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The model   The model   (Fernández-Méndez, MM, Olmedo 2012, 2013)(Fernández-Méndez, MM, Olmedo 2012, 2013)  

 The model can generate inflation. 

 The most interesting case is flat topology.  

 We assume compactcompact spatial sections. 

 We consider perturbed  FRW universes 
with a minimally coupled scalar field, in LQC.



Our strategy Our strategy 

 Approximations: As few as possible.  

 LQC techniques, with a quantum metric. 

 We want to explore the quantum nature  of 
spacetime, rather than treating perturbations as test 
fields in a generalized QFT.



Perturbations of Perturbations of compactcompact FRW  FRW 

 Uses the modes  of the Laplace-Beltrami 
operator of the FRW spatial sections.

 Zero modes exact at linear order.

 Corrections to the action are quadratic. 

 Not necessarily the same truncation  order 
in all metric components.

 The system is symplectic and constrained.

 Includes backreaction AT THAT ORDER.
•

Approximation: Truncation at quadratic 
perturbative order in the action.  



Approximation: Effects of (loop) quantum geometry 
are only accounted for in the background

Hybrid approach  Hybrid approach  (Martín-Benito, Garay, MM 2008)(Martín-Benito, Garay, MM 2008)



 The ambiguity in selecting a Fock representation in QFT can be removed 
by: 

- appealing to background spatial symmetries.
  - demanding the UNITARITY of the quantum evolution.

 There is additional ambiguity in the separation of the background and the 
matter field. This introduces time-dependent canonical field transformations.

 Our proposal selects a UNIQUE canonical pair  and an EQUIVALENCE 
CLASS of invariant Fock representations for their CCR's.

Uniqueness of the Fock description Uniqueness of the Fock description 
(Cortez, MM, Olmedo, Velhinho 2011, 2012)(Cortez, MM, Olmedo, Velhinho 2011, 2012)



Loop Quantum FRW CosmologyLoop Quantum FRW Cosmology

 Avoids the Big Bang. 



                   

  Massive scalar field     coupledMassive scalar field     coupled
    to a compact, flat FRW universe.to a compact, flat FRW universe.  

Geometry: 

 
        Hamiltonian constraint:
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Classical system: FRWClassical system: FRW
(Martín-Benito, MM, Olmedo 2009)(Martín-Benito, MM, Olmedo 2009)
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 Specific LQC proposal such that it is optimal 
for numerical computation.

      Immirzi parameter.γ :

ϕ



  We expand the inhomogeneities in a Fourier basis of sines (-) and cosines (+),  
  with frequency

  We consider only scalar perturbations.

  We call               and              the (properly scaled) Fourier coefficients of the 
  lapse and shift. 

  At quadratic order:

Classical system: FRW + InhomogeneitiesClassical system: FRW + Inhomogeneities
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Mukhanov-Sasaki variablesMukhanov-Sasaki variables
(Castelló Gomar, Martín-Benito, MM (Castelló Gomar, Martín-Benito, MM ~~2015) 2015) 

  We change variables to these gauge invariants  for the 
perturbations.

 Then, the primordial power spectrum is easy to derive. 

 Their use facilitates comparison with other approaches. 
 
 They can be enlarged to a canonical  set which includes 

the perturbative constraints.

 This transformation can be completed by changing the 
homogeneous variables with quadratic corrections. 



Mukhanov-Sasaki Mukhanov-Sasaki (Castelló Gomar, Fernández-Méndez, MM, Olmedo 2014)(Castelló Gomar, Fernández-Méndez, MM, Olmedo 2014)

After this canonical transformation, the Hamiltonian constraint  (at 
our perturbative order, and with a lapse redefinition) amounts to:

The quadratic perturbative Hamiltonian is just the Mukhanov-Sasaki 
Hamiltonian (in rescaled variables). 

At this order, it is linear in the homogeneous field momentum
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We quantize the quadratic contribution of the perturbations to the 
Hamiltonian adapting the proposals of the homogeneous sector and 
using a symmetric factor ordering. In particular: 

We take a symmetric geometric factor ordering

We adopt the LQC representation

In order to preserve the FRW superselection sectors, we adopt the

prescription                                                 where         is defined like

      but with double steps.

The Hamiltonian constraint reads then 

Hybrid quantizationHybrid quantization
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Consider states whose evolution in the inhomogeneities and FRW 
geometry split, with positive frequency in the homogeneous sector:

The FRW state is peaked and evolves unitarily.

Disregard nondiagonal  elements for the FRW geometry sector in the 
constraint and call:

Born-Oppenheimer ansatz Born-Oppenheimer ansatz 
(Fernández-Méndez, MM, Olmedo 2013; & Castelló Gomar 2014)(Fernández-Méndez, MM, Olmedo 2013; & Castelló Gomar 2014)

d ϕÔ=∂ϕÔ−i [ Ĥ 0 , Ô ].
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The diagonal FRW-geometry part of the constraint gives:

The term in cyan can be ignored if             is not negligible small.

Besides, if we can neglect:    a) The second derivative of         
                                               b) The total    -derivative of                   

Born-Oppenheimer ansatz  Born-Oppenheimer ansatz  
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Schrödinger-like equation.



There are restrictions on the range of validity.

The extra terms are negligible if  so are the    -derivatives of

                                                          

These derivatives contain two types of terms. One comes from the 
explicit dependence, and is proportional to powers of the mass.

The other comes from commutators with        in the FRW geometry.

Contributions arising from                 can be relevant.    
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Effective Mukhanov-Sasaki equationsEffective Mukhanov-Sasaki equations

Starting from the  Born-Oppenheimer  form of the constraint and 
assuming a direct effective counterpart for the inhomogeneities:

where we  have  defined  the  state-dependent conformal time

The effective equations are of harmonic oscillator  type, with no 
dissipative term, and hyperbolic in the ultraviolet regime. 
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ConclusionsConclusions

We have considered the hybrid quantization of a FRW universe with a 
massive scalar field perturbed at quadratic order in the action.

The system is a constrained  symplectic manifold. Backreaction  is 
included at the considered truncation order.

The model has been described in terms of Mukhanov-Sasaki variables.

With a Born-Oppenheimer  ansatz, we have derived effective 
Mukhanov-Sasaki equations. The ultraviolet regime is hyperbolic.
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