A Larger State Space for Quantum Gravity

Suzanne Lanéry

in collaboration with T. Thiemann

FAU Erlangen / Université de Tours

Why?

- ► LQG treatment of holonomies / flux is very unbalanced → serious issue when looking for well-behaved coherent states
- ▶ working with a stack of small theories is technically comfortable until we try to go beyond fixed graph
 → 'cylindrical consistency' is hard to get, going to the dual space has its own drawbacks
- ► physical interpretation as specializing into specific d.o.f.'s of the continuous theory: why ⊕? it should be ⊗! [see also: Thiemann & Winkler '01]

How?

- ► usual construction relies on writing the configuration space as a projective limit → let's write the phase space as a projective limit... [see also: Thiemann '01]
- ► transcription at the quantum level → projective families of density matrices, the projections are given by appropriate partial traces [Kijowski '76, Okołów '09 & '13]
- ▶ physical insight → a given experiment only measures a finite number of observables

Contents

Projective Systems of State Spaces Projective Systems of Phase Spaces Projective Systems of Quantum State Spaces

Application to Quantum Gravity

Dealing with Constraints

Projective Systems of Phase Spaces

 $\eta \preccurlyeq \eta' \preccurlyeq \eta'' \in \mathcal{L}$

Collection of partial theories:

- $\blacktriangleright \text{ label set } \mathcal{L}, \preccurlyeq$
- $\eta \in \mathcal{L} = a$ selection of d.o.f.'s
- ► 'small' symplectic manifolds M_η

Ensuring consistency:

- \blacktriangleright projections $\pi_{\eta' \rightarrow \eta}$ for $\eta \preccurlyeq \eta'$
- compatible with symplectic structures
- ► 3-spaces-consistency → projective system

[Projective state spaces: Kijowski '76, Okołów '09 & '13]

Projective State Spaces for LQG / LQC	
Projective Structures	

- Classical

$$\pi: \mathcal{M} \to \widetilde{\mathcal{M}}$$

$$q_1, \dots, q_n$$

$$p_1, \dots, p_n;$$

$$\downarrow$$

$$\widetilde{q}_1, \dots, \widetilde{q}_m$$

$$\widetilde{p}_1, \dots, \widetilde{p}_m;$$

$$\pi: \mathcal{M} \to \widetilde{\mathcal{M}} \qquad \mathcal{M} \approx \widetilde{\mathcal{M}} \times \mathcal{M} \qquad \mathcal{C} \approx \widetilde{\mathcal{C}} \times \mathcal{L}$$

$$\begin{array}{c} q_{1}, \dots, q_{n} \\ p_{1}, \dots, p_{n}; \\ \downarrow \\ \widetilde{q}_{1}, \dots, \widetilde{q}_{m} \\ \widetilde{p}_{1}, \dots, \widetilde{p}_{m}; \end{array} \qquad \begin{array}{c} q_{1}, \dots, q_{n} \\ p_{1}, \dots, p_{n}; \\ \widetilde{q}_{1}, \dots, \widetilde{q}_{m}, q_{m+1}, \dots, q_{n} \\ \widetilde{p}_{1}, \dots, \widetilde{p}_{m}, \widetilde{p}_{m+1}, \dots, \widetilde{p}_{n}; \end{array} \qquad \begin{array}{c} q_{1}, \dots, q_{n} \\ \downarrow \\ \widetilde{q}_{1}, \dots, \widetilde{q}_{m}, q_{m+1}, \dots, q_{n} \\ \end{array}$$

$$\begin{array}{c} \not \\ \tau: \mathcal{C} \to \widetilde{\mathcal{C}} \\ \hline q_{1}, \dots, q_{n} \\ \downarrow \\ \widetilde{q}_{1}, \dots, \widetilde{q}_{m} \end{array}$$

S. Lanéry

As a classical field theory

$$\mathcal{M}_{\mathcal{I}'} \approx \mathcal{M}_{\mathcal{I}} \times \left(\mathcal{I}^{\perp} \cap \mathcal{I}' \right)$$

$$(\Pi_{\mathcal{I}}\psi), t, E; (\psi - \Pi_{\mathcal{I}}\psi)$$

 $\mathcal{I} \subset \mathcal{I}' \, \subset \mathcal{H}$

Phase space $\mathcal{H} \times \mathbb{R}^2$:

- $\label{eq:general} \begin{tabular}{ll} \bullet & \mbox{Hilbert space } \mathcal{H} \mbox{ with } \\ \Omega_{\mathcal{H}} = 2 \mbox{ Im } \langle \cdot, \, \cdot \rangle \\ \end{tabular}$
- ▶ \mathbb{R}^2 = time & energy

Projective description:

► labels: finite dimensional vector subspaces *I* ⊂ *H*

•
$$\mathcal{M}_{\mathcal{I}} = \mathcal{I} \times \mathbb{R}^2$$

 $\blacktriangleright \ \pi_{\mathcal{I}' \to \mathcal{I}} = \left. \mathsf{\Pi}_{\mathcal{I}} \right|_{\mathcal{I}'} \times \mathsf{id}_{\mathbb{R}^2}$

Projective Systems of Quantum State Spaces

 $\eta \preccurlyeq \eta' \preccurlyeq \eta'' \in \mathcal{L}$

Modeled on special case:

- ► classical factorizations $\mathcal{M}_{\eta'} \approx \mathcal{M}_{\eta' \to \eta} \times \mathcal{M}_{\eta}$
- ► 3-spaces consistency $\mathcal{M}_{\eta'' \to \eta} \approx \mathcal{M}_{\eta'' \to \eta'} \times \mathcal{M}_{\eta' \to \eta}$
- quantum equivalent $\rightarrow \otimes$ -factorizations

Projective families $(\rho_{\eta})_{\eta \in \mathcal{L}}$:

• ρ_{η} density matrix on \mathcal{H}_{η}

•
$$\operatorname{Tr}_{\mathcal{H}_{\eta' \to \eta}} \rho_{\eta'} = \rho_{\eta}$$

[Projective state spaces: Kijowski '76, Okołów '09 & '13]

Projective State Spaces for LQG / LQC

— Quantum

Projective Systems of Quantum State Spaces

 $\eta \preccurlyeq \eta' \preccurlyeq \eta'' \in \mathcal{L}$

Modeled on special case:

- ► classical factorizations $\mathcal{M}_{\eta'} \approx \mathcal{M}_{\eta' \to \eta} \times \mathcal{M}_{\eta}$
- ► 3-spaces consistency $\mathcal{M}_{\eta'' \to \eta} \approx \mathcal{M}_{\eta'' \to \eta'} \times \mathcal{M}_{\eta' \to \eta}$
- quantum equivalent $\rightarrow \otimes$ -factorizations

Projective families $(\rho_{\eta})_{\eta \in \mathcal{L}}$:

• ρ_{η} density matrix on \mathcal{H}_{η}

$$\blacktriangleright \ \operatorname{Tr}_{\mathcal{H}_{\eta' \to \eta}} \rho_{\eta'} = \rho_{\eta}$$

[Projective state spaces: Kijowski '76, Okołów '09 & '13]

Projective State Spaces for LQG / LQC

— Quantum

$$\widehat{\mathcal{M}}_{\mathcal{I}'} \approx \widehat{\mathcal{M}}_{\mathcal{I}} \otimes (\widehat{\mathcal{I}^{\perp} \cap \mathcal{I}'})$$

$$\left| (n_i)_{i \in I'} \right\rangle \otimes |\psi\rangle_{\mathcal{T}}$$

$$\downarrow$$

$$\left| (n_i)_{i \in I} \right\rangle \otimes |\psi\rangle_{\mathcal{T}} \otimes \left| (n_i)_{i \in I' \setminus I} \right\rangle$$

 $\mathcal{I} \subset \mathcal{I}' \subset \mathcal{H}$ $(e_i)_{i \in I}$ onb of $\mathcal{I}, (e_i)_{i \in I'}$ of \mathcal{I}' Usual quantization $\rightarrow \widehat{\mathcal{H}} \otimes \mathcal{T}$:

• Fock space $\widehat{\mathcal{H}}$ built from \mathcal{H}

•
$$\mathcal{T} = L_2(\mathbb{R}, d\mu_{\mathbb{R}})$$

Alternative \rightarrow projective setup:

$$\blacktriangleright \ \widehat{\mathcal{M}}_{\mathcal{I}} = \widehat{\mathcal{I}} \otimes \mathcal{T}$$

$$\bullet \ \widehat{\mathcal{M}}_{\mathcal{I}'} \approx \widehat{\mathcal{M}}_{\mathcal{I}} \otimes (\widehat{\mathcal{I}^{\perp} \cap \mathcal{I}'})$$

from $\widehat{\mathcal{I} \oplus \mathcal{J}} \approx \widehat{\mathcal{I}} \otimes \widehat{\mathcal{J}}$

Projective State Spaces for LQG / LQC

- Projective Structures

– Quantum

Contents

Projective Systems of State Spaces

Application to Quantum Gravity Holonomy-Flux Algebra Loop Quantum Cosmology

Dealing with Constraints

The label set

The label set:

- a graph = a choice of configuration variables
- a set of flux for this graph
 a choice of conjugate
 momentum variables
- the label set must be directed (any two labels η, η' have a common finer label η" ≽ η, η')

[Holonomy-flux algebra: Ashtekar, Isham, Rovelli, Smolin, Lewandowski, Pullin, Gambini,...]

Quantum Gravity

∟lQG

The label set

The label set:

- a graph = a choice of configuration variables
- a set of flux for this graph
 a choice of conjugate
 momentum variables
- the label set must be directed (any two labels η, η' have a common finer label η" ≽ η, η')

[Holonomy-flux algebra: Ashtekar, Isham, Rovelli, Smolin, Lewandowski, Pullin, Gambini,...]

└─LQG

The label set

The label set:

- a graph = a choice of configuration variables
- a set of flux for this graph
 a choice of conjugate
 momentum variables
- the label set must be directed (any two labels η, η' have a common finer label η" ≽ η, η')

[Holonomy-flux algebra: Ashtekar, Isham, Rovelli, Smolin, Lewandowski, Pullin, Gambini,...]

└─LQG

The factorizations

The state spaces:

- ► $T^*(G^n)$
- one group variable per edge

The factorizations:

- $G^n \approx G^m \times G^{n-m}$
- ► selecting specific edges \rightarrow prescribes the factor G^m
- ▶ selecting specific flux
 → prescribes the complementary factor G^{n-m}

The factorizations

The state spaces:

- $T^*(G^n)$
- one group variable per edge

The factorizations:

- $G^n \approx G^m \times G^{n-m}$
- ► selecting specific edges \rightarrow prescribes the factor G^m
- ▶ selecting specific flux
 → prescribes the complementary factor G^{n-m}

[Holonomy-flux algebra: Ashtekar, Isham, Rovelli, Smolin, Lewandowski, Pullin, Gambini,...]

Quantum Gravity

∟lQg

The factorizations

The state spaces:

- ► $T^*(G^n)$
- one group variable per edge

The factorizations:

- $G^n \approx G^m \times G^{n-m}$
- ► selecting specific edges \rightarrow prescribes the factor G^m
- ▶ selecting specific flux
 → prescribes the complementary factor G^{n-m}

The factorizations

The state spaces:

- $T^*(G^n)$
- one group variable per edge

The factorizations:

- $G^n \approx G^m \times G^{n-m}$
- ► selecting specific edges \rightarrow prescribes the factor G^m
- ▶ selecting specific flux
 → prescribes the complementary factor G^{n-m}

The factorizations

The state spaces:

- $T^*(G^n)$
- one group variable per edge

The factorizations:

- $G^n \approx G^m \times G^{n-m}$
- ► selecting specific edges \rightarrow prescribes the factor G^m
- ▶ selecting specific flux
 → prescribes the complementary factor G^{n-m}

The factorizations

The state spaces:

- $T^*(G^n)$
- one group variable per edge

The factorizations:

- $G^n \approx G^m \times G^{n-m}$
- ► selecting specific edges \rightarrow prescribes the factor G^m
- ▶ selecting specific flux
 → prescribes the complementary factor G^{n-m}

The factorizations

The state spaces:

- ► $T^*(G^n)$
- one group variable per edge

The factorizations:

- $G^n \approx G^m \times G^{n-m}$
- ► selecting specific edges \rightarrow prescribes the factor G^m
- ► selecting specific flux → prescribes the complementary factor G^{n-m}

[Holonomy-flux algebra: Ashtekar, Isham, Rovelli, Smolin, Lewandowski, Pullin, Gambini,...]

Projective State Spaces for LQG / LQC

LOG

The factorizations

The state spaces:

- ► $L_2(G^n, d\mu_{\text{Haar}})$
- one group variable per edge

The factorizations:

- $G^n \approx G^m \times G^{n-m}$
- ► selecting specific edges \rightarrow prescribes the factor G^m
- ▶ selecting specific flux
 → prescribes the complementary factor G^{n-m}

[Holonomy-flux algebra: Ashtekar, Isham, Rovelli, Smolin, Lewandowski, Pullin, Gambini,...]

Projective State Spaces for LQG / LQC

LOG

Relation to the usual LQG Hilbert space (1)

 $\psi \in \mathcal{H}_{\gamma} \subset \mathcal{H}_{LQG}$ defines a projective family $(\rho_{\eta})_{\eta \in \mathcal{L}}$:

- $\label{eq:choose} \begin{tabular}{ll} \begin{tabular}{ll} \bullet & \mbox{choose} \eta' \mbox{ with underlying} \\ \mbox{graph } \gamma', \mbox{ such that } \eta \preccurlyeq \eta' \\ \mbox{and } \gamma \preccurlyeq \gamma' \end{tabular}$
- $\blacktriangleright \ \psi \in \mathcal{H}_{\gamma} \subset \mathcal{H}_{\gamma'} \approx \mathcal{H}_{\eta'}$

$$\blacktriangleright \ \rho_{\eta} := \mathsf{T} \mathbf{r}_{\eta' \to \eta} \ |\psi\rangle\!\langle\psi|$$

There is an **injective** map from the space of density matrices on \mathcal{H}_{LQG} into the projective state space.

[LQG Hilbert space: Isham, Ashtekar, Lewandowski,...]

Projective State Spaces for LQG / LQC

Quantum Gravity

∟lQG

Relation to the usual LQG Hilbert space (1)

 $\psi \in \mathcal{H}_{\gamma} \subset \mathcal{H}_{LQG}$ defines a projective family $(\rho_{\eta})_{\eta \in \mathcal{L}}$:

- ► choose η' with underlying graph γ' , such that $\eta \preccurlyeq \eta'$ and $\gamma \preccurlyeq \gamma'$
- $\blacktriangleright \ \psi \in \mathcal{H}_{\gamma} \subset \mathcal{H}_{\gamma'} \approx \mathcal{H}_{\eta'}$

$$\blacktriangleright \ \rho_{\eta} := \mathsf{T} \mathbf{r}_{\eta' \to \eta} \ |\psi\rangle\!\langle\psi|$$

There is an **injective** map from the space of density matrices on \mathcal{H}_{LQG} into the projective state space.

[LQG Hilbert space: Isham, Ashtekar, Lewandowski,...]

Quantum Gravity

∟lQG

Relation to the usual LQG Hilbert space (1)

 $\psi \in \mathcal{H}_{\gamma} \subset \mathcal{H}_{LQG}$ defines a projective family $(\rho_{\eta})_{\eta \in \mathcal{L}}$:

- ► choose η' with underlying graph γ' , such that $\eta \preccurlyeq \eta'$ and $\gamma \preccurlyeq \gamma'$
- $\blacktriangleright \ \psi \in \mathcal{H}_{\gamma} \subset \mathcal{H}_{\gamma'} \approx \mathcal{H}_{\eta'}$

$$\blacktriangleright \ \rho_{\eta} := \mathsf{T} \mathbf{r}_{\eta' \to \eta} \ |\psi\rangle\!\langle\psi|$$

There is an **injective** map from the space of density matrices on \mathcal{H}_{LQG} into the projective state space.

[LQG Hilbert space: Isham, Ashtekar, Lewandowski,...]

LQG

Relation to the usual LQG Hilbert space (2)

The map embedding the LQG state space in the projective one is **not surjective**.

We have states with narrow distribution for infinitely many holonomies:

- first step toward satisfactory coherent states
- but there remain deeper problems...

[LQG Hilbert space: Isham, Ashtekar, Lewandowski,...]

Projective State Spaces for LQG / LQC

-Quantum Gravity

└─LQG

Relation to the usual LQG Hilbert space (2)

The map embedding the LQG state space in the projective one is **not surjective**.

We have states with narrow distribution for infinitely many holonomies:

- first step toward satisfactory coherent states
- ► but there remain deeper problems...

[LQG Hilbert space: Isham, Ashtekar, Lewandowski,...]

Projective State Spaces for LQG / LQC

– Quantum Gravity

└─LQG

Relation to the usual LQG Hilbert space (2)

The map embedding the LQG state space in the projective one is **not surjective**.

We have states with narrow distribution for infinitely many holonomies:

- first step toward satisfactory coherent states
- ► but there remain deeper problems...

[LQG Hilbert space: Isham, Ashtekar, Lewandowski,...]

Projective State Spaces for LQG / LQC

-Quantum Gravity

LQG

Loop Quantum Cosmology

$$n = m/k$$

 $m, n, k \in \mathbb{N}$

Label set $\{n \in \mathbb{N}\}$:

- with order $n \mid m$
- ▶ less observables than on \mathcal{H}_{LQC}

The classical projections are covering maps:

- no factorization as Cartesian product of symplectic manifolds
- ▶ but a ⊗-projective structure still exists

[LQC: Bojowald, Ashtekar, Pawlowski, Singh, Lewandowski,...]

Projective State Spaces for LQG / LQC

Quantum Gravity

∟lQC

Loop Quantum Cosmology

$$\mathcal{U}_1 \approx \mathcal{U}_1 \times \{0, \ldots, k-1\}$$

$$e^{2i\pi \frac{\mu}{m}c} = \left(e^{2i\pi \frac{\mu}{n}c}\right)^{1/k} e^{2i\pi \frac{w}{k}}$$

$$\downarrow$$

$$e^{2i\pi \frac{\mu}{n}c}, \quad w$$

$$n = m/k$$

 $m, n, k \in \mathbb{N}$

Label set $\{n \in \mathbb{N}\}$:

- with order $n \mid m$
- ► less observables than on \mathcal{H}_{LQC}

The classical projections are covering maps:

- no factorization as Cartesian product of symplectic manifolds
- ▶ but a ⊗-projective structure still exists

[LQC: Bojowald, Ashtekar, Pawlowski, Singh, Lewandowski,...]

Projective State Spaces for LQG / LQC

Quantum Gravity

LQC

Loop Quantum Cosmology

$$L_{2}\left(\mathcal{U}_{1}
ight)pprox L_{2}\left(\mathcal{U}_{1}
ight)\otimes\mathbb{C}^{k}$$

$$\left| p = k q + r \right\rangle_{m}$$

$$\left| q \right\rangle_{n} \otimes \left| r \right\rangle_{m \to n}$$

$$n = m/k$$

 $m, n, k \in \mathbb{N}$

Label set $\{n \in \mathbb{N}\}$:

- with order $n \mid m$
- ► less observables than on \mathcal{H}_{LQC}

The classical projections are covering maps:

- no factorization as Cartesian product of symplectic manifolds
- ▶ but a ⊗-projective structure still exists

[LQC: Bojowald, Ashtekar, Pawlowski, Singh, Lewandowski,...]

Projective State Spaces for LQG / LQC

Quantum Gravity

LQC

Contents

Projective Systems of State Spaces

Application to Quantum Gravity

Dealing with Constraints The Easy Case: Nice Constraints Regularizing Unfitting Constraints

Restrictive requirements:

- orbits are projected on orbits $\rightarrow \pi_{\eta}^{_{\mathrm{DYN}}}$ between reduced phase spaces
- compatible with symplect. structures

Dynamical projective system & transport maps:

- states to projective families of orbits
- observables

Restrictive requirements:

- orbits are projected on orbits $\rightarrow \pi_{\eta}^{_{\mathrm{DYN}}}$ between reduced phase spaces
- compatible with symplect. structures

Dynamical projective system & transport maps:

- states to projective families of orbits
- observables

Restrictive requirements:

- orbits are projected on orbits $\rightarrow \pi_n^{\text{\tiny DYN}}$ between reduced phase spaces
- compatible with symplect. structures

Dynamical projective system & transport maps:

- states to projective families of orbits
- observables

Constraints

└─ The Easy Case

Restrictive requirements:

- ▶ orbits are projected on orbits → $\pi_{\eta}^{\text{\tiny DYN}}$ between reduced phase spaces
- compatible with symplect. structures

Dynamical projective system & transport maps:

- states to projective families of orbits
- observables

Constraints

└─ The Easy Case

Restrictive requirements:

- ▶ orbits are projected on orbits → $\pi_{\eta}^{\text{\tiny DYN}}$ between reduced phase spaces
- compatible with symplect. structures

Dynamical projective system & transport maps:

- states to projective families of orbits
- observables

Restrictive requirements:

- ▶ orbits are projected on orbits → $\pi_{\eta}^{\text{\tiny DYN}}$ between reduced phase spaces
- compatible with symplect. structures

Dynamical projective system & transport maps:

- states to projective families of orbits
- observables

Constraints

Restrictive requirements:

- \blacktriangleright orbits are projected on orbits $\rightarrow \pi_{\eta}^{\rm \scriptscriptstyle DYN}$ between reduced phase spaces
- compatible with symplect. structures

Dynamical projective system & transport maps:

- states to projective families of orbits
- observables

Projective State Spaces for LQG / LQC

Constraints

└─ The Easy Case

Successive approximations:

- $\blacktriangleright \text{ labeled by } \varepsilon \in \mathcal{E}$
- nice on smaller and smaller cofinal parts of *L*

Projections between approximated theories:

- ► dynamical projective system on a subset of *E* × *L*
- ► notion of convergence

Constraints

Successive approximations:

- \blacktriangleright labeled by $\varepsilon \in \mathcal{E}$
- nice on smaller and smaller cofinal parts of *L*

Projections between approximated theories:

- ► dynamical projective system on a subset of *E* × *L*
- ► notion of convergence

Constraints

Successive approximations:

- $\blacktriangleright \text{ labeled by } \varepsilon \in \mathcal{E}$
- nice on smaller and smaller cofinal parts of *L*

Projections between approximated theories:

- ► dynamical projective system on a subset of *E* × *L*
- ► notion of convergence

Constraints

Regularizing

Successive approximations:

- $\blacktriangleright \text{ labeled by } \varepsilon \in \mathcal{E}$
- nice on smaller and smaller cofinal parts of *L*

Projections between approximated theories:

- ► dynamical projective system on a subset of *E* × *L*
- ► notion of convergence

Constraints

– Regularizing

Successive approximations:

- $\blacktriangleright \text{ labeled by } \varepsilon \in \mathcal{E}$
- nice on smaller and smaller cofinal parts of *L*

Projections between approximated theories:

- ► dynamical projective system on a subset of *E* × *L*
- notion of convergence

Constraints

Implementation of the Hamiltonian constraint

$$\infty$$
 $E-\langle\psi,\,H\psi
angle=0$

Approximations:

- $\epsilon > 0$ deformation \rightarrow compact orbits
- ► truncation on finite dim. subspace J

Proof of principle for previous strategy:

- ► classical → convergence for normed dynamical states
- $\blacktriangleright \ \ quantum \rightarrow convergence \ for \\ Fock \ \ dynamical \ states$

Implementation of the Hamiltonian constraint

$$\infty$$

 $E-\langle\psi,\,H\psi
angle=0$

$$\epsilon > 0$$
 $\left(E - \langle \psi, H\psi \rangle\right)^2 + \epsilon^4 t^2 = \epsilon^2$

Approximations:

- $\epsilon > 0$ deformation \rightarrow compact orbits
- ► truncation on finite dim. subspace J

Proof of principle for previous strategy:

- ► classical → convergence for normed dynamical states
- $\blacktriangleright \ \ quantum \rightarrow convergence \ for \\ Fock \ \ dynamical \ states$

Constraints

– Regularizing

Implementation of the Hamiltonian constraint

$$\infty$$
 $E-\langle\psi,\,H\psi
angle=0$

Approximations:

- $\epsilon > 0$ deformation \rightarrow compact orbits
- ► truncation on finite dim. subspace J

Proof of principle for previous strategy:

- ► classical → convergence for normed dynamical states
- ► quantum → convergence for Fock dynamical states

– Constraints

– Regularizing

Implementation of the Hamiltonian constraint

Approximations:

- $\blacktriangleright \ \epsilon > 0 \ {\rm deformation} \rightarrow \\ {\rm compact \ orbits}$
- ► truncation on finite dim. subspace J

Proof of principle for previous strategy:

- ► classical → convergence for normed dynamical states
- $\blacktriangleright \ \ quantum \rightarrow convergence \ for \\ Fock \ \ dynamical \ states$

Constraints

Implementation of the Hamiltonian constraint

Approximations:

- $\epsilon > 0$ deformation \rightarrow compact orbits
- ► truncation on finite dim. subspace J

Proof of principle for previous strategy:

- ► classical → convergence for normed dynamical states
- ► quantum → convergence for Fock dynamical states

Constraints

Summary

- ▶ we can construct projective state spaces for LQG and LQC
- results obtained in fixed graph can be directly imported
- ► assembling is done with a different interpretation $\rightarrow \eta$ selects **observables**, not **states**
- \blacktriangleright immediate payoff \rightarrow states that were not constructible on \mathcal{H}_{LQG} can be designed
- ► needed input for dealing with constraints → regularizing scheme + projections between the approximated theories

What next?

- ▶ good coherent states: there are deeper problems (related to the structure of the algebra itself) → cut down the label set? [see also: Giesel & Thiemann '06]
- ► link between LQG and LQC → partly depends on progress in the previous point [see also: Engle '07]
- solving Gauss and diffeo constraints, ultimately even Hamiltonian constraint
- ► application to QFT → relation between regularization schemes and renormalization techniques? [see also: Dittrich '12]

23/-