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Why?

I LQG treatment of holonomies / flux is very unbalanced
→ serious issue when looking for well-behaved coherent states

I working with a stack of small theories is technically
comfortable until we try to go beyond fixed graph
→ ‘cylindrical consistency’ is hard to get, going to the dual
space has its own drawbacks

I physical interpretation as specializing into specific d.o.f.’s of
the continuous theory: why ⊕? it should be ⊗!
[see also: Thiemann & Winkler ’01]
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How?

I usual construction relies on writing the configuration space
as a projective limit → let’s write the phase space as a
projective limit... [see also: Thiemann ’01]

I transcription at the quantum level → projective families of
density matrices, the projections are given by appropriate
partial traces [Kijowski ’76, Oko lów ’09 & ’13]

I physical insight → a given experiment only measures a finite
number of observables
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Projective Systems of Phase Spaces

Mη′′

Mη′

Mη

πη′′→η′

πη′′→η

πη′→η

η 4 η′ 4 η′′ ∈ L

Collection of partial theories:

I label set L, 4
I η ∈ L = a selection of d.o.f.’s

I ‘small’ symplectic
manifolds Mη

Ensuring consistency:

I projections πη′→η for η 4 η′

I compatible with symplectic
structures

I 3-spaces-consistency
→ projective system

[Projective state spaces: Kijowski ’76, Oko lów ’09 & ’13]
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Projections & Factorizations

π :M→ M̃
q1, ...... , qn
p1, ...... , pn;

q̃1, .. , q̃m
p̃1, .. , p̃m;

Projective State Spaces for LQG / LQC 6 / 22

Projective Structures

Classical S. Lanéry
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Toy Model: Schrödinger Equation
As a classical field theory

MI′ ≈MI ×
(
I⊥ ∩ I ′

)

ψ, t, E

(ΠI ψ) , t, E ; (ψ − ΠIψ)

I ⊂ I ′ ⊂ H

Phase space H×R2:

I Hilbert space H with
ΩH = 2 Im 〈·, ·〉

I R2 = time & energy

Projective description:

I labels: finite dimensional
vector subspaces I ⊂ H

I MI = I ×R2

I πI′→I = ΠI |I′ × idR2
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Projective Systems of Quantum State Spaces

Mη′′

Mη′′→η′ Mη′

Mη′′→η′ Mη′→η Mη Mη′′→η Mη

×

× × ×

η 4 η′ 4 η′′ ∈ L

Modeled on special case:

I classical factorizations
Mη′ ≈Mη′→η ×Mη

I 3-spaces consistency
Mη′′→η ≈Mη′′→η′×Mη′→η

I quantum equivalent
→ ⊗-factorizations

Projective families (ρη)η∈L :

I ρη density matrix on Hη
I TrHη′→η ρη′ = ρη

[Projective state spaces: Kijowski ’76, Oko lów ’09 & ’13]
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Projective Systems of Quantum State Spaces

Hη′′

Hη′′→η′ Hη′

Hη′′→η′ Hη′→η Hη Hη′′→η Hη

⊗

⊗ ⊗ ⊗

η 4 η′ 4 η′′ ∈ L

Modeled on special case:

I classical factorizations
Mη′ ≈Mη′→η ×Mη

I 3-spaces consistency
Mη′′→η ≈Mη′′→η′×Mη′→η

I quantum equivalent
→ ⊗-factorizations

Projective families (ρη)η∈L :

I ρη density matrix on Hη
I TrHη′→η ρη′ = ρη

[Projective state spaces: Kijowski ’76, Oko lów ’09 & ’13]
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Toy Model: Schrödinger Equation
Second quantization

M̂I′ ≈ M̂I ⊗ ̂(I⊥ ∩ I ′)
∣∣∣ (ni )i∈I ′

〉
⊗ |ψ〉T

∣∣∣ (ni )i∈I

〉
⊗ |ψ〉T ⊗

∣∣∣ (ni )i∈I ′\I

〉

I ⊂ I ′ ⊂ H
(ei )i∈I ONB of I, (ei )i∈I ′ of I ′

Usual quantization → Ĥ ⊗ T :

I Fock space Ĥ built from H
I T = L2 (R, dµR)

Alternative → projective setup:

I M̂I = Î ⊗ T

I M̂I′ ≈ M̂I ⊗ ̂(I⊥ ∩ I ′)
from Î ⊕ J ≈ Î ⊗ Ĵ
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Holonomy-Flux Algebra
The label set

The label set:

I a graph = a choice of
configuration variables

I a set of flux for this graph
= a choice of conjugate
momentum variables

I the label set must be
directed (any two labels
η, η′ have a common finer
label η′′ < η, η′)

[Holonomy-flux algebra: Ashtekar, Isham, Rovelli, Smolin, Lewandowski, Pullin, Gambini,...]
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Holonomy-Flux Algebra
The factorizations

The state spaces:

I T ∗ (Gn)

I one group variable per edge

The factorizations:

I Gn ≈ Gm × Gn−m

I selecting specific edges →
prescribes the factor Gm

I selecting specific flux
→ prescribes the
complementary factor
Gn−m

[Holonomy-flux algebra: Ashtekar, Isham, Rovelli, Smolin, Lewandowski, Pullin, Gambini,...]
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Holonomy-Flux Algebra
The factorizations

The state spaces:

I T ∗ (Gn)

I one group variable per edge

The factorizations:

I Gn ≈ Gm × Gn−m

I selecting specific edges →
prescribes the factor Gm

I selecting specific flux
→ prescribes the
complementary factor
Gn−m

[Holonomy-flux algebra: Ashtekar, Isham, Rovelli, Smolin, Lewandowski, Pullin, Gambini,...]

Projective State Spaces for LQG / LQC 12 / 22

Quantum Gravity

LQG S. Lanéry



Holonomy-Flux Algebra
The factorizations

The state spaces:

I T ∗ (Gn)

I one group variable per edge

The factorizations:

I Gn ≈ Gm × Gn−m

I selecting specific edges →
prescribes the factor Gm

I selecting specific flux
→ prescribes the
complementary factor
Gn−m

[Holonomy-flux algebra: Ashtekar, Isham, Rovelli, Smolin, Lewandowski, Pullin, Gambini,...]

Projective State Spaces for LQG / LQC 12 / 22

Quantum Gravity

LQG S. Lanéry
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Holonomy-Flux Algebra
The factorizations

The state spaces:

I L2 (Gn, dµHaar)

I one group variable per edge

The factorizations:
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Holonomy-Flux Algebra
Relation to the usual LQG Hilbert space (1)

γ

η

ψ ∈ Hγ ⊂ HLQG defines a
projective family (ρη)η∈L:

I choose η′ with underlying
graph γ′, such that η 4 η′

and γ 4 γ′

I ψ ∈ Hγ ⊂ Hγ′ ≈ Hη′
I ρη := Tr η′→η |ψ〉〈ψ|

There is an injective map from
the space of density matrices on
HLQG into the projective state
space.

[LQG Hilbert space: Isham, Ashtekar, Lewandowski,...]
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Holonomy-Flux Algebra
Relation to the usual LQG Hilbert space (2)

The map embedding the LQG
state space in the projective one
is not surjective.

We have states with narrow
distribution for infinitely many
holonomies:

I first step toward
satisfactory coherent states

I but there remain deeper
problems...

[LQG Hilbert space: Isham, Ashtekar, Lewandowski,...]
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Holonomy-Flux Algebra
Relation to the usual LQG Hilbert space (2)

⊗
χ
⊗
χ
⊗

χ
⊗
χ
⊗
χ
⊗
χ
⊗
χ
⊗
χ
⊗
χ
⊗
χ

..
.

The map embedding the LQG
state space in the projective one
is not surjective.

We have states with narrow
distribution for infinitely many
holonomies:

I first step toward
satisfactory coherent states

I but there remain deeper
problems...

[LQG Hilbert space: Isham, Ashtekar, Lewandowski,...]

Projective State Spaces for LQG / LQC 14 / 22

Quantum Gravity

LQG S. Lanéry



Loop Quantum Cosmology

m/µ

n/µ

T ∗ (U1)

T ∗ (U1)

n = m/k

m, n, k ∈ N

Label set {n ∈ N}:
I with order n |m
I less observables than

on HLQC

The classical projections are
covering maps:

I no factorization as
Cartesian product of
symplectic manifolds

I but a ⊗-projective
structure still exists

[LQC: Bojowald, Ashtekar, Pawlowski, Singh, Lewandowski,...]
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Loop Quantum Cosmology

U1 ≈ U1 × {0, . . . , k − 1}

e2iπ µ
m c =

(
e2iπ µ

n c
)1/k

e2iπ w
k

e2iπ µ
n c , w

n = m/k

m, n, k ∈ N

Label set {n ∈ N}:
I with order n |m
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Loop Quantum Cosmology

L2 (U1) ≈ L2 (U1)⊗ Ck

∣∣∣p = k q + r
〉
m

∣∣q
〉
n
⊗
∣∣r
〉
m→n

n = m/k

m, n, k ∈ N

Label set {n ∈ N}:
I with order n |m
I less observables than

on HLQC

The classical projections are
covering maps:

I no factorization as
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symplectic manifolds
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Nice Constraints

Mkin
∞

Mkin
η

πkin
η

Restrictive requirements:

I orbits are projected on
orbits → πdyn

η between
reduced phase spaces

I compatible with
symplect. structures

Dynamical projective
system & transport maps:

I states to projective
families of orbits

I observables
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Unfitting Constraints

kin

∞
Lt {∞}

dyn

∞

Lt {∞}

Successive approximations:

I labeled by ε ∈ E
I nice on smaller and

smaller cofinal parts of L

Projections between
approximated theories:

I dynamical projective
system on a subset of
E × L

I notion of convergence
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Toy Model: Schrödinger Equation
Implementation of the Hamiltonian constraint

E − 〈ψ, Hψ〉 = 0

∞ Approximations:

I ε > 0 deformation →
compact orbits

I truncation on finite
dim. subspace J

Proof of principle for previous
strategy:

I classical → convergence for
normed dynamical states

I quantum → convergence for
Fock dynamical states
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E − 〈ψ, Hψ〉 = 0

∞

(
E − 〈ψ, HJ ψ〉

)2

+ ε4 t2 = ε2

& ψ ∈ J

where HJ = ΠJ H ΠJ
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Summary

I we can construct projective state spaces for LQG and LQC

I results obtained in fixed graph can be directly imported

I assembling is done with a different interpretation → η selects
observables, not states

I immediate payoff → states that were not constructible on
HLQG can be designed

I needed input for dealing with constraints → regularizing
scheme + projections between the approximated theories
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What next?

I good coherent states: there are deeper problems (related to
the structure of the algebra itself) → cut down the label set?
[see also: Giesel & Thiemann ’06]

I link between LQG and LQC → partly depends on progress in
the previous point [see also: Engle ’07]

I solving Gauss and diffeo constraints, ultimately even
Hamiltonian constraint

I application to QFT → relation between regularization
schemes and renormalization techniques? [see also: Dittrich ’12]
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πη′′→η′
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Hη′′

Hη′′→η′ Hη′

Hη′′→η′ Hη′→η Hη Hη′′→η Hη

⊗

⊗ ⊗ ⊗

kin

∞ ∞ ∞

Lt {∞}

dyn

∞ ∞ ∞

Lt {∞}

E t {∞}

m/µ

n/µ

Thank you!
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Why?

I LQG treatment of holonomies / flux is very unbalanced
→ serious issue when looking for well-behaved coherent states

I working with a stack of small theories is technically
comfortable until we try to go beyond fixed graph
→ ‘cylindrical consistency’ is hard to get, going to the dual
space has its own drawbacks

I physical interpretation as specializing into specific d.o.f.’s of
the continuous theory: why ⊕? it should be ⊗!
[see also: Thiemann & Winkler ’01]

Projective State Spaces for LQG / LQC 2 / 22

S. Lanéry

Projective Systems of Phase Spaces

Mη′′

Mη′

Mη

πη′′→η′

πη′′→η

πη′→η

η 4 η′ 4 η′′ ∈ L

Collection of partial theories:

I label set L, 4
I η ∈ L = a selection of d.o.f.’s

I ‘small’ symplectic
manifolds Mη

Ensuring consistency:

I projections πη′→η for η 4 η′

I compatible with symplectic
structures

I 3-spaces-consistency
→ projective system

[Projective state spaces: Kijowski ’76, Oko lów ’09 & ’13]
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Toy Model: Schrödinger Equation
As a classical field theory

MI′ ≈MI ×
(
I⊥ ∩ I ′

)

ψ, t, E

(ΠI ψ) , t, E ; (ψ − ΠIψ)

I ⊂ I ′ ⊂ H

Phase space H×R2:

I Hilbert space H with
ΩH = 2 Im 〈·, ·〉

I R2 = time & energy

Projective description:

I labels: finite dimensional
vector subspaces I ⊂ H

I MI = I ×R2

I πI′→I = ΠI |I′ × idR2
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Projective Systems of Quantum State Spaces

Hη′′

Hη′′→η′ Hη′

Hη′′→η′ Hη′→η Hη Hη′′→η Hη

⊗

⊗ ⊗ ⊗

η 4 η′ 4 η′′ ∈ L

Modeled on special case:

I classical factorizations
Mη′ ≈Mη′→η ×Mη

I 3-spaces consistency
Mη′′→η ≈Mη′′→η′×Mη′→η

I quantum equivalent
→ ⊗-factorizations

Projective families (ρη)η∈L :

I ρη density matrix on Hη
I TrHη′→η ρη′ = ρη

[Projective state spaces: Kijowski ’76, Oko lów ’09 & ’13]
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Toy Model: Schrödinger Equation
Second quantization

M̂I′ ≈ M̂I ⊗ ̂(I⊥ ∩ I ′)
∣∣∣ (ni )i∈I ′

〉
⊗ |ψ〉T

∣∣∣ (ni )i∈I

〉
⊗ |ψ〉T ⊗

∣∣∣ (ni )i∈I ′\I

〉

I ⊂ I ′ ⊂ H
(ei )i∈I ONB of I, (ei )i∈I ′ of I ′

Usual quantization → Ĥ ⊗ T :

I Fock space Ĥ built from H
I T = L2 (R, dµR)

Alternative → projective setup:

I M̂I = Î ⊗ T

I M̂I′ ≈ M̂I ⊗ ̂(I⊥ ∩ I ′)
from Î ⊕ J ≈ Î ⊗ Ĵ
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Holonomy-Flux Algebra
The label set

The label set:

I a graph = a choice of
configuration variables

I a set of flux for this graph
= a choice of conjugate
momentum variables

I the label set must be
directed (any two labels
η, η′ have a common finer
label η′′ < η, η′)

[Holonomy-flux algebra: Ashtekar, Isham, Rovelli, Smolin, Lewandowski, Pullin, Gambini,...]
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Holonomy-Flux Algebra
Relation to the usual LQG Hilbert space (1)

γ

η

η′

ψ ∈ Hγ ⊂ HLQG defines a
projective family (ρη)η∈L:

I choose η′ with underlying
graph γ′, such that η 4 η′

and γ 4 γ′

I ψ ∈ Hγ ⊂ Hγ′ ≈ Hη′
I ρη := Tr η′→η |ψ〉〈ψ|

There is an injective map from
the space of density matrices on
HLQG into the projective state
space.

[LQG Hilbert space: Isham, Ashtekar, Lewandowski,...]
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Loop Quantum Cosmology

m/µ

n/µ

T ∗ (U1)

T ∗ (U1)

n = m/k

m, n, k ∈ N

Label set {n ∈ N}:
I with order n |m
I less observables than

on HLQC

The classical projections are
covering maps:

I no factorization as
Cartesian product of
symplectic manifolds

I but a ⊗-projective
structure still exists

[LQC: Bojowald, Ashtekar, Pawlowski, Singh, Lewandowski,...]

Projective State Spaces for LQG / LQC 15 / 22

Quantum Gravity

LQC S. Lanéry

Nice Constraints

Mkin
∞

Mkin
η

Mdyn
∞

Mdyn
η

Restrictive requirements:

I orbits are projected on
orbits → πdyn

η between
reduced phase spaces

I compatible with
symplect. structures

Dynamical projective
system & transport maps:

I states to projective
families of orbits

I observables
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Unfitting Constraints

kin

∞ ∞ ∞
Lt {∞}

dyn

∞ ∞ ∞

Lt {∞}

E t {∞}

Successive approximations:

I labeled by ε ∈ E
I nice on smaller and

smaller cofinal parts of L

Projections between
approximated theories:

I dynamical projective
system on a subset of
E × L

I notion of convergence
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Toy Model: Schrödinger Equation
Implementation of the Hamiltonian constraint

E − 〈ψ, Hψ〉 = 0

∞

(
E − 〈ψ, HJ ψ〉

)2

+ ε4 t2 = ε2

& ψ ∈ J

where HJ = ΠJ H ΠJ

ε > 0, J ⊂ H

Approximations:

I ε > 0 deformation →
compact orbits

I truncation on finite
dim. subspace J

Proof of principle for previous
strategy:

I classical → convergence for
normed dynamical states

I quantum → convergence for
Fock dynamical states
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Summary

I we can construct projective state spaces for LQG and LQC

I results obtained in fixed graph can be directly imported

I assembling is done with a different interpretation → η selects
observables, not states

I immediate payoff → states that were not constructible on
HLQG can be designed

I needed input for dealing with constraints → regularizing
scheme + projections between the approximated theories
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