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Motivation

1) Spherically symmetric spacetimes:
a) Black hole physics: local singularity, evaporation (Hawking radi-

ation)

b) Gravitational collapse (with a matter field)

2) Previous attempts
a) Kuchař’s quantization (superposition masses)

b) Interior of the black hole (Kantowski-Sachs)

c) Exterior of the black hole (gauge fixing)



Classical system and Ashtekar variables

1) The Ashtekar variables adapted to a spherically symmetric
spacetime, are given by

A = Ai
aτidxa = Ax(x)τ3dx + [A1(x)τ1 + A2(x)τ2]dθ

+ [A1(x)τ2 − A2(x)τ1] sin θdφ+ τ3 cos θdφ,

E = Ea
i τ

i∂a = sin θ
(

Ex(x)τ3∂x + [E1(x)τ1 + E2(x)τ2]∂θ

)
+ [E1(x)τ2 − E2(x)τ1]∂φ,

where τi are the generators of SU(2) (i.e. [τi, τj] = εij
kτk with εijk

the totally antisymmetric tensor). Setting γ = 1, the Poisson
algebra is given by

{Ax(x),Ex(x′)} = 2Gδ(x− x′),

{Ai(x),Ej(x′)} = Gδj
iδ(x− x′), i, j = 1, 2,



Classical system: polar coordinates

2) One first introduces polar coordinates, i.e.,

E1 = Eϕ cos(α+ β), E2 = Eϕ sin(α+ β),

A1 = Aϕ cosβ, A2 = Aϕ sinβ,

and completes the canonical transformation defining

η = α+ β, Pη = AϕEϕ sinα = 2A1E2 − 2A2E1,

Āϕ = 2Aϕ cosα.

Finally, the transformation

Āx = Ax + η′, P̄η = Pη + (Ex)′,

allows one to simplify the treatment of the pure gauge canoni-
cal pair η and P̄η. In the following we will set the second class
condition η = 0 (gauge fixing the Gauss constraint Pη = 0).



Classical constraints

3) Within this gauge fixing, 2Kx = Āx and 2Kϕ = Āϕ. The Hamilto-
nian is a linear combination of the constraints

H :=
((Ex)′)2
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, Hr := EϕK′ϕ − (Ex)′Kx .

fulfilling the algebra

{Hr(Nr),Hr(Ñr)} = Hr(NrÑ′r − N′rÑr), {H(N),Hr(Nr)} = H(NrN′),

{H(N),H(Ñ)} = Hr

(
Ex

(Eϕ)2

[
NÑ′ − N′Ñ

])
.



New constraint algebra

3) In order to write the scalar constraint as a total derivative, we
”gauge” and scale it as

Hnew :=
(Ex)′

Eϕ
Hold − 2

√
Ex

Eϕ
KϕHr =

[√
Ex

(
1− [(Ex)′]2

4(Eϕ)2 + K2
ϕ

)]′
Now, smearing with the lapse integrating by parts and scaling
with Eϕ (together with appropriate boundary conditions)

H(N) =

∫
dxN

(√
ExEϕ

(
1 + K2

ϕ

)
− 2GMEϕ − [(Ex)′]2

√
Ex

4Eϕ

)
,

The new constraint algebra is

{Hr(Nr),Hr(Ñr)} = Hr(NrÑ′r − N′rÑr), {H(N),Hr(Nr)} = H(NrN′),

{H(N),H(Ñ)} = 0.



Kinematical Hilbert space
1) Spin networks

Tg,~k,~µ(Kx,Kϕ) =
∏
ej∈g

exp

(
i
2

kj

∫
ej

dx Kx(x)

)∏
vj∈g

exp
(

i
2
µjKϕ(vj)

)
,

kj ∈ Z is the valence associated with the edge ej, and µj ∈ R
the valence associated with the vertex vj

2) Kinematical Hilbert space

HB
kin = Hm

kin ⊗

 V⊗
j=1

`2
j ⊗ L2

j (RBohr, dµBohr)

 ,
which is endowed with the inner product

〈g,~k, ~µ,M|g′,~k′, ~µ′,M′〉 = δ(M −M′)δ~k,~k′δ~µ,~µ′δg,g′ .



Kinematical Hilbert space

3) Operator representation: mass and triads

M̂|g,~k, ~µ,M〉 = M|g,~k, ~µ,M〉,
Êx(x)|g,~k, ~µ,M〉 = `2

Plkj|g,~k, ~µ,M〉,

Êϕ(x)|g,~k, ~µ,M〉 = `2
Pl

∑
vj∈g

δ
(
x− xj

)
µj|g,~k, ~µ,M〉,

4) Holonomies (of Kϕ) of length ρ

Nϕ
±nρ(x)|g,~k, ~µ,M〉 = |g,~k, ~µ′±nρ,M〉, n ∈ N,

here ~µ′±nρ either has just the same components than ~µ up
to µj → µj ± nρ if x coincides with a vertex of the graph
located at xj, or ~µ′±nρ will be ~µ with a new component
{. . . , µj,±nρ, µj+1, . . .} with xj < x < xj+1.



Representation of the scalar constraint
The scalar constraint will be promoted to

Ĥ(N) =

∫
dxN(x)

√
Êx

×

(
Θ̂
√

Êx + Êϕ
√

Êx − 1
4
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Êϕ

] [
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,

1) The operator Θ̂(x) acting on the kinematical states

Θ̂(x)|g,~k, ~µ,M〉 =
∑
vj∈g

δ(x− x(vj))Ω̂
2
ϕ(vj)|g,~k, ~µ,M〉,

Ω̂ϕ(vj) =
1

4iρ
|Êϕ|1/4[ ̂sgn(Eϕ)

(
N̂ϕ

2ρ − N̂ϕ
−2ρ

)
+
(
N̂ϕ

2ρ − N̂ϕ
−2ρ

) ̂sgn(Eϕ)
]
|Êϕ|1/4

∣∣∣
vj
,



Representation of the scalar constraint

2) Besides

|Êϕ|1/4(vj)|g,~k, ~µ,M〉 = `
1/2
Pl |µj|1/4|g,~k, ~µ,M〉,

̂sgn
(
Eϕ(vj)

)
|g,~k, ~µ,M〉 = sgn(µj)|g,~k, ~µ,M〉,[̂

1
Êϕ

]
|g,~k, ~µ,M〉 =

=
∑
vj∈g

δ(x− x(vj))
1

`2
Plρ

2
(|µj + ρ|1/2 − |µj − ρ|1/2)2|g,~k, ~µ,M〉,

(Êx)′(vj)|g,~k, ~µ,M〉 = `2
Pl(kj − kj−1)|g,~k, ~µ,M〉.



Representation of the scalar constraint

3) The action of the constraint on spin networks

Ĥ(N)|g,~k, ~µ,M〉 =
∑
vj∈g

N(xj)(`
3
Plkj)

[
f0(µj, kj,M)|g,~k, ~µ,M〉

−f+(µj)|g,~k, ~µ+4ρj ,M〉 − f−(µj)|g,~k, ~µ−4ρj ,M〉
]
,

If s±(µj) = sgn(µj) + sgn(µj ± 2ρ), then

f±(µj) =
1

16ρ2 |µj|1/4|µj ± 2ρ|1/2|µj ± 4ρ|1/4s±(µj)s±(µj ± 2ρ),

f0(µj, kj, kj−1,M) =
1

16ρ2

[
(|µj||µj + 2ρ|)1/2s+(µj)s−(µj + 2ρ)

+(|µj||µj − 2ρ|)1/2s−(µj)s+(µj − 2ρ)
]

+ µj

(
1− 2GM

`Pl|kj|1/2

)
−

sgn(µj)

ρ2 (kj − kj−1)2(|µj + ρ|1/2 − |µj − ρ|1/2)2,



Invariant domain and singularity resolution

1) Invariant domain: i) the constraint does not create new vertices
or edges, ii) it preserves the sequences of kj, and iii) at each
vertex, it is a difference operator mixing different µj’s such that
µj = εj ± 4ρnj, with nj ∈ N and εj ∈ (0, 4ρ].

2) Singularity resolution: i) the scalar constraint leaves invariant
the subspace of spin networks with non-vanishing kj and µj.
ii) Additionally, spin networks with kj = 0 and/or µj = 0 can be
ruled out by requiring selfadjointness to some metric compo-
nents (locally).



Solutions to the constraint

1) Solutions: (Ψg| =
∫ ∞

0
dM
∑
~k

∑
~µ

〈g,~k, ~µ,M|ψ(M)χ(~k)φ(~k; ~µ; M).

They are annihilated by the constraint
∑

vj∈g(Ψg|NjĈj
†

= 0, fac-

torizing as φ(~k, ~µ,M) =
∏V

j=1 φj(µj), φj(µj) = φj(kj, kj−1, µj,M).

2) Difference equation: each function φj(µj) satisfies

− F+(µj)φj(µj − 4ρ)− F−(µj)φj(µj + 4ρ) + f0(kj, kj−1, µj,M)φj(µj) = 0.

where f±(µj) = F±(µj ± 4ρ) vanish on the intervals [0,∓2ρ].

3) Asymptotically (µj →∞) the difference eq. is approximated by

− 4µj∂
2
µj
φ− 4∂µjφ−

(kj − kj−1)2 − 1/4
µj

φ+

(
1− 2GM

`Pl|kj|1/2

)
︸ ︷︷ ︸

=ω̃

µjφ = 0.



Solutions to the constraint

3) The sign of ω̃ (exterior or interior of the black hole) influences
the asymptotic behavior of φj:
a) If ω̃ < 0 the constraint Ĉin

j = Ĉin
j +

(
1− 2GM

`Pl|kj|1/2

)
adopts this

form on the representation Ĉin
j = µ̂

−1/2
j Ĉjµ̂

−1/2
j . If ω̃ < 0. It can

be diagonalized as ωj +
(

1− 2GM
`Pl|kj|1/2

)
= 0, with

Ĉin
j |φin

ωj
〉 = ωj|φout

ωj
〉, 〈φin

ωj
|φin
ω′

j
〉 = δ

(√
ωj −

√
ω′j

)
,

and ωj belonging to the positive real line (nondegenerated).



Solutions to the constraint

b) If ω̃ > 0, the constraint Ĉout
j = Ĉout

j − (kj − kj−1)2 adopts this
form on the representation

Ĉout
j =

[̂
1
µj

]−1/2

Ĉj

[̂
1
µj

]−1/2

, b̂(µj) =
1
ρ

(|µ̂j + ρ|1/2 − |µ̂j − ρ|1/2).

The constraint equation reads λn(M, kj, εj)−∆k2
j = 0, with

Ĉout
j |φout

λj
〉 = λj|φout

λj
〉, 〈φout

λn(εj)
|φout
λn′ (εj)

〉 = δnn′ .

λn(M, kj, εj) is a sequence (n ∈ N) of positive real numbers de-
pending continuously on εj. Therefore, we expect that the pos-
itive real line would be completely covered (future research).



Physical Hilbert space

1) Group averaging: (ΨC
g | =

∫
dα1 · · · dαV exp

{ V∑
j=1

iαjĈ
†
j

}
(Ψg|.

Equivalently, on the representation of τ (canonically conjugate
of M)

ΨC
g (~k, ~µ; τ) =

2G
`Pl
√

kj

∫ ∞
0

dωjψ(ωj)χ(~k)φin
~ω(ωj)

(~µ)eiM(ωj)τ

+
∑
~λn(ωj)

ψ(~λn(ωj))χ(~k)φout
~λn(ωj)

(~µ)eiM(~λn(ωj))τ ,

2) Normalization ‖ΨC
g (τ0)‖2 =

∑
~k

∑
~µ |ΨC

g (~k, ~µ; τ0)|2 <∞, i.e., the
inner product is 〈g,~k, ~µ|g′,~k′, ~µ′〉 = δ~k,~k′δ~µ,~µ′δg,g′ .



Physical Hilbert space

3) Standard group averaging with the diffeomorphism constraint:
rigging map

η : Cyl→ Cyl∗Diff,

It induces the inner product 〈η(Ψ)|η(Φ)〉 = 〈η(Ψ)|Φ〉, and yields
the Hilbert space

HDiff = ⊕[g]H[g],Diff,

4) Observables: the model is characterized by the mass M
(boundary), and on the bulk by the number of vertices V and
the new observable

Ô(z)Ψphys = `2
PlkInt(Vz)Ψphys, z(x) : [0, x]→ [0, 1]

with z(x) any monotonic function.



Conclusions and outlook

1) We quantize an spherically symmetric spacetime:
a) We consider Ashtekar variables and a suitable modification of

the classical constraint algebra.

b) We adopt a loop representation together with the Dirac quanti-
zation scheme.

2) We find explicitly the solutions, construct the physical Hilbert
space and provide the observables (some of them without
classical analog).

3) Meticulous analytical and numerical study of the spectrum of
some geometrical operators, as well as semiclassical geome-
tries.

4) Study of the effects of the discrete geometry on Hawking radia-
tion and extension to other classical models: CGHS (vacuum),
grav. collapse (coupled matter), Gowdy, etc.
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