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The model The model 

 The most interesting case is flat spatial 
topology. It is also the simplest. 

 The effects of spatial curvature  can be 
studied by considering, e.g., spherical topology.

 We assume compactcompact spatial sections. 

 We consider perturbed  FRW universes 
filled with a massive scalar field.

 The scalar field is minimally coupled. 

 The model can generate inflation. 



The model The model It's been well studied, even in LQC, though...

 Anomalies: Incorporate quantum effects, not 
the starting point for quantization. 

 Effective dynamics: Needs a true derivation. 

 Approximations: As few as possible. Should 
be derived or at least checked for consistency.  

 In many cases these checks are only internal, 
within the approximated description.



Perturbations about flat FRWPerturbations about flat FRW

  Truncation at Truncation at quadraticquadratic order in the action.  order in the action. 

  IncludesIncludes  backreactionbackreaction at that order. at that order.

  Tests the validity of less refined truncations and Tests the validity of less refined truncations and 
provides the way to develop provides the way to develop approximationapproximation  
methods, controlling their range of application.methods, controlling their range of application. 



Effects of quantum geometry are only accounted 
for in the background

Hybrid approachHybrid approach

 Succesfully applied in Gowdy cosmologies. 

 In those cases there is no truncation. This is no drawback
(think of the harmonic oscillator).

 In the present case, we only deal with the quadratically  
perturbed model. 



Infinite ambiguity  in selecting a Fock representation in QFT in curved space-
times.

This can be restricted by appealing to background symmetries.

 Typically this is not sufficent in non-stationarity. 

Proposal: demand the                                                 of the quantum evolution.

The conventional interpretation of QM is guaranteed. 
This goes beyond the viewpoint of algebraic quantizations.

There is a natural ambiguity in the separation of the backgroundseparation of the background from the field.
In cosmology, this introduces time-dependent canonical field transformations.

Remarkably, symmetry invariance and dynamical unitarity select a UNIQUE 
canonical pair and a UNIQUE Fock representation for their CCR's.

UNITARITY

Uniqueness of the Fock descriptionUniqueness of the Fock description



Uniqueness of the Fock descriptionUniqueness of the Fock description



Uniqueness of the Fock descriptionUniqueness of the Fock description

Recent works DO NOT incorporate the correct scaling (AA&N). This affects the 
quantum description, and in particular the effective approaches therein dereived.

Moreover, one can even consider non-local canonical transformations, 
respecting the decoupling of field modes.

The UNIQUENESS of the quantization, up to unitary equivalence, is guaranteed.
•



 Avoids the Big Bang. 

 Specific proposal such that:

 Evolution can be defined even without ideal clocks (masless field).
 The WdW limit is unambiguous in each superselection sector.
 It is optimal for numerical computation.

 Control of changes of densitization in the scalar constraint. 
 The lapse function is not a function on phase space. 

Loop Quantum FRW CosmologyLoop Quantum FRW Cosmology
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 Massive scalar field minimally coupled to a compact, flat FRW universe. Massive scalar field minimally coupled to a compact, flat FRW universe. 

Geometry: 

                                                                       

     

Matter: 

 
                                                                             Hamiltonian constraint:

 Hamiltonian constraint:  
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We expand inhomogeneities in a (real) Fourier basis: 

The basis is orthonormal, and we exclude the zero mode in the expansions.
  

These functions are eigenmodes of the Laplace-Beltrami operator of the 
standard flat metric on the three-torus, with eigenvalue

We only consider scalar perturbations: decoupled from vector and tensor 
perturbations at dominant order.
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23/2 sinn⋅ . n∈ℤ3 , n1≥0 .

Classical system: ModesClassical system: Modes
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Mode expansion of the inhomogeneities: 

The corrections include in principle higher-order perturbations.
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Classical system: InhomogeneitiesClassical system: Inhomogeneities



Truncating the action at quadratic order in perturbations, one obtains: 
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We can adopt longitudinal gauge by imposing: 

This removes the constraints linear in perturbations.  

Together with dynamical stability, this fixes  

      The shift vanishes, and the spatial metric is proportional to 

Longitudinal gaugeLongitudinal gauge
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After REDUCTION, a canonical set is: 

The genuine background variables are corrected with quadratic perturbations.

We have already scaled the matter field variables.

Longitudinal gauge: ReductionLongitudinal gauge: Reduction
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The modes of the scaled matter field satisfy a 
quasi-KG equation with time-dependent mass: 

                                                                                are of order 

For any given background, there exists a UNIQUE  Fock quantization with the 
symmetry of the three-torus and unitary dynamics.

The system can be put in the form of a KG field with time-dependent mass by 
means of a mode-dependent canonical quantization, varying in time. 

This transformation is unitarily implementable in the privileged quantization.

Longitudinal gauge: DynamicsLongitudinal gauge: Dynamics
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The remaining Hamiltonian constraint reads:

The corrections in cyan are of order 

Longitudinal gauge: HamiltonianLongitudinal gauge: Hamiltonian
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Longitudinal gauge: Metric (at Longitudinal gauge: Metric (at linearlinear order) order)
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The Mukhanov-Sasaki modes and their momenta 
have the expression: 

                                                                       

If we construct annihilation and creation variables with these invariants (for 
zero mass), the Bogoliubov transformation, which is mode dependent,  is 
UNITARY in the privileged Fock quantization .

Gauge invariantsGauge invariants
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Robustness under gauge fixingRobustness under gauge fixing

Similar results are obtained in the gauge of flat spatial sections  

Moreover, the same symplectic structure for gauge invariants is obtained.

an±=bn ,±=0.



We quantize the homogeneous sector with standard loop techniques, using 
improved dynamics and the MMO proposal.

In the volume basis                        with  

The kinematic Hilbert space is

The inverse volume is regularized as usual. 

Quantization: Homogeneous sectorQuantization: Homogeneous sector
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After decoupling the zero-volume state, we change densitization for the FRW 
constraint: 

The gravitational part, with the MMO proposal, is:

Takes into account the triad orientation (manifest in anisotropic scenarios).

This operator has the generic form  

Quantization: Homogeneous HamiltonianQuantization: Homogeneous Hamiltonian
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         can be seen as a difference operator.

The real function                             vanishes in the interval

The operator preserves the superselection sectors 

Quantization: SuperselectionQuantization: Superselection

0
2

This operator is selfadjoint in those sectors. Its eigenfunctions are real, and
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0
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Solutions  to the constraint are determined, e.g., by their initial values at 
minimum volume.

 

If the scalar field serves as a clock, an alternate possibility is to give the value 
at a section of constant field. This is not always possible.

The space of physical states 
can be identified,  e. g.,  with  

  

 

Quantization: Homogeneous statesQuantization: Homogeneous states

L2ℝ , d .



We quantize the We quantize the rescaled inhomogeneous modesrescaled inhomogeneous modes  using annihilation and  using annihilation and 
creation variables constructed from our canonical variables and zero mass.creation variables constructed from our canonical variables and zero mass.

We obtain a We obtain a Fock spaceFock space          with  basis of n-          with  basis of n-particleparticle states: states:

We proceed to a hybrid quantization, with Hilbert space We proceed to a hybrid quantization, with Hilbert space 

The Hamiltonian constraint is The Hamiltonian constraint is not trivial.not trivial.

Fock and hybrid quantizationsFock and hybrid quantizations

{∣N 〉=∣N 1,0 ,0 ,  , N 1,0,0 , − , ...〉 ; N n ,±∈ℕ , ∑ N n ,±∞}.

ℱ ,

H kin
FRW−LQC⊗H kin

matt⊗ℱ .



We quantize the quadratic contribution of the perturbations to the Hamiltonian 
adapting the quantization proposals of the homogeneous sector and using a 
symmetric factor ordering: 

We symmetrize products of the type
We take a symmetric geometric factor ordering
We adopt the LQC representation

In order to preserve the FRW superselection sectors, we adopt the
prescription                                                 where

The situation is similar to that found with the Hubble parameter in LQC. 

Quantum Hamiltonian of the perturbationsQuantum Hamiltonian of the perturbations
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With the FRW densitization: 

Quantum Hamiltonian of the perturbationsQuantum Hamiltonian of the perturbations
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If the matter field serves as a clock: 

We can pass to an interaction picture and use a Born-Oppenheimer-like 
approximation.

This can be done even without the above perturbative expansion.

This leads to a sort of effective QFT for the inhomogeneities.

Solutions to the constraintSolutions to the constraint
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An alternate perturbative scheme: 

FRW solution:

Evolution of the perturbations:

Physical statesPhysical states

∣0 C 0=0,

C 0=−
6
2

0
28G  

2 m2 2 V 2.

∣=∣02 ∣2 ...

∣2 C0=−∣0∑ C 2
n ,± † .

Solutions are characterized by their initial data at minimum volume.

From these data we arrive, e.g., at the physical Hilbert space H kin
matt⊗ℱ .



We have considered a perturbed FRW universe with a massive scalar field.

Two approximations: 
 The action has been truncated to second order in the perturbations.  
 A hybrid quantization scheme has been adopted.

First complete quantization of a model with inflation within LQC (k=1).

Backreaction has been included.

ConclusionsConclusions



For quantum simulations, the FRW prescription is optimal.

Opposite to the situation in other analyses, the inhomogeneities have 
UNITARY dynamics in an (effective) QFT approximation.

No internal time (matter clock) is needed. If a matter clock is available, one 
can obtain the inhomogeneities evolution adopting an interaction picture.

Generally, one can construct quantum states perturbatively from data at 
minimum volume. This allows one to get a physical Hilbert space.

ConclusionConclusion
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