Hybrid Quantization of Inflationary Universes

Guillermo A. Mena Marugán Instituto de Estructura de la Materia, CSIC (Mikel Fernández-Méndez, Javier Olmedo & José Velhinho)

Tux, Austria 1 March 2013

The model

• We consider **perturbed** FRW universes filled with a **massive** scalar field.

- The scalar field is minimally coupled.
- The model can generate inflation.

 The most interesting case is flat spatial topology. It is also the simplest.

• The effects of **spatial curvature** can be studied by considering, e.g., spherical topology.

We assume compact spatial sections.

The model

It's been well studied, even in LQC, though...

 Anomalies: Incorporate quantum effects, not the starting point for quantization.

Effective dynamics: Needs a true derivation.

• **Approximations**: As few as possible. Should be derived or at least checked for consistency.

In many cases these checks are only internal, within the approximated description.

Perturbations about flat FRW

- Truncation at <u>quadratic</u> order in the action.
- Includes <u>backreaction</u> at that order.
- Tests the validity of less refined truncations and provides the way to develop approximation methods, controlling their range of application.

Hybrid approach

Effects of quantum geometry are only accounted for in the background

- Succesfully applied in Gowdy cosmologies.
- In those cases there is no truncation. This is no drawback (think of the harmonic oscillator).
- In the present case, we only deal with the quadratically perturbed model.

Uniqueness of the Fock description

- Infinite ambiguity in selecting a Fock representation in QFT in curved spacetimes.
- This can be restricted by appealing to background symmetries.
- Typically this is not sufficent in non-stationarity.
- Proposal: demand the UNITARITY of the quantum evolution.

The conventional interpretation of QM is guaranteed. This goes beyond the viewpoint of algebraic quantizations.

- There is a natural ambiguity in the separation of the background from the field.
 In cosmology, this introduces time-dependent canonical field transformations.
- Remarkably, symmetry invariance and dynamical unitarity select a UNIQUE canonical pair and a UNIQUE Fock representation for their CCR's.

Uniqueness of the Fock description

Uniqueness of the Fock description

- Recent works DO NOT incorporate the correct scaling (AA&N). This affects the quantum description, and in particular the *effective* approaches therein dereived.
- Moreover, one can even consider non-local canonical transformations, respecting the decoupling of field modes.

The **UNIQUENESS** of the quantization, up to unitary equivalence, is guaranteed.

Loop Quantum FRW Cosmology

Avoids the Big Bang.

- Specific proposal such that:
- Evolution can be defined even without ideal clocks (masless field).
- The WdW limit is unambiguous in each superselection sector.
- It is optimal for numerical computation.
- Control of changes of densitization in the scalar constraint.
 The lapse function is not a function on phase space.

Classical system: FRW

• Massive scalar field minimally coupled to a compact, flat FRW universe.

Geometry:
$$A_a^i = c^0 e_a^i (2\pi)^{-1}; \quad E_i^a = p \sqrt{0} e^0 e_i^a (2\pi)^{-2}. \quad [c, p] = 8\pi G \gamma/3.$$

 $a^2 = e^{2\alpha} = [p](2\pi\sigma)^{-2}; \quad \pi_\alpha = -pc(\gamma 8\pi^3\sigma^2)^{-1}. \quad \sigma^2 = G(6\pi^2)^{-1}.$
Matter: $\varphi = (2\pi)^{3/2} \sigma \phi; \quad \pi_\varphi = (2\pi)^{-3/2} \sigma^{-1} \pi_\phi.$
Hamiltonian constraint:
 $C_0 = -\frac{6}{\gamma^2} \sqrt{[p]} c^2 + \frac{8\pi G}{V} (\pi_{\phi}^2 + m^2 V^2 \phi^2).$
 $V = [p]^{3/2}.$

Classical system: Modes

We expand inhomogeneities in a (real) Fourier basis:

$$Q_{\vec{n},+} = \frac{1}{2\pi^{3/2}} \cos \vec{n} \cdot \vec{\theta} , \quad Q_{\vec{n},-} = \frac{1}{2\pi^{3/2}} \sin \vec{n} \cdot \vec{\theta} . \qquad \vec{n} \in \mathbb{Z}^3 , \quad n_1 \ge 0 .$$

- The basis is orthonormal, and we exclude the zero mode in the expansions.
- These functions are eigenmodes of the Laplace-Beltrami operator of the standard flat metric on the three-torus, with eigenvalue

$$-\omega_n^2 = -\vec{n}\cdot\vec{n}$$
.

 We only consider scalar perturbations: decoupled from vector and tensor perturbations at dominant order.

Classical system: Inhomogeneities

Mode expansion of the inhomogeneities:

$$\begin{split} h_{ij} &= (\sigma e^{\alpha})^{2} \left[{}^{0} h_{ij} + 2\epsilon (2\pi)^{3/2} \sum \left\{ a_{\vec{n},\pm}(t) Q_{\vec{n},\pm} {}^{0} h_{ij} + b_{\vec{n},\pm}(t) \left(\frac{3}{\omega_{n}^{2}} (Q_{\vec{n},\pm})_{,ij} + Q_{\vec{n},\pm} {}^{0} h_{ij} \right) \right\} \right], \\ N &= \sigma N_{0}(t) \left[1 + \epsilon (2\pi)^{3/2} \sum g_{\vec{n},\pm}(t) Q_{\vec{n},\pm} \right], \\ N_{i} &= \epsilon (2\pi)^{3/2} \sigma^{2} e^{\alpha} \sum \frac{k_{\vec{n},\pm}(t)}{\omega_{n}} (Q_{\vec{n},\pm})_{,i}, \\ \Phi &= \frac{1}{\sigma} \left[\frac{\varphi(t)}{(2\pi)^{3/2}} + \epsilon \sum f_{\vec{n},\pm}(t) Q_{\vec{n},\pm} \right]. \end{split}$$

The corrections include in principle higher-order perturbations.

. N]

Classical system: Action

Truncating the action at quadratic order in perturbations, one obtains:

$$H = \frac{N_0 \sigma}{16 \pi G} C_0 + \epsilon^2 \sum \left(N_0 H_2^{\vec{n},\pm} + N_0 g_{\vec{n},\pm} H_1^{\vec{n},\pm} + k_{\vec{n},\pm} \widetilde{H}_1^{\vec{n},\pm} \right),$$

$$\begin{split} H_{2}^{\vec{n},\pm} 2e^{3\alpha} &= -\pi_{a_{\vec{n},\pm}}^{2} + \pi_{b_{\vec{n},\pm}}^{2} + \pi_{f_{\vec{n},\pm}}^{2} + 2\pi_{\alpha} \left(a_{\vec{n},\pm} \pi_{a_{\vec{n},\pm}} + 4b_{\vec{n},\pm} \pi_{b_{\vec{n},\pm}} \right) - 6\pi_{\varphi} a_{\vec{n},\pm} \pi_{f_{\vec{n},\pm}} \\ &+ \pi_{\alpha}^{2} \left(\frac{1}{2} a_{\vec{n},\pm}^{2} + 10b_{\vec{n},\pm}^{2} \right) + \pi_{\varphi}^{2} \left(\frac{15}{2} a_{\vec{n},\pm}^{2} + 6b_{\vec{n},\pm}^{2} \right) - \frac{e^{4\alpha}}{3} \left[\omega_{n}^{2} a_{\vec{n},\pm}^{2} + (\omega_{n}^{2} - 18)b_{\vec{n},\pm}^{2} \right] \\ &+ e^{4\alpha} \omega_{n}^{2} \left[f_{\vec{n},\pm}^{2} - \frac{2}{3} a_{\vec{n},\pm} b_{\vec{n},\pm} \right] + e^{6\alpha} m^{2} \sigma^{2} \left[\varphi^{2} \left(\frac{3}{2} a_{\vec{n},\pm}^{2} + 6b_{\vec{n},\pm}^{2} \right) + 6\varphi a_{\vec{n},\pm} f_{\vec{n},\pm} + f_{\vec{n},\pm}^{2} \right], \end{split}$$

$$H_{1}^{\vec{n},\pm} 2e^{3\alpha} = 2\pi_{\varphi}\pi_{f_{\vec{n},\pm}} - 2\pi_{\alpha}\pi_{a_{\vec{n},\pm}} - (\pi_{\alpha}^{2} + 3\pi_{\varphi}^{2})a_{\vec{n},\pm} - \frac{2}{3}e^{4\alpha}\omega_{n}^{2}(a_{\vec{n},\pm} + b_{\vec{n},\pm}) + e^{6\alpha}m^{2}\sigma^{2}\varphi(3\varphi a_{\vec{n},\pm} + 2f_{\vec{n},\pm})$$

 $\widetilde{H}_{1}^{\vec{n},\pm} 3 e^{\alpha} = \pi_{b_{\vec{n},\pm}} - \pi_{a_{\vec{n},\pm}} + \pi_{\alpha} (a_{\vec{n},\pm} + 4 b_{\vec{n},\pm}) + 3 \pi_{\varphi} f_{\vec{n},\pm}.$

Longitudinal gauge

• We can adopt **longitudinal gauge** by imposing:

 $\pi_{a_{\vec{n},\pm}} - \pi_{\alpha} a_{\vec{n},\pm} - 3\pi_{\varphi} f_{\vec{n},\pm} = 0, \quad b_{\vec{n},\pm} = 0.$

This removes the constraints *linear* in perturbations.

$$\pi_{b_{i}\vec{n},\pm} = 0, \quad a_{\vec{n},\pm} = 3 \frac{\pi_{\varphi}\pi_{f_{\vec{n},\pm}} + (e^{6\alpha}m^{2}\sigma^{2}\varphi - 3\pi_{\alpha}\pi_{\varphi})f_{\vec{n},\pm}}{9\pi_{\varphi}^{2} + \omega_{n}^{2}e^{4\alpha}}.$$

• Together with dynamical stability, this fixes $g_{\vec{n},\pm} = -a_{\vec{n},\pm}$, $k_{\vec{n},\pm} = 0$.

The shift vanishes, and the spatial metric is proportional to ${}^{0}h_{ii}$.

Longitudinal gauge: Reduction

• After **REDUCTION**, a canonical set is:

$$\begin{split} \bar{\varphi} &= \varphi + 3 \sum a_{\vec{n},\pm} f_{\vec{n},\pm}, \quad \pi_{\bar{\varphi}} = \pi_{\varphi}, \\ \bar{\alpha} &= \alpha + \frac{1}{2} \sum \left(a_{\vec{n},\pm}^2 + f_{\vec{n},\pm}^2 \right), \quad \pi_{\bar{\alpha}} = \pi_{\alpha} - \sum f_{\vec{n},\pm} \left(\pi_{f_{\vec{n},\pm}} - 3 \pi_{\varphi} a_{\vec{n},\pm} - \pi_{\alpha} f_{\vec{n},\pm} \right), \\ \bar{f}_{\vec{n},\pm} &= e^{\alpha} f_{\vec{n},\pm}, \quad \pi_{\bar{f}_{\vec{n},\pm}} = e^{-\alpha} (\pi_{f_{\vec{n},\pm}} - 3 \pi_{\varphi} a_{\vec{n},\pm} - \pi_{\alpha} f_{\vec{n},\pm}). \end{split}$$

The genuine background variables are corrected with quadratic perturbations.

We have already **scaled** the matter field variables.

Longitudinal gauge: Dynamics

 The modes of the scaled matter field satisfy a quasi-KG equation with time-dependent mass:

$$\ddot{\bar{f}}_{\vec{n},\pm} + r_n \dot{\bar{f}}_{\vec{n},\pm} + (\omega_n^2 + s + s_n) \bar{f}_{\vec{n},\pm} = 0,$$

$$\pi_{\bar{f}_{\vec{n},\pm}} = (1 + p_n) \dot{\bar{f}}_{\vec{n},\pm} + q_n \bar{f}_{\vec{n},\pm},$$

$$s = m^2 \sigma^2 e^{2\bar{\alpha}} - \frac{e^{-4\bar{\alpha}}}{2} (\pi_{\bar{\alpha}}^2 + 21\pi_{\bar{\varphi}}^2 + 3e^{6\bar{\alpha}} m^2 \sigma^2 \bar{\varphi}^2).$$

$$m_n, s_n, p_n, q_n \text{ are of order } \omega_n^{-2}.$$

 For any given background, there exists a UNIQUE Fock quantization with the symmetry of the three-torus and unitary dynamics.

r

- The system can be put in the form of a KG field with time-dependent mass by means of a mode-dependent canonical quantization, varying in time.
- This transformation is **unitarily** implementable in the privileged quantization.

Longitudinal gauge: Hamiltonian

The remaining Hamiltonian constraint reads:

 $H = \frac{N_0 \sigma}{16 \pi G} C_0 + \epsilon^2 N_0 \sum H_2^{\vec{n},\pm}, \quad H_2^{\vec{n},\pm} 2 e^{\bar{\alpha}} = \bar{E}_{\bar{f}\bar{f}} \bar{f}_{\vec{n},\pm}^2 + \bar{E}_{\bar{f}\pi} \bar{f}_{\vec{n},\pm} \pi_{\bar{f}_{\vec{n},\pm}} + \bar{E}_{\pi\pi} \pi_{\bar{f}_{\vec{n},\pm}}^2,$

$$\bar{E}_{\bar{f}\bar{f}\bar{f}}^{n} = \omega_{n}^{2} + e^{2\bar{\alpha}} m^{2} \sigma^{2} - \frac{e^{-4\bar{\alpha}}}{2} \left(\pi_{\bar{\alpha}}^{2} + 15\pi_{\bar{\varphi}}^{2} + 3e^{6\bar{\alpha}} m^{2} \sigma^{2} \bar{\varphi}^{2}\right) - \frac{3}{\omega_{n}^{2}} e^{-8\bar{\alpha}} \left(e^{6\bar{\alpha}} m^{2} \sigma^{2} \bar{\varphi} - 2\pi_{\bar{\alpha}} \pi_{\bar{\varphi}}\right)^{2}$$

 $\bar{E}_{\bar{f}\pi}^{n} = -\frac{3}{\omega_{n}^{2}} e^{-6\bar{\alpha}} \pi_{\bar{\phi}} \Big(e^{6\bar{\alpha}} m^{2} \sigma^{2} \bar{\phi} - 2\pi_{\bar{\alpha}} \pi_{\bar{\phi}} \Big), \qquad \bar{E}_{\pi\pi}^{n} = 1 - \frac{3}{\omega_{n}^{2}} e^{-4\bar{\alpha}} \pi_{\bar{\phi}}^{2}.$

The corrections in cyan are of order ω_n^{-2} .

Longitudinal gauge: Metric (at linear order)

 $h_{ij} = (\sigma e^{\bar{\alpha}})^0 h_{ij} \Big[1 + \epsilon 2 (2\pi)^{3/2} \sum a_{\bar{n},\pm} Q_{\bar{n},\pm} \Big],$ $N = \sigma N_0 \Big(1 - \epsilon (2\pi)^{3/2} \sum a_{\vec{n}, \pm} Q_{\vec{n}, \pm} \Big), \qquad N_i = 0,$ $a_{\vec{n},\pm} = \frac{3}{\omega^2} e^{-3\bar{\alpha}} \Big[\pi_{\bar{\varphi}} \pi_{\bar{f}_{\vec{n},\pm}} + e^{-2\bar{\alpha}} \Big(e^{6\bar{\alpha}} m^2 \sigma^2 \bar{\varphi} - 2\pi_{\bar{\alpha}} \pi_{\bar{\varphi}} \Big) f_{\vec{n},\pm} \Big],$

 $\Phi = \frac{1}{\sigma} \left(\frac{\bar{\varphi}}{(2\pi)^{3/2}} + \epsilon e^{-\bar{\alpha}} \sum \bar{f}_{\vec{n},\pm} Q_{\vec{n},\pm} \right).$

Gauge invariants

The Mukhanov-Sasaki modes and their momenta have the expression:

$$\begin{split} v_{\vec{n},\pm} &= A_n \bar{f}_{\vec{n},\pm} + B_n \pi_{\bar{f}_{\vec{n},\pm}}, \quad \pi_{v_{\vec{n},\pm}} = \bar{v}_{\vec{n},\pm} = F_n \bar{f}_{\vec{n},\pm} + G_n \pi_{\bar{f}_{\vec{n},\pm}}, \\ A_n &= 1 + \frac{3e^{-4\bar{\alpha}} \pi_{\bar{\phi}}}{\omega_n^2 \pi_{\bar{\alpha}}} \Big(e^{6\bar{\alpha}} m^2 \, \sigma^2 \bar{\phi} - 2 \, \pi_{\bar{\alpha}} \pi_{\bar{\phi}} \Big), \qquad B_n = \frac{3e^{-2\bar{\alpha}} \pi_{\bar{\phi}}^2}{\omega_n^2 \pi_{\bar{\alpha}}}, \\ F_n &= -\frac{3e^{-2\bar{\alpha}} \pi_{\bar{\phi}}^2}{\pi_{\bar{\alpha}}} - \frac{3e^{-6\bar{\alpha}}}{\omega_n^2 \pi_{\bar{\alpha}}} \Big[e^{12\bar{\alpha}} m^4 \sigma^4 \bar{\phi}^2 - \frac{e^{6\bar{\alpha}} \pi_{\phi}}{2\pi_{\bar{\alpha}}} m^2 \sigma^2 \bar{\phi} \Big(5 \, \pi_{\bar{\alpha}}^2 - 3 \, \pi_{\bar{\phi}}^2 + 3 \, e^{6\bar{\alpha}} \, m^2 \, \sigma^2 \bar{\phi}^2 \Big) \Big] \\ &- \frac{3e^{-6\bar{\alpha}} \pi_{\bar{\phi}}^2}{2\omega_n^2 \pi_{\bar{\alpha}}} \Big(11 \, \pi_{\bar{\alpha}} - 15 \, \pi_{\bar{\phi}}^2 - 3 \, e^{6\bar{\alpha}} \, m^2 \, \sigma^2 \, \bar{\phi}^2 \Big), \\ G_n &= 1 + \frac{3e^{-4\bar{\alpha}} \pi_{\phi}}{2\omega_n^2 \pi_{\bar{\alpha}}} \Big[-2 \, e^{6\bar{\alpha}} \, m^2 \, \sigma^2 \, \bar{\phi} + \frac{\pi_{\bar{\phi}}}{\pi_{\bar{\alpha}}} \Big(\pi_{\bar{\alpha}}^2 - 3 \, \pi_{\bar{\phi}}^2 + 3 \, e^{6\bar{\alpha}} \, m^2 \, \sigma^2 \, \bar{\phi}^2 \Big) \Big]. \end{split}$$

If we construct annihilation and creation variables with these invariants (for zero mass), the Bogoliubov transformation, which is mode dependent, is UNITARY in the privileged Fock quantization.

Robustness under gauge fixing

- Similar results are obtained in the gauge of flat spatial sections $a_{\vec{n}\pm} = b_{\vec{n},\pm} = 0$.
- Moreover, the same **symplectic** structure for **gauge invariants** is obtained.

Quantization: Homogeneous sector

- We quantize the homogeneous sector with standard loop techniques, using improved dynamics and the MMO proposal.
- In the volume basis $\{|v\rangle; v \in \mathbb{R}\}$, with $\hat{V} = |\hat{p}|^{3/2}$,

$$\hat{N}_{\bar{\mu}}|v\rangle = |v+1\rangle, \quad \hat{p}|v\rangle = sgn(v)(2\pi\gamma G\hbar\sqrt{\Delta}|v|)^{2/3}|v\rangle.$$

- The kinematic Hilbert space is $H_{kin}^{FRW-LQC} \otimes H_{kin}^{matt}$.
- The inverse volume is regularized as usual.

$$\widehat{\left[\frac{1}{V}\right]} = \widehat{\left[\frac{1}{\sqrt{|p|}}\right]^3}, \quad \widehat{\left[\frac{1}{\sqrt{|p|}}\right]} = \frac{3}{4\pi\gamma G \hbar\sqrt{\Delta}} \widehat{sgn(p)} \sqrt{|\hat{p}|} (\hat{N}_{-\bar{\mu}} \sqrt{|\hat{p}|} \hat{N}_{\bar{\mu}} - \hat{N}_{\bar{\mu}} \sqrt{|\hat{p}|} \hat{N}_{-\bar{\mu}}).$$

Quantization: Homogeneous Hamiltonian

After decoupling the zero-volume state, we change densitization for the FRW constraint:

$$\hat{C}_{0} = \left[\frac{1}{V}\right]^{1/2} \hat{C}_{0} \left[\frac{1}{V}\right]^{1/2}. \qquad \hat{C}_{0} = -\frac{6}{\gamma^{2}} \hat{\Omega}_{0}^{2} + 8\pi G \left(\hat{\pi}_{\phi}^{2} + m^{2} \hat{\phi}^{2} \hat{V}^{2}\right).$$

The gravitational part, with the MMO proposal, is:

$$\hat{\Omega}_{0} = \frac{1}{4i\sqrt{\Delta}} \hat{V}^{1/2} \Big[\widehat{sgn(p)} \Big(\hat{N}_{2\bar{\mu}} - \hat{N}_{-2\bar{\mu}} \Big) + \Big(\hat{N}_{2\bar{\mu}} - \hat{N}_{-2\bar{\mu}} \Big) \widehat{sgn(p)} \Big] \hat{V}^{1/2}$$

Takes into account the triad orientation (manifest in anisotropic scenarios).

This operator has the generic form

$$\widehat{\Omega}_0^2 |v\rangle = f_+(v) |v+4\rangle + f(v) |v\rangle + f_-(v) |v-4\rangle.$$

Quantization: Superselection

 $\hat{\Omega}_0^2$ can be seen as a difference operator.

$$\widehat{\Omega}_{0}^{2}|v\rangle = f_{+}(v)|v+4\rangle + f(v)|v\rangle + f_{-}(v)|v-4\rangle.$$

- The real function $f_+(v)$ $(f_-(v))$ vanishes in the interval [-4,0] ([0,4]).
- The operator preserves the superselection sectors $\mathscr{S}_{\pm\epsilon}^{(4)} := \{\pm (\epsilon + 4n), n \in \mathbb{N}\}$

This operator is selfadjoint in those sectors. Its eigenfunctions are real, and determined by their value at the **minimum volume** $\epsilon \in (0,4]$.

Quantization: Homogeneous states

- **Solutions** to the constraint are determined, e.g., by their initial values at minimum volume.
- If the scalar field serves as a clock, an alternate possibility is to give the value at a section of constant field. This is not always possible.

• The space of *physical* states can be identified, e.g., with $L^2(\mathbb{R}, d\phi)$.

Fock and hybrid quantizations

- We quantize the rescaled inhomogeneous modes using annihilation and creation variables constructed from our canonical variables and zero mass.
- We obtain a Fock space *F*, with basis of n-particle states:

$$\left\{ |N\rangle = |N_{(1,0,0),+}, N_{(1,0,0),-}, ...\rangle; \quad N_{\vec{n},\pm} \in \mathbb{N}, \sum N_{\vec{n},\pm} < \infty \right\}$$

We proceed to a hybrid quantization, with Hilbert space

$$H_{kin}^{FRW-LQC} \otimes H_{kin}^{matt} \otimes \mathscr{F}.$$

The Hamiltonian constraint is not trivial.

Quantum Hamiltonian of the perturbations

- We quantize the quadratic contribution of the perturbations to the Hamiltonian adapting the quantization **proposals of the homogeneous sector** and using a symmetric factor ordering:
 - * We **symmetrize** products of the type $\hat{\phi} \hat{\pi}_{\phi}$.

- * We take a symmetric geometric factor ordering $V^k A \rightarrow \hat{V}^{k/2} \hat{A} \hat{V}^{k/2}$.
- * We adopt the LQC representation $(cp)^{2m} \rightarrow [\hat{\Omega}_0^2]^m$.
- * In order to preserve the FRW superselection sectors, we adopt the prescription $(cp)^{2m+1} \rightarrow [\hat{\Omega}_0^2]^{m/2} \hat{\Lambda}_0 [\hat{\Omega}_0^2]^{m/2}$, where

$$\hat{\Lambda}_{0} = -\frac{i}{8\sqrt{\Delta}} \hat{V}^{1/2} \Big[\widehat{sgn(p)} \Big(\hat{N}_{4\bar{\mu}} - \hat{N}_{-4\bar{\mu}} \Big) + \Big(\hat{N}_{4\bar{\mu}} - \hat{N}_{-4\bar{\mu}} \Big) \widehat{sgn(p)} \Big] \hat{V}^{1/2}.$$

The situation is similar to that found with the Hubble parameter in LQC.

Quantum Hamiltonian of the perturbations

With the FRW densitization:

$$\hat{H}_{2}^{\vec{n},\pm} = \frac{\sigma}{16\pi G} \left[\frac{1}{V} \right]^{1/2} \hat{C}_{2}^{\vec{n},\pm} \left[\frac{1}{V} \right]^{1/2}.$$

$$\hat{Z}_{2}^{\vec{n},\pm} = 6(2\pi)^{4} \sigma^{2} \left[2\omega_{n} \left[\frac{1}{V} \right]^{-2/3} + \frac{\hat{Y}^{-}}{\omega_{n}} + \frac{\hat{Z}}{\omega_{n}^{3}} \right] \hat{N}_{\vec{n},\pm} + 4\pi G \left[\left(\frac{\hat{Y}^{+}}{\omega_{n}} + \frac{\hat{Z}}{\omega_{n}^{3}} \right) \hat{X}_{\vec{n},\pm}^{+} + \frac{3i\sigma^{2}\hat{W}}{\omega_{n}^{2}} \hat{X}_{\vec{n},\pm}^{-} \right] \\ \hat{N}_{\vec{n},\pm} = \hat{a}_{f_{\vec{n},\pm}}^{\dagger} \hat{a}_{f_{\vec{n},\pm}}, \qquad \hat{X}_{\vec{n},\pm}^{\pm} = \left(\hat{a}_{f_{\vec{n},\pm}}^{\dagger} \right)^{2} \pm \left(\hat{a}_{f_{\vec{n},\pm}} \right)^{2}, \\ \hat{Y}^{\pm} = \frac{m^{2}}{(2\pi)^{2}} - \pi \sigma^{2} \left[\frac{1}{V} \right]^{1/3} \left(\frac{1}{\gamma^{2}(2\pi)^{3}\sigma^{2}} \hat{\Omega}_{0}^{2} + 3(5\pm 2)\hat{\pi}_{\phi}^{2} + 3m^{2}\hat{V}^{2}\hat{\phi}^{2} \right) \left[\frac{1}{V} \right]^{1/3},$$

医马克氏试验检试验检试验检试验检试验检试验检试验检试验

$$\hat{Z} = -\frac{3\sigma^2}{2\pi} \left[\frac{1}{V}\right] \left(\frac{2}{\gamma}\hat{\Lambda}_0\hat{\pi}_{\phi} + m^2\hat{V}^2\hat{\phi}\right)^2 \left[\frac{1}{V}\right],$$

$$\hat{W} = -\left[\frac{1}{V}\right]^{2/3} \left(\frac{4}{\gamma}\hat{\Lambda}_0\hat{\pi}_{\phi}^2 + m^2\hat{V}^2(\hat{\phi}\hat{\pi}_{\phi} + \hat{\pi}_{\phi}\hat{\phi})\right) \left[\frac{1}{V}\right]^{2/3}$$

Solutions to the constraint

If the matter field serves as a clock:

 $\hat{\boldsymbol{C}}_{0} + \epsilon^{2} \left(\sum \hat{\boldsymbol{C}}_{2}^{\vec{n},\pm} \right) = 0.$

chansystem

$$\left(\boldsymbol{\Psi} \right| \hat{\boldsymbol{\pi}}_{\phi} = \frac{1}{\sqrt{8 \pi G}} \left(\boldsymbol{\Psi} \right| \left[\hat{\boldsymbol{\Theta}}_{0}^{2} - \boldsymbol{\epsilon}^{2} \left(\sum \hat{\boldsymbol{C}}_{2}^{\vec{n}, \pm} \right)^{\dagger} \right]^{1/2} \approx \frac{1}{\sqrt{8 \pi G}} \left(\boldsymbol{\Psi} \right| \left| \hat{\boldsymbol{\Theta}}_{0} - \frac{\boldsymbol{\epsilon}^{2}}{2} \hat{\boldsymbol{\Theta}}_{0}^{-1} \left(\sum \hat{\boldsymbol{C}}_{2}^{\vec{n}, \pm} \right)^{\dagger} \right]$$
$$\hat{\boldsymbol{\Theta}}_{0}^{2} = \boldsymbol{P} \left(8 \pi G \hat{\boldsymbol{\pi}}_{\phi}^{2} - \hat{\boldsymbol{C}}_{0} \right).$$

- We can pass to an interaction picture and use a Born-Oppenheimer-like approximation.
- This can be done even without the above *perturbative expansion*.
- This leads to a sort of *effective* QFT for the inhomogeneities.

Physical states

An alternate perturbative scheme:

 $(\Psi |= (\Psi |^{(0)} + \epsilon^2 (\Psi |^{(2)} \dots$

• FRW solution: $(\Psi|^{(0)}\hat{C}_0=0,$

$$\hat{\boldsymbol{C}}_{0} = -\frac{6}{\gamma^{2}} \hat{\Omega}_{0}^{2} + 8\pi G \left(\hat{\pi}_{\phi}^{2} + m^{2} \hat{\phi}^{2} \hat{V}^{2} \right).$$

• *Evolution* of the perturbations:

$$(\Psi|^{(2)} \hat{C}_0 = -(\Psi|^{(0)} (\sum \hat{C}_2^{\vec{n},\pm})^{\dagger}.$$

- Solutions are characterized by their initial data at minimum volume.
- From these data we arrive, e.g., at the **physical Hilbert space** $H_{kin}^{matt} \otimes \mathscr{F}$.

Conclusions

We have considered a perturbed FRW universe with a massive scalar field.

Two approximations:

The action has been truncated to second order in the perturbations.
 A hybrid quantization scheme has been adopted.

- First complete quantization of a model with inflation within LQC (*k*=1).
- Backreaction has been included.

Conclusion

- For quantum simulations, the FRW prescription is optimal.
- Opposite to the situation in other analyses, the inhomogeneities have UNITARY dynamics in an (*effective*) QFT approximation.
- No internal time (matter clock) is needed. If a matter clock is available, one can obtain the inhomogeneities evolution adopting an interaction picture.
- Generally, one can construct quantum states perturbatively from data at minimum volume. This allows one to get a physical Hilbert space.