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c → 0

Minkowski Newton (c →∞) Carroll (c → 0)

The asymptotic silence is obtained while taking the speed of light
c → 0, which is known as the Carrollian limit1.

,,A slow sort of country ..., ... now, here, you see, it takes all the
running you can do to stay in the same place...” Lewis Carroll

1J-M. Levy-Leblond, Annales de l’I.H.P., section A, tome 3, No 1 (1965).
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BKL conjecture

The state of asymptotic silence appears in various contexts.
Perhaps the best known is the so-called
Belinsky-Khalatnikov-Lifshitz (BKL) conjecture2:

“Near to a singularity spatially separated points decouple, and the
role of most forms of matter is negligible.”

In the BKL scenario, each of the ”points” is described by the
anisotropic cosmological solution.

2V. A. Belinskii, I. M. Khalatnikov and E. M. Lifshitz, Adv. Phys. 19
(1970) 525; 31 (1982) 639
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GN →∞

The less intuitive case is the strong coupling limit of the
gravitational interactions, when GN →∞. Relation between this
limit and the asymptotic silence can be understood by analyzing
the Hamiltonian formalism of general relativity, where

HG [N,Na] = S [N] + D[Na] =

∫
d3x(NS + NaDa).

Namely, the scalar constraint can be schematically written as

S = GN · kinetic +
1

GN
· potential .

Here, only the potential term contains spatial derivatives, which
relate the neighboring points. Therefore, while talking GN →∞
only the kinetic term survives, and the theory becomes ultralocal.
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Hypersurface deformation algebra

The constraints generate gauge transformations:

The algebra of constraints:

{D[Na
1 ],D[Na

2 ]} = D[Nb
1 ∂bN

a
2 − Nb

2 ∂bN
a
1 ],

{S [N],D[Na]} = −S [Na∂aN],

{S [N1], S [N2]} = sD
[
gab(N1∂bN2 − N2∂bN1)

]
,

where s = 1 corresponds to the Lorentzian signature and s = −1
to the Euclidean one. Due to the factor gab the algebra of
constraint is not a Lie algebra.
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Ultralocal gravity and Hǒrava-Lifshitz gravity

In the ultralocal limit3 (GN →∞) the algebra of constraints
simplifies to the Lie algebra:

{D[Na
1 ],D[Na

2 ]} = D[Nb
1 ∂bN

a
2 − Nb

2 ∂bN
a
1 ],

{S [N],D[Na]} = −S [Na∂aN],

{S [N1],S [N2]} = 0.

Surprisingly, the number of the local symmetry generators is the
same as in GR. The same holds for Hǒrava-Lifshitz4 gravity in the
z → 0 limit of the dynamical exponent, where the anisotropic
scaling

x→ bx and t → bz t.

Cosmological evolution can be interpreted as a flow from z = 0
(ds →∞) in the early universe to z = 1 (ds = 4) observed now.

3C. J. Isham, Proc. Roy. Soc. Lond. A 351 (1976) 209.
4P. Hǒrava, Phys. Rev. D 79 (2009) 084008.
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Causal Dynamical Triangulation

Possible confirmation of the asymptotic silence is coming also from
Causal Dynamical Triangulation (CDT) approach to quantum
gravity (Ambjorn, Jurkiewicz, Loll).

Phase diagram of CDT:

As observed from the numerical computations, universe breaks up
into several independent components, when the effective
gravitational coupling constant G increases.
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Loop quantum gravity

Loop quantum gravity (LQG) is based on Hamiltonian
formulation of GR.

Loop quantum cosmology (LQC) is a regular lattice model of
LQG.

Physical area of a loop Ar� = p̄µ̄2, where p̄ = a2 and a is a
scale factor. In general µ̄ ∝ p̄δ, where −1/2 ≤ δ ≤ 0. For the

so-called µ̄−scheme: µ̄ =
√

∆
p̄ , where ∆ = 2

√
3πγl2Pl is the

area gap derived from LQG.
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At the effective level, quantum gravity effects can be studied
by introducing appropriate corrections to the classical
constraints:

Ctot → CQ
tot ,

where Ctot = CG + CM .

In LQC one usually consider two kinds of such quantum
corrections:

Inverse volume corrections.
Holonomy corrections

(
k̄ → sin(nµ̄γk̄)

nµ̄γ

)
.

Problems appear for inhomogeneous models:

The procedure of introducing quantum corrections suffers
from ambiguities.

In general, the algebra of modified constraints is not closed:

{CQ
I , C

Q
J } = gK

IJ(Aj
b,E

a
i )CQ

K +AIJ .
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Can we introduce quantum corrections in the anomaly-free
manner (i.e. such that AIJ = 0)?

It turns out that it is possible at least for perturbative
inhomogeneities (application to cosmology) for:

Inverse volume corrections (gauge invariant: Bojowald,
Hossain, Kagan, Shankaranarayanan - 2008)
Holonomy corrections (gauge invariant: Cailleteau, Mielczarek,
Barrau, Grain - 2012, fixed gauge: Wilson-Ewing - 2012)

We found that, for perturbative inhomogeneities with
holonomy corrections:

There is a unique way of modifying constraints such that the
algebra is closed.
Additionally, the conditions of anomaly-freedom are fulfilled if
and only if Ar� =const, which corresponds to “new
quantization scheme” (δ = −1/2).

See T. Cailleteau, J. Mielczarek, A. Barrau, J. Grain, Class.
Quantum Grav. 29 (2012) 095010 and my PhD dissertation.
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Algebra of constraints (off-shell):

{Dtot [Na
1 ],Dtot [Na

2 ]} = 0,{
SQ

tot [N],Dtot [Na]
}

= −SQ
tot [δNa∂aδN],{

SQ
tot [N1],SQ

tot [N2]
}

= βDtot

[
N̄

p̄
∂a(δN2 − δN1)

]
.

The algebra is closed but deformed with respect to the classical
case due to presence of the factor

β = cos(2µ̄γk̄) = 1− 2
ρ

ρc
∈ [−1, 1] where ρc =

3

8πG∆γ2
∼ ρPl.

What is the interpretation? Classically, we have

{Stot [N1], Stot [N2]} = sD

[
N̄

p̄
∂a(δN2 − δN1)

]
,

where s = 1 corresponds to the Lorentzian signature and s = −1
to the Euclidean one.
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The effective algebra of constraints shows that space is
Euclidean for ρ > ρc/2, while Lorentzian geometry emerges
for ρ < ρc/2. Signature change at ρ = ρc/2. Spacetime
becomes 4D Euclidean space for ρ > ρc/2.

It is interesting to notice that this model naturally have
properties of the Hartle-Hawking no-boundary proposal
(Hartle, Hawking - 1983).

At ρ = ρc/2 the Ultralocal Gravity is recovered
{Stot [N1],Stot [N2]} = 0 since β = 0 → the stage of
asymptotic silence.

The β−deformation appears also from the inverse-volume
corrections. However, in that case β > 0. The asymptotic
silence can be realized but not the signature change.

However, the signature change was observed also for
spherically symmetric models with holonomy corrections5.

5M. Bojowald and G. M. Paily, Phys. Rev. D 86 (2012) 104018.
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Equations of motion:

Scalar pertubations. One can derive modified Mukhanov
equation:

d2

dη2
v − β∇2v − z

′′

z
v = 0,

where z :=
√
p̄ ϕ̇H . Spatial curvature R = v/z .

Vector perturbations. For the considered model with a scalar
field vector modes are pure gauge.

Tensor perturbations. Equation of motion for the gravitational
waves is the following:

d2

dη2
hab + 2

(
aH − 1

2β

dβ

dη

)
d

dη
hab − β∇2hab = 0.
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Inflationary scalar power spectrum:

PS(k) = AS

(
k

aH

)nS−1

,

AS =
1

πε

(
H

mPl

)2(
1 + 2

V

ρc

)
,

nS = 1 + 2η − 6ε(1− V /ρc).

Inflationary tensor power spectrum:

PT(k) = AT

(
k

aH

)nT

,

AT =
16

π

(
H

mPl

)2(
1 + 3

V

ρc

)
,

nT = −2ε(1− 3V /ρc).

Corrections are tiny: O(V /ρc) ∼ 10−12.
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Light cones

Effective speed of light:

ceff =
√
β =

√
1− 2

ρ

ρc
.

The asymptotic silence (ceff → 0) is realized while ρ→ ρc

2 .
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Is there quantum tunneling through the Euclidean phase from
the contraction to expansion phase?

Suppression of the spatial derivatives while {SQ , SQ} → 0.
Possible support for the BKL conjecture.

Silent initial conditions (〈φ(0)φ(r)〉 → 0) at ρ = ρc/2?
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Spontaneous symmetry breaking?

Let us consider a model of metamaterial, composed of nanowires
(or ferromagnet, liquid crystal, etc.).

T > TC T < TC

The SO(3) symmetry is broken to SO(2) at temperatures below
TC . An order parameter is the local magnetization and the
corresponding Goldstone bosons manifest as spin waves.

In the direction of magnetization, the dielectric permittivity
becomes negative leading to emergence of a new effective time
variable 6

6I. I. Smolyaninov and E. E. Narimanov, Phys. Rev. Lett. 105 (2010)
067402.
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So, at the level of the equations of motion for the electric field
propagating in the considered material, the original SO(3)
symmetry of Laplace operator is replaced by SO(1, 2).

In case of gravity, we observe that the symmetry of equations for
the fields change from SO(4) in the Euclidean region to SO(1, 3)
in the Lorentzian regime. One can speculate that this transition is
a result of the symmetry breaking at the level of the fundamental
structure of spacetime.

In particular, one can suppose that the original SO(4) spacetime
symmetry is broken into SO(3), where the residue SO(3) is the
rotational symmetry of triads. Time can be therefore seen as the
order parameter of the symmetry broken phase. Interestingly, in
such a picture, Goldstone bosons associated with the broken
symmetry must appear. Such particles could naturally serve as
inflatons, which are required to explain the inflationary stage after
the Planck epoch.
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Loop deformation of the Poincaré algebra

In the limit of vanishing space-time curvaure, the loop-deformed
algebra of constraints, reduces to the loop-deformed Poincaré
algebra. This corresponds to linear deformations of the
hypersurface7:

N(x) = ∆t + vax
a, Na(x) = ∆xa + Ra

bx
b, and gab = δab.

The obtained deformation is a special case of a class of
generalizations of the Poincaré algebra8.

The fact that only the {SQ , SQ} bracket is deformed imposes
constraints on the possible deformations of the Poincaré algebra.
In particular, undeformed form of {D,SQ} = SQ implies that
[Ki ,Pj ] = iδijP0 remains undeformed as well.

7M. Bojowald and G. M. Paily, arXiv:1212.4773 [gr-qc]
8D. Kovacevic, S. Meljanac, A. Pachol and R. Strajn, Phys. Lett. B 711

(2012) 122
Jakub Mielczarek Asymptotic silence in quantum gravity



Poincaré algebra for the metric
ηµν = (−s, 1, 1, 1):

[Ji , Jj ] = iεijkJk

[Ji ,Kj ] = iεijkKk

[Ki ,Kj ] = −i sεijkJk

[Ji ,Pj ] = iεijkPk

[Ki ,Pj ] = iδijP0

[Ji ,P0] = 0

[Ki ,P0] = i sPi

[Pi ,Pj ] = 0

[Pi ,P0] = 0

Loop-deformed Poincaré algebra
for metric signature (−,+,+,+):

[Ji , Jj ] = iεijkJk[
Ji , K̃j

]
= iεijk K̃k[

K̃i , K̃j

]
= −iβεijkJk

[Ji ,Pj ] = iεijkPk[
K̃i ,Pj

]
= iδijP0

[Ji ,P0] = 0[
K̃i ,P0

]
= iβPi

[Pi ,Pj ] = 0

[Pi ,P0] = 0

where K̃i is deformed generator of boost K̃i = XiP0 − X0Piβ. For
s → 0 or β → 0 the Carroll group is recovered.
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Casimir operator:

C1 = E 2
∗

∫ P0/E∗

0

2y

β(y)
dy − (Pi )

2.

Let us consider the cosine type deformation β(x) = cos(πx), where
x = P0/E∗ ∈ [0, 1]. We denote E = P0, and E∗ ∼ EPl.

Dispersion relation of photon:
E 2g(E )− p2 = 0

Group velocity: vgr = β
√

g(E )
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Summary and outlook

Different approaches to quantum gravity meet at the
asymptotic silence.

Our model unifies various ideas, such as signature change and
asymptotic silence.

The presented results contribute to the growing evidence,
showing that the asymptotic silence may indeed have
something to do with the state of spacetime under very
extreme conditions. However, the final vote belongs to
experiment.

Silent initial conditions at ρ = ρc/2. Predictions of the
spectra of primordial perturbations. Comparison with the
CMB data. (in progress with A. Barrau and L. Linsefors)

Deformation of the Poincaré algebra. Modifications of the
photon dispersion relation. Phenomenology available.

Paradigm shift in LQC.

Jakub Mielczarek Asymptotic silence in quantum gravity



Supplement 1: Quantum state of the asymptotic silence

We redefine
Ai

a → GNA
i
a

such that phase space structure{
E a

j (x),Ai
b(y)

}
= 8πγδa

bδ
i
j δ

(3)(x− y)

does not depend on GN . In the limit GN →∞ and Λ ∼ G 2
N →∞

the constraints simplify to:

Ci →
2

γ
εijkA

j
aE

a
k ,

Ca → GN
2

γ
εi

jkA
j
aA

k
bE

b
i ,

C → − 1

γ2
GN

εij
kE

a
i E

b
j√

detE

(
εk

lmAl
aA

m
b −

1

3
λγ2εabcE

ck

)
,

where λ ≡ Λ
G 2

N
= const is the considered limit.
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Canonical quantization:

Ai
a → Âi

aΨ = Ai
aΨ,

E a
i → Ê a

i Ψ = 8πγ}i
δ

δAi
a

Ψ,

such that
[
Ê a

j (x), Âi
b(y)

]
= i8πγ}δa

bδ
i
j δ

(3)(x− y). The state

annihilated by the constraints

Ĉi Ψ[A] = 0,

ĈaΨ[A] = 0,

ĈΨ[A] = 0,

has the following form:

Ψ[A] = N exp

[
i

4πγ3λ}

∫
Σ

tr(A ∧ A ∧ A)

]
,

which resembles the famous Kodama state.
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Supplement 1: Scalar perturbations

The constraints CI are subject of perturbative expansion:

CI = C(0)
I + C(1)

I + C(2)
I + ...

Holonomy corrections are introduced by the replacement

k̄ → K[n] :=
sin(nµ̄γk̄)

nµ̄γ
,

in the classical constraints, where n ∈ Z.

Because the constraints are quantum-modified (CI → CQ
I ),

there is a worry that the corresponding Poisson algebra will
not be closed:

{CQ
I , C

Q
J } = f K

IJ(Aj
b,E

a
i )CQ

K +AIJ .

For consistency (closure of algebra), AIJ is required to vanish.
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The holonomy-modified Hamiltonian constraint can be written as:

SQ
G [N] =

1

2κ

∫
Σ
d3x

[
N̄(H(0)

G +H(2)
G ) + δNH(1)

G

]
, where

H(0)
G = −6

√
p̄(K[1])2,

H(1)
G = −4

√
p̄ (K[s1] + α1) δc

j δK
j
c −

1√
p̄

(
K[1]2 + α2

)
δj

cδE
c
j

+
2√
p̄

(1 + α3)∂c∂
jδE c

j ,

H(2)
G =

√
p̄(1 + α4)δK j

cδK
k
d δ

c
kδ

d
j −
√
p̄(1 + α5)(δK j

cδ
c
j )2

− 2√
p̄

(K[s2] + α6) δE c
j δK

j
c −

1

2p̄3/2

(
K[1]2 + α7

)
δE c

j δE
d
k δ

k
c δ

j
d

+
1

4p̄3/2

(
K[1]2 + α8

)
(δE c

j δ
j
c )2

− 1

2p̄3/2
(1 + α9)δjk(∂cδE

c
j )(∂dδE

d
k ).

Here, αi (p̄, k̄) are the counter-terms (αi (p̄, k̄)→ 0 for µ̄→ 0 ).
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Diffeomorphism constraint takes the classical form

DG [Na] =
1

κ

∫
Σ
d3xδNc

[
p̄∂c (δd

k δK
k
d )− p̄(∂kδK

k
c )

− k̄δk
c (∂dδE

d
k )
]
.

The scalar matter diffeomorphism constraint is

DM [Na] =

∫
Σ
δNaπ̄(∂aδϕ).

The scalar matter Hamiltonian can be expressed as follows

SQ
M [N] = SM [N̄] + SM [δN],

where

SM [N̄] =

∫
Σ
d3xN̄

[(
H(0)
π +H(0)

ϕ

)
+
(
H(2)
π +H(2)

∇ +H(2)
ϕ

)]
,

SM [δN] =

∫
Σ
d3δN

[
H(1)
π +H(1)

ϕ

]
.
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H(0)
π =

π̄2

2p̄3/2

H(0)
ϕ = p̄3/2V (ϕ̄)

H(1)
π =

π̄δπ

p̄3/2
− π̄2

2p̄3/2

δj
cδE c

j

2p̄

H(1)
ϕ = p̄3/2

[
V,ϕ(ϕ̄)δϕ+ V (ϕ̄)

δj
cδE c

j

2p̄

]

H(2)
π =

1

2

δπ2

p̄3/2
− π̄δπ

p̄3/2

δj
cδE c

j

2p̄
+

1

2

π̄2

p̄3/2

[
(δj

cδE c
j )2

8p̄2
+
δk

c δ
j
dδE

c
j δE

d
k

4p̄2

]
,

H(2)
∇ =

1

2

√
p̄(1 + α10)δab∂aδϕ∂bδϕ,

H(2)
ϕ =

1

2
p̄3/2V,ϕϕ(ϕ̄)δϕ2 + p̄3/2V,ϕ(ϕ̄)δϕ

δj
cδE c

j

2p̄

+ p̄3/2V (ϕ̄)

[
(δj

cδE c
j )2

8p̄2
−
δk

c δ
j
dδE

c
j δE

d
k

4p̄2

]
.
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Brackets

The total Hamiltonian and diffeomorphism constraints are:

SQ
tot [N] = SQ

G [N] + SQ
M [N],

Dtot [Na] = DG [Na] + DM [Na].

The Poisson bracket between two total diffeomorphism constraints
is vanishing:

{Dtot [Na
1 ],Dtot [Na

2 ]} = 0.

The bracket between the total Hamiltonian and diffeomorphism
constraints can be decomposed as follows:

{
SQ

tot [N],Dtot [Na]
}

=
{
SQ

M [N],Dtot [Na]
}

+
{
SQ

G [N],DG [Na]
}

+
{
SQ

G [N],DM [Na]
}
.
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{
SQ

M [N],Dtot [Na]
}

= −SQ
M [δNa∂aδN].

{
SQ

G [N],DG [Na]
}

= −SQ
G [δNa∂aδN] + B DG [Na]

+

√
p̄

κ

∫
Σ
d3xδNa(∂aδN)A1 +

N̄
√
p̄k̄

κ

∫
Σ
d3xδNa(∂iδK

i
a)A2

+
N̄

κ
√
p̄

∫
Σ
d3xδN i (∂aδE

a
i )A3 +

N̄

2κ
√
p̄

∫
Σ
d3x(∂aδN

a)(δEb
i δ

i
b)A4.

The functions A1, . . . ,A4 are the first anomalies coming from the
effective nature of the Hamiltonian constraint.{

SQ
G [N],DM [Na]

}
= 0.
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The Poisson bracket between the two total Hamiltonian constraints
can be decomposed in the following way:

{
SQ

tot [N1],Stot [N2]
}

=
{
SQ

G [N1],SQ
G [N2]

}
+ {SM [N1], SM [N2]}

+
[{

SQ
G [N1], SM [N2]

}
− (N1 ↔ N2)

]
.

Here, the Poisson bracket between two matter Hamiltonians is

{
SQ

M [N1],SQ
M [N2]

}
= (1 + α10)DM

[
N̄

p̄
∂a(δN2 − δN1)

]
.

The appearance of the front-factor (1 + α10) will allow us to close
the algebra of total constraints.
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{
SQ

G [N1], SQ
G [N2]

}
= (1 + α3)(1 + α5)DG

[
N̄

p̄
∂a(δN2 − δN1)

]
+
N̄

κ

∫
Σ
d3x∂a(δN2 − δN1)(∂iδK

i
a)(1 + α3)A5

+
N̄

κp̄

∫
Σ
d3x(δN2 − δN1)(∂ i∂aδE

a
i )A6

+
N̄

κ

∫
Σ
d3x(δN2 − δN1)(δa

i δK
i
a)A7

+
N̄

κp̄

∫
Σ
d3x(δN2 − δN1)(δi

aδE
a
i )A8

The A5, . . . ,A8 are the next four anomalies. Moreover, the
diffeomorphism constraint is multiplied by the factor
(1 + α3)(1 + α5).
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{
SQ

G [N1],SM [N2]
}
− (N1 ↔ N2) =

=
1

2

∫
Σ
d3xN̄(δN2 − δN1)

(
π̄2

2p̄3
− V (ϕ̄)

)
(∂c∂

jδE c
j )A9

+3

∫
Σ
d3xN̄(δN2 − δN1)

(
π̄δπ

p̄2
− p̄Vϕ(ϕ̄)δϕ

)
A10

+

∫
Σ
d3xN̄(δN2 − δN1)(δc

j δK
c
j )

(
π̄2

2p̄3
− V (ϕ̄)

)
p̄A11

+
1

2

∫
Σ
d3xN̄(δN2 − δN1)(δj

cδE
c
j )

(
π̄2

2p̄3

)
A12

+
1

2

∫
Σ
d3xN̄(δN2 − δN1)(δj

cδE
c
j )V (ϕ̄)A13

The functions A9, . . . ,A13 are the last five anomalies.
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Anomaly freedom

The requirement of anomaly freedom is equivalent to the
conditions Ai = 0 for i = 1, . . . , 13. Furthermore
(1 + α3)(1 + α5) = (1 + α10). These conditions uniquely
determine form of the counter terms αi for i = 1, . . . , 10.

Moreover, we have

A7 = 2(1 + 2δ)(βK[1]2 −K[2]2),

A8 = k̄(1 + 2δ)(K[2]2 − βK[1]2).

The anomaly freedom conditions for those terms, A7 = 0 and
A8 = 0, are fulfilled if and only if δ = −1/2. The choice δ = −1/2
is called the µ̄−scheme (‘new quantization scheme’).

Our results show that the µ̄−scheme is embedded in the structure
of the theory and this gives a new motivation for this particular
choice of quantization scheme.
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The counter-terms allowing the algebra to be anomaly-free are
uniquely determined, and are given by:

α1 = K[2]−K[s1],

α2 = 2K[1]2 − 2k̄K[2],

α3 = 0,

α4 = β − 1,

α5 = β − 1,

α6 = 2K[2]−K[s2]− k̄β,

α7 = −4K[1]2 + 6k̄K[2]− 2k̄2β,

α8 = −4K[1]2 + 6k̄K[2]− 2k̄2β,

α9 = 0,

α10 = β − 1,

where
β := cos(2µ̄γk̄) = 1− 2

ρ

ρc
.
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