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The model (Fernandez-Meéndez, MM, Olmedo 2012, 2013)

» We consider perturbed FRW universes
with a minimally coupled scalar field, in LQC.

» The model can generate inflation.

» The most interesting case is flat topology.

2 \We assume compact spatial sections.
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Our strategy
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i s Approximations: As few as possible.

' ;’ » LQC techniques, with a quantum metric.

B, i ;_‘ * We want to explore the quantum nature of
B S @ ® spacetime, rather than treating perturbations as test
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Perturbations off compact FRW

H

Approximation: Truncation at quadratic
perturbative order in the action.

» Uses the modes of the Laplace-Beltrami
operator of the FRW spatial sections.

» Zero modes exact at linear order.

@ Corrections to the action are quadratic.

@ Not necessarily the same truncation order
In all metric components.

* The system is symplectic and constrained.

@ Includes backreaction AT THAT ORDER.
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HYbI'ICl approach (Martin-Benito, Garay, MM 2008) |
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g - Approximation: Effects of (loop) quantum geometry
are only accounted for in the background
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Unigueness) ofi the Fock description \
(Cortez, MM, Olmedo;, Velhinho 2011, 2012) ‘
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@ The ambiguity in selecting a Fock representation in QFT can be removed
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- appealing to background spatial symmetries.
- demanding the UNITARITY of the quantum evolution.

@ There is additional ambiguity in the separation of the background and the
‘ matter field. This introduces time-dependent canonical field transformations.

@ Qur proposal selects a UNIQUE canonical pair and an EQUIVALENCE
CLASS of invariant Fock representations for their CCR's.
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Loop Quantum ERW: Cosmology:




Classical system: FRW

(Martin-Benite, MM, O@lmedor2009)

@ Massive scalar field ¢ coupled
to a compact flat FRW umverse

Geometry

Hamlltonlan constraint:
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s Specific LQC proposal such that it is optimal

for numerical computation.

Y : Immirzi pa%weter.
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Classicall system: FRW' 4 Inhomogeneities

@ We expand the inhomogeneities in a Fourier basis of sines (-) and cosines (+),
with frequency w’=7-7.

@ We consider only scalar perturbations.

@ Wecall g;.(f)and k; . (¢) the (properly scaled) Fourier coefficients of the
lapse and shift.
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@ At quadratic order: H=
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Mukhanov-Sasakil variables
(Castello Gomar, Martin-Benito, MV ~2015)
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@ We change variables to these gauge invariants for the vt

} ;I perturbations.

# x t

| i , % @ Then, the primordial power spectrum is easy to derive.
j |

’ﬁ"}’ a.__p _ @ Their use facilitates comparison with other approaches.

g * They can be enlarged to a canonical set which includes

T

A the perturbative constraints.

-"#! @ This transformation can be completed by changing the
B %= homogeneous variables with quadratic corrections.
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Mukhanov-Sasakl (Castello) Gemar, Ferndandez-Méndez, MM, Olmede 2014)
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| B After this canonical transformation, the Hamiltonian constraint (at |
K our perturbative order, and with a lapse redefinition) amounts to: |

i C,=m,—Hy(FRW ).
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—— ® The quadratic perturbative Hamiltonian is just the Mukhanov-Sasaki *
Hamiltonian (in rescaled variables).

Vol d umr}% - -

At this order, it is linear in the homogeneous field momentum

n,=x n,=x n,=
C, =—0]" -0 " n
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Hybrld quantlzatlon
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Hamiltonian adapting the proposals of the homogeneous sector and
using a symmetric factor ordering. In particular:

% We take a symmetric geometric factor ordering V* 4 — pER gk,
#* We adopt the LQC representation (cp)2m—>[§z§]’".

#% |n order to preserve the FRW superselection sectors, we adopt the
A 2]m/2 A ml2

prescription (cp)2m+1—>[§20 AO[Q(Z)] , where A, is defined like
QO but with double steps.

» The Hamiltonian constraint reads then é’o—z (:)f’i —Z (@i’i f[¢>sym=0-
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Born -Oppenheimer ansatz

(Fernandez Mendez, MM, Olmedo 20137 & Castello Gomar 2014)
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» Consider states whose evolution in the Inhomogeneities and FRW &
4 geometry split, with positive frequency in the homogeneous sector:

=l N (v e)=Pleso|i [ dd @) ().
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| The FRW state is peaked and evolves unitarily.

.,

| o Disregard nondiagonal elements for the FRW geometry sector in the
constraint and call:
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» The diagonal FRW-geometry part of the constraint gives: l
~d,0
2 0] 0>X ]w

—o3p—i(2(H,),—(0,),)8,y=[(0,+(8, ) +i(d,H,—

)sym

@ The term in cyan can be ignored if <1§l0>x is not negligible small.

@ Besides, if we can neglect. a) The second derivative of ),
b) The total ¢-derivative of 2 H,—0_,

—iD. W= e+<@0H0)sym>Xw. Schrodinger-like equation.
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Born -Oppenheimer ansatz
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#) @ There are restrictions on the range of validity.
o

.
‘ ) @ The extra terms are negligible if so are the ¢-derivatives of

<IA{0>X’ <(:)e>xf <@0>X’ <(H @ )sym>

% o These derivatives contain two types of terms. One comes from the /J
explicit dependence, and is proportional to powers of the mass.
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s The other comes from commutators with A , In the FRW geometry.

» Contributions arising from [, 7] can be relevant.




Effective Mukhanov-Sasakil equations
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Starting from the Born-Oppenheimer form of the constraint and
assuming a direct effective counterpart for the inhomogeneities:

where we have defined the state-dependent conformal time

dn, =11V (dtlV).

The effective equations are of harmonic oscillator type, with no
dissipative term, and hyperbolic in the ultraviolet regime.
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¢ We have considered the hybrid quantization of a FRW universe with a
massive scalar field perturbed at quadratic order in the action.

¢ The system is a constrained symplectic manifold. Backreaction is

included at the considered truncation order.

¢ The model has been described in terms of Mukhanov-Sasaki variables.

—

¢ With a Born-Oppenheimer ansatz, we have derived effective
Mukhanov-Sasaki equations. The ultraviolet regime is hyperbolic.
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