEPRL(ιLSn2
)
A+

1 A−1 A+
3 A−3 A+

4 A−4
A+

2 A−2
ιEPRL(ιLSn4

)
A+

8 A−8
A+

3 A−3 A+
4 A−4 A+

7 A−7
.

In this notation the vertex amplitude is of the following form:

AEPRL
20 (s20) = 〈Ψ1| A1 |Ψ1〉 ,

where

(A1)
B+

1 B−1 A+
2 A−2 A+

7 A−7 B+
8 B−8

A+
1 A−1 B+

2 B−2 B+
7 B−7 A+

8 A−8
= δ

B+
1

A+
1

δ
B−1
A−1
δ
A+

2

B+
7

δ
A−2
B−7
δ
A+

7

B+
2

δ
A−7
B−2
δ
B+

8

A+
8

δ
B−8
A−8

is a unitary operator

A1 : Hj+
`1
j−`1
⊗H∗

j+
`2
j−`2
⊗H∗

j+
`7
j−`7
⊗Hj+

`8
j−`8
→ Hj+

`1
j−`1
⊗H∗

j+
`2
j−`2
⊗H∗

j+
`7
j−`7
⊗Hj+

`8
j−`8
.



The third example

It follows that

|AEPRL
17 (s17)| = | 〈Ψ1| A1 |Ψ1〉 | ≤ 〈Ψ1|Ψ1〉 = AEPRL

18′ (s18′).



The third example

Now, we use an argument similar to the one used in the previous
subsection. We define

Ψ2 = ιEPRL(ιLSn2
)⊗ ιEPRL(ιLSn3

)

and note that
AEPRL

18′ (s18′) = 〈Ψ2|A2|Ψ2〉 ,

where A2 is an operator permuting the indices. As a result,

AEPRL
18′ (s18′) = | 〈Ψ2|A2|Ψ2〉 | ≤ 〈Ψ2|Ψ2〉 = AEPRL

19′′ (s19′′).



The third example

In summary: |AEPRL
20 (s20)| ≤ AEPRL

18′ (s18′) ≤ AEPRL
19′′ (s19′′).



Sketch of the proof



Orientation of the links

|AEPRL
20 (s20)| = |AEPRL

2̃0
(s̃20)|.



Closure condition

If the closure condition: ∑
`:`∩n=∅

k`~n` = 0

is not satisfied, then the amplitude is exponentially supressed.
Since the tetrahedron is regular∑

`:`∩n=∅

~n` = 0,

it follows that k` = k for any link ` intersecting the node n.



Interaction graphs

a + b + c = 4, a, b, c ∈ {0, 1, 2, 3, 4}.



Interaction graphs



Interaction graphs



Special case

As in example 2.

AEPRL(s) = 〈Ψ| Aπ |Ψ〉 ,
where |Ψ〉 = ιEPRL(ιLSn2

)⊗ ιEPRL(ιLSn3
) and Aπ is a unitary

operator. Therefore

| 〈Ψ| Aπ |Ψ〉 | ≤ 〈Ψ|Ψ〉 = AEPRL
BRV (sBRV),



Rotation of the normal vectors

Consider four vectors (~n1, ~n2, ~n3, ~n4) and four rotated vectors
(~n′1, ~n

′
2, ~n
′
3, ~n
′
4) = (g · ~n1, g · ~n2, g · ~n3, g · ~n4), where g ∈ SO(3).

The Livine-Speziale coherent intwertwiners:

ιLS =

∫
dµH(g)

4⊗
I=1

ρkI
(g) |kI~nI〉 .

and

ιLS
′

=

∫
dµH(g)

4⊗
I=1

ρkI
(g)
∣∣kI~n

′
I

〉
.

coincide
ιLS = ιLS

′
.



General case

As in example 3. We define

Ψ
A+

1 A−1 ...A
+
a A
−
a A+

a+1A
−
a+1...A

+
a+cA

−
a+cB

+
1 B−1 ...B

+
c B−c B+

c+1B
−
c+1...B

+
a+cB

−
a+c

1 =

= ιEPRL(ιLSn2
)A

+
1 A−1 ...A

+
a A
−
a A+

a+1A
−
a+1...A

+
a+cA

−
a+cA

+
a+c+1A

−
a+c+1...A

+
a+b+cA

−
a+b+c

ιEPRL(ιLSn4
)

B+
1 B−1 ...B

+
c B−c B+

c+1B
−
c+1...B

+
a+cB

−
a+c

A+
a+c+1A

−
a+c+1...A

+
a+b+cA

−
a+b+c

.



General case

AEPRL(s) = 〈Ψ1| Aσ |Ψ1〉 ,

where σ ∈ S2(a+c) and Aσ is a unitary operator permuting the
inidices. Therefore

|AEPRL(s)| = | 〈Ψ1| Aσ |Ψ1〉 | ≤ 〈Ψ1|Ψ1〉 = |AEPRL(s ′)| ≤ AEPRL
BRV (sBRV).



Summary

• We found all foams with the boundary graph formed by two
dipole graphs, with one internal vertex and four internal edges.

• We showed that in the limit of large volume of the universe
the transition amplitude is dominated by the
Bianchi-Rovelli-Vidotto contribution.
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Outlook

• Extend the calculations to n-valent theta graphs (many-links
dipole graph).

• Find the subleading order of the large volume of the universe
approximation.

• Justify vertex expansion, find weights and higher order
contributions.

• Do the calculations in the Lorentzian case.

• Couple the model to matter.
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Thank you for your attention!
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