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Plan of the talk

Part |: from LQG to GFT

LQG states as “many-particle states”
Second quantization of spin networks and Group Field Theory

kinematics: states, observables and GFT fields/observables
dynamics: canonical projector and GFT action

Part Il: What is the 2nd quantised (QFT) formalism good for?
relating LQG and Spin Foam models

dealing with continuum limit (many d.o.f.) at dynamical level
defining full LQG dynamics via QFT methods
continuum phase structure and LQG vacua
GFT condensates
extracting effective continuum dynamics
* (Quantum) Cosmology as GFT condensate hydrodynamics



INntroduction

| . we already know: L. Freidel. '06
Reisenberger,Rovelli, ’00 DO, *06, ’11
GFT <---> Spin Foams - actually: GFT = Spin Foams A. Baratin, DO, "11

GFT is often presented as the 2nd quantized version of LQG

we show (Part ):
(DO, 1310.7786 [gr-qc])
. this is true in a precise sense: reformulation of LQG as GFT
. very general correspondence (both kinematical and dynamical)

. do not need to pass through Spin Foams (LQG/SF correspondence obtained via GFT)

the reformulation provides powerful new tools to address LQG open issues (Part Il)



Part |
2nd quantized LQG:

From Loop Quantum Gravity
to Group Field Theory

DO,1310.7786 [gr-qc]



The (kinematical) Hilbert space(s) of LQG

algebra of observables: holonomy-flux algebra for paths (+ dual surfaces)

quanturp states: cylindrical functions of holonomies (fluxes) along links (surfaces) for graphs (+surfaces)
H, 3>V (Gy,...Gg) G;eSUQ2) ~=(V,E)

plus gauge invariance at vertices

2

— 69 H . huge
Y different graphs ~ orthogonal states

s Ha . -
U / y . prominence to graphs

H _
not a Hilbert space 7—[2 — lim U,Y ! — L2 (.A)

Y ~

T. Thiemann, '01 _ . _ o
A. Ashtekar, J. Lewandowski, ‘04 « based on kinematical continuum limit

(states effectively defined on “infinitely refined graph”)
« equivalence classes of graphs
- different graphs ~ orthogonal states



The (kinematical) Hilbert space(s) of LQG

algebra of observables: holonomy-flux algebra for paths (+ dual surfaces)

quantum states: cylindrical functions of holonomies (fluxes) along links (surfaces) for graphs (+surfaces)

modified class of quantum states: l \
A H ~y plus gauge invariance at d-valent vertices

« extended: closed + open graphs
. restricted: d-valent graphs

can generalise

W. Kaminski, M. Kieselowski, J. Lewandowski, 09
DO, J. Ryan, J. Thuerigen, ‘14

fHe:Bt 69 fHV < turned into Hilbert space by:

- considering Hilbert space of states for V. “open vertices”
: |%4 1 1, .V VY pd O . =2V
A H ng(gl,...,gd,....,gl ,...,gd) —gp(g e )
| embedding /H;yv c HY
d

95 9,
4694 %2 . summing over V
91; gg




Spin network functions as “many-particles” states

embedding H:Yv CHY ~L? (de/Gv) = (517 '--»57‘/)

veeyn = 1 / dajj or({giefy; gjoir}h) = Ur{gi(g)™'}) Lo Gb)e BT)
ec E(T) 1
\ B()C ({L...V}x{L....d}) | r
wave function 1 122 13
for closed graph wave function for many open spin net veg}rtices
94
same in other basis: fluxes, spins 9 G4 Gz
4 4 92
Ve (St of eymmstny bt 1) * o1 (- X1 X)) ‘RN em
of variables, specific linédrd €8mbination 4
or (X1, Xv) € (R [(closure) V) Xy = (X}, X0) Y\ [Vof &=
every cylindrical function is contained in new Hilbert space 3 °
3
Ur (oo i) = | T D0 OmtmtOian | o (oondomdghiml, o 1T, ) 3
Any L 3 State'Ban be writterl in terms of “many—vertlces states

op (G, 1)y oo Jvsiiv, Iv)) o= Gt 3 1 = (o m)



Spin network functions as “many-particles” states

embedding 7‘[ C H with standard Haar measure

LQG kinematical scalar product for given graph (with V vertices) is restriction of scalar
product for V open-vertices states

same pattern of “gluings”

< /I"|\IJF> = 51“’1“/ H /de \Iff (,Gw,) W (,Gw,) =

(ij)eE

— <H /dgz> H ‘/‘dawdﬁfmgp 7gzdazjyg]1az_]7) ( 9 6%]793671]7"") — <S0/f/‘g0f‘>
eV

(ijER)
this shows embedding of Hilbert space of given graph into new Hilbert space

however, generic cylindrical functions for different graphs Heﬂ?t 69 fHV
are embedded differently in new Hilbert space:

- states associated to different graphs with same number of vertices are NOT orthogonal
states associated to graphs with different number of vertices ARE orthogonal
prominence to number of vertices, not to graph structure
no cylindrical consistency, no projective limit



Spin network functions as “many-particles” states

%ea:t 69 HV
V

HY > (g%, ...,gcli; ....;gY, ...,gc‘i/) = (§'1; ,gV) with standard Haar measure

require also symmetry under relabelling of vertices (permutations of vertices)

each state can be decomposed in products of “single-particle” (vertices) basis states:

or) =D e XY K)o Xy) e (glor) Zs& v TG %)

i eV
d
o= (Jomad) = ox(@ = (@iI%) = [] D, (9)C s
a=1 related by unitary transformation

. d (NC Fourier transform,
Xi = (Xz> — %-5(57) = (gi|Xi) = H E, (Xa) * 0x ZXa Peter-Weyl decomposition)



2nd quantized reformulation: kinematics

standard procedure for writing same states in 2nd quantized form
result:  HET = 69 HY ~ F(Hy) = 69 (7_[(1) 2 - H(V))

symmetry under vertex relabeling H bosonic statistics

gpf‘ (gla "'7§i7 "'7.5]'7 "'7§V) — Spf‘ (gla °'°7§j7 "'7§i7 "'7§V)

sketch of procedure (1):

. define ordering of links in each vertex (e.g. 1 <2 < ... < d)
define ordering (e.g lexicographic) for single-vertex labels (e.g. (j,m,l))

nq n
1 1 —
— — -, —Q,
Xy X e X X e X e
gor = % =C(N1,...; Ny )
. normalize states
. re-write generic wave function in “occupation number” basis:

(only a justification,
not a proof:
assumption!)

count how many times each set of labels appears and label states by these numbers:

ina =V
a=1

I ~ | |
op (G) =Y X @) =) C(m,..,na, ) \/”1V?°° S TG =

Xi eV {na} ' {Xi|ng} i€V

(@ < ¥) =) C(n1,-na,-) Ypnay (@ Z C (n1,..,nq,..) {gln1, ..., ng, ...)



2nd quantized reformulation: kinematics

sketch of procedure (2):

* send number of vertices to infinity - no constraint on occupation numbers E Ng = E ny = o0

X
. orthonormal basis (in LQG scalar product): F S T P noo> = |n1).....|Nnoo)
. define creation/annihilation operators:
T _ | T
[C%vci’] = oz lexex] = [C%’C%’} =0

celng) = Vaglng — 1) ching) = /ng + 1|ng + 1)
X

all quantum states generated from Fock vacuum | 0 > (“no-space” state)

can define conjugate bosonic field operators:

D1, 90) = 3 = 3 éx vl o101, 90) = 01 (@) = 3 & v(d)

—

X X



Spin networks in 2nd quantization

Fock vacuum: “no-space” (“emptiest”) state |0 > ~ AL LQG vacuum
(this is the natural background independent, diffeo-invariant vacuum state)

single field “guantum?”: spin network vertex or tetrahedron
(“building block of space”) ©(91, 92, 93,94) < p(B1,Ba, B3, By) — C

@T(glv g2, g3, g4)‘®> — |

generic quantum state: arbitrary collection of spin network vertices (including glued ones) or
tetrahedra (including glued ones)

A




2nd quantized reformulation: kinematics - olbservables

any LQG operator can be written in 2nd quantized form O =0 ( b, A)

“2-body” operator
(acts on single-vertex, does not create new vertices)

- 0:(38) =Y 0 XX ix = [ didd 7@ 02 3.7) 2@

“(n+m)-body” operator
(acts on spin network with n vertices, gives spin network with m vertices)

—

Ontm = (X150 Xm|Ontm X1, - Xn) = Onpmn (X1, -+ Ximos X150 X)) =

o O (2 01) = / A A, G ATy B (F1) B G) Oreon G oos Gons T s T) PG BT

basic field operators and the set of observables as functions of them define
the quantum kinematics of the corresponding GFT



2nd quantized reformulation: dynamics

can use general correspondence for operators to rewrite also any dynamical quantum
equation for LQG states in 2nd quantized form

assume quantum dynamics is encoded in “physical projector equation”:
P|w) = ) W) e HY  on —F|U) = (P-i) ) = 0

projector operator will in general decompose into 2-body, 3-body, ...., n-body operators (weighted by
(coupling) constants), i.e. will have non-zero “matrix elements” involving 2, 3, ..., n spin network vertices

AN

PO = |¥) — [Azﬁz AP+ } ) = |0

<>Z)]-7 crt) )Z)m|Pn+m|>Z)/17 ) X);”L> — Pn—l—m (%17 Y )Z)m7 >2)/17 ) )Z);’L)

the same quantum dynamics can be expressed in 2nd quantized form (using general map for operators):

o
AT A"' — — —/ —/ A A . AT A
g Antm g Co--Co P (X150 Xms X155 Xn) Cg--Cxr, | |¥) = g CoCz | W)
nm/ntm=2 (1) | %

oo

S v | [ e 7, 858 G) P (G0 830 £10)-5005) | 1) =

n,m/n+m=2



2nd quantized reformulation: dynamics

partition function (and correlations) of GFT is then obtained from partition function (and correlations) for
spin networks, recast in 2nd quantised language

first candidate (“microcanonical ensemble”): 7, = E (s] 5(}/7’\)’3> s> is arbitrary basis

S

only states solving dynamical constraint contribute (natural from continuum canonical theory)

more general context (abstract structures, no continuum, topology change, ...) ~
suggest more general ansatz (“canonical ensemble”): ZC — E <3 ‘ e F |3>

S

or, introducing a new parameter weighting differently quantum states ~ ~
with different numbers of vertices (“grandcanonical ensemble”): Zg — E <S|6_ (F — MN) ‘S>

S

this is the expression leading most directly
to GFTs and Spin Foam models

tool: 2nd quantised coherent states — — — —- >>>>



2nd quantized reformulation: dynamics

~ . . A_,T —
basis of 2nd quantized coherent states: C§|\9"> = ¢z lp) (plex’ =25 (@l
(@) =@ le)  (PlBN(9) = ¢(g) (¢l

I— / DD 97 |) (| ol = / WGP 0@ = 3 Fros
X

gives: 7, =N " (sle” (F=uN)|g) = /D@D@ e~ Sess(9:®)

) F
where the quantum corrected actionis:  Seff (0, @) = S (v, ) + O(h) = <Q<OJO‘J;>O> + O(h)

this is the GFT partition function with classical GFT action:

S (g, ") = /dﬁwT(ﬁ)w(ﬁ)—

n,m/n+m=2

/ Vn—i—m (£717 '°°7§mag)flla 7?7)7/7,) — Pn—|—m (.517 "'7§m7.§v17 7.5;)

the GFT interaction term is the Spin Foam vertex amplitude
E. Alesci, K. Noui, F. Sardelli, 08

quantum corrections give new interaction terms or renormalisation of existing ones



2nd quantized reformulation: dynamics - 3d example

test construction in “known” example: 3d quantum gravity (euclidean)

Hamiltonian and diffeo constraints impose flatness of gravity holonomy
general matrix elements of projector operator:

(Up|PIOr) = (U] [T 6(Hy) |97)
/fefDF,P’

(independent) closed loops

K. Noui, A. Perez, '04

such action decomposes into an action on 2, 4, 6,... spin network vertices
(glued to form closed graphs, because of gauge invariance of P -
graphs formed by an odd number of spin net vertices do not arise)

this in turn should give possible GFT interaction terms

— — —/ —/ — — —/ —/ . . .y
Vn+m (917 eeis G G715 ,._,gn) — Pn+m (91, ooy Gms G715 ,,,,gn) E. Alesci, K. Noui, F. Sardelli, ’08

we expect these to give rise to the known Boulatov GFT model for 3d QG

(NB: because matrix elements are real,
do not expect any distinction between using the GFT field and its conjugate)



2nd quantized reformulation: dynamics - 3d example

indeed.... . L . . . .
using gauge invariance of GFT fields (i.e. of spin net vertices)

gives the identity kernel already shown to correspond to GFT diffeos - even clearer in flux variable
(A. Baratin,F. Girelli, DO, ’11)

. /[dgq;dgy;/] ©123 P3745 P5/26 Perar1r 0 (G3G5GQ_1> 0 (G2G6G1_1) Y (G4G671G5_1) = ... =

= / [dgidgir]) ©123 3145 P26 Perarrr 0 (q197+) 0 (9295") 6 (9395") 6 (9a95") 0 (9595") 6 (9695")

Gi =997 ijk = (995, 9r)

exactly usual tetrahedral interaction term of Boulatov GFT

/[dgidgi’] ©123 P356 Psrare Pe2r1 0 (GaG1) 0 (GeGs) 6 (GsGsG4Gs) = ... =

= / [dgidgir] ©123 3156 Psarer w21 0 (g197+) 0 (9295") 6 (9395") 6 (9a95") 0 (9595") 6 (9695")
G; = gz'gi_/l Pijk = P (giagjagk:)
so-called “pillow” interaction term, also considered in Boulatov GFT

L. Freidel, D. Louapre, 02
can then compute diagrams of order 6,8,.... - GFT action will in general contain infinite number of interactions



Part ||

What for?

extended discussion



Relating LQG and Spin Foams via GFT

LQG can be reformulated in 2nd quantized form to give a GFT - kinematical and dynamical correspondence
iInsights:
. direct route LQG <—> GFT (SF fully defined via perturbative expansion of GFT)
. SF vertex is elementary matrix element of projector operator  E. Alesci, K. Noui, F. Sardelli, '08

. SF partition function (transition amplitude) contains more than canonical projector

equations (scalar product) L. Freidel, ’06; T. Thiemann, A. Zipfel, ‘13
key issues:

. class of diagrams to be summed over? subsector of canonical dynamics?

(L. Freidel, *06)
. choice of quantum statistics? relation to diffeomorphisms and to GFT symmetries?

(B. Bahr, T. Thiemann, '07) (A. Baratin,F. Girelli, DO, '11)
. criteria for restricting GFT interactions (matrix elements of canonical projector P)

(V. Bonzom, R. Gurau, V. Rivasseau, '12)

. exact relation between Hilbert spaces (physical meaning of graph structures)
. role and significance of open spin networks?

more rigorous meaning to canonical partition function, ensembles and thermodynamic potentials



Continuum limit of LQG (at dynamical level)

QFT methods (i.e. GFT reformulation of LQG) useful to address physics of large numbers of LQG d.o.f.s,
i.e. many and refined graphs (continuum limit)

(superpositions of “many-vertices” states, refinement as creation of new vertices, etc)

1. making sense of quantum dynamics and LQG partition function (correlations)
2. understanding LQG phase structure

3. extracting effective continuum dynamics



Continuum limit of LQG (at dynamical level)

QFT methods (i.e. GFT reformulation of LQG) useful to address physics of large numbers of LQG d.o.f.s,
i.e. many and refined graphs (continuum limit)

1.making sense of quantum dynamics and LQG partition function (correlations)

- approximate tools for computing quantum dynamics (transition amplitudes) around appropriate
vacuum state (spin foam perturbative expansion)
. control quantum corrections and interactions of many quantum LQG degrees of freedom,
compute effective dynamics at different scales (# LQG d.o.f.):

GFT (perturbative) renormalization
(V. Bonzom, J. Ben Geloun, ’11;

alternative: spin foam (lattice) A. Riello, ’13; J. Ben Geloun, '12;
refinement/coarse graining S. Carrozza, DO, V. Rivasseau,
(B. Bahr, B. Dittrich, 09, ’10; B. Bahr, B. 12,°13; S. Carrozza, ‘14)

Dittrich, F. Hellmann, W. Kaminski, ‘12)

. give non-perturbative meaning to full partition function, control the full sum over spin foams:

constructive GFT (and summability)
(L. Freidel, D. Louapre, '03; J. Magnen, K. Noui, V. Rivasseau, M. Smerlak, ‘09)



Continuum limit of LQG (at dynamical level)

QFT methods (i.e. GFT reformulation of LQG) useful to address physics of large numbers of LQG d.o.f.s,
i.e. many and refined graphs (continuum limit)

2. understanding LQG phase structure

what is the LQG continuum phase structure? what is the physical, geometric LQG phase?

AL vacuum 0)ar _
totally degenerate geometry (emptiest state)
connection highly fluctuating
unique diffeo invariant
An{0|Eg|0)ar, = 0 VS .
J. Lewandowski, A. Okolow, H. Sahimannm T. Thiemann’06
5ALES << 1 5ALAS >> 1 C. Fleischack, ‘06

physical vacuum with non-degenerate space-time and geometry and GR as effective dynamics?

_ in canonical LQG context:
LQG condensate vacuum (condensate of spin networks) T. Koslowski, 0709.3465 [gr-qc]

in covariant SF/GFT context:
DO, 0710.3276 [gr-qc]



Continuum limit of LQG (at dynamical level)

QFT methods (i.e. GFT reformulation of LQG) useful to address physics of large numbers of LQG d.o.f.s,
i.e. many and refined graphs (continuum limit)

2. understanding LQG phase structure

what is the LQG continuum phase structure? what is the physical, geometric LQG phase?

AL vacuum 0
| >AL totally degenerate geometry (emptiest state)

connection highly fluctuating
AL <O’ES|O>AL — 0 VS diffeo invariant

darFg <<1 daAg >>1

KS vacuum 0) ks non-degenerate geometry (triad condensate)

connection highly fluctuating
diffeo covariant
ks(0|Es|0)ks = Eg VS
sl << 1 OdggAg >>1

T. Koslowski, H. Sahimann, 1109.4688 [gr-qc]



Continuum limit of LQG (at dynamical level)

QFT methods (i.e. GFT reformulation of LQG) useful to address physics of large numbers of LQG d.o.f.s,
i.e. many and refined graphs (continuum limit)

2. understanding LQG phase structure

what is the LQG continuum phase structure? what is the physical, geometric LQG phase?

AL vacuum 10) A, DG vacuum 0)pa

(or BF vacuum)
AL<0’ES|O>AL =0 VS Dg<O|F(A)|O>DG =0
oarEg <<1 daAg >>1 opcA <<1 opgEg>>1

B. Dittrich, M. Geiller, 1401.6441 [gr-qc]
KS vacuum 0) ks

ks(0|Es|0)ks = Eg VS
sl << 1 OdggAg >>1



Continuum limit of LQG (at dynamical level)

QFT methods (i.e. GFT reformulation of LQG) useful to address physics of large numbers of LQG d.o.f.s,
i.e. many and refined graphs (continuum limit)

2. understanding LQG phase structure

what is the LQG continuum phase structure? what is the physical, geometric LQG phase?

AL vacuum
DG vacuum
(or BF vacuum)
KS vacuum q/

phase transitions



The idea of “geometrogenesis™;
continuum spacetime and geometry from GFT

. GFT is QG analogue of QFT for atoms in condensed matter system

e continuum spacetime (with GR-like dynamics) emerges from collective behaviour of large numbers
of GFT building blocks (e.g. spin nets, simplices), possibly only in one phase of microscopic system

. continuum spacetime as a peculiar quantum fluid

. more specific hypothesis: continuum spacetime is GFT condensate

. GR-like dynamics from GFT hydrodynamics

. even more specific suggestion: phase transition leading to spacetime and geometry (GFT
condensation) is what replaces Big Bang singularity (geometrogenesis)

. cosmological evolution as relaxation towards (simple) condensate state

. exact GFT condensate state to correspond to highly symmetric spacetime

(...., Hu ’95, Volovik ’10,...., Oriti ’07, ’11, ’13, Rivasseau ’11, ’12, Sindoni ’11)



Continuum limit of LQG (at dynamical level)

QFT methods (i.e. GFT reformulation of LQG) useful to address physics of large numbers of LQG d.o.f.s,
i.e. many and refined graphs (continuum limit)

2. understanding LQG phase structure

what is the LQG continuum phase structure? what is the physical, geometric LQG phase?

(DO, L. Sindoni, 1010.5149 [gr-qc];
S. Gielen, DO, L. Sindoni,
1303.3576 [gr-gc], 1311.1238 [gr-qc]

other simple candidates for LQG physical vacuum: GFT condensates

(all GFT quanta have the same (gauge invariant) “wave function”, i.e. are in the same quantum state)

N
1
U (Bi), - Biwy) = N 1] @(B;i(m))
m=1

e such states can be expressed in 2nd quantized language
one can consider superpositions of states of arbitrary N

continuum geometric interpretation: homogeneous (anisotropic) quantum geometries



Quantum GFT condensates

two simple choices of quantum GFT condensate states
(homogeneous continuum quantum spacetimes)

single-particle condensate two-particle dipole condensate
(Gross-Pitaevskii approximation) (Bogoliubov approximation)

o) = exp (&) |0) &) = exp (£) |0)
. ) 1 PN X
G = /d49 o(9n)¢'(91)  o(grk) = o(gr) § = 5/0149 d*h &(g k™)@ (g )T (h )

e simplest . naturally gauge invariant
e takes into account some correlations

. same geometric variables (in SU(2) case): data for homogeneous anisotropic geometries
. truly non-perturbative quantum states (infinite QG dofs, superposition of graphs)

. support perturbations at any sampling scale N

. 2nd quantized coherent states

. can be studied using BEC techniques



Continuum limit of LQG (at dynamical level)

QFT methods (i.e. GFT reformulation of LQG) useful to address physics of large numbers of LQG d.o.f.s,
i.e. many and refined graphs (continuum limit)

2. understanding LQG phase structure

what is the LQG continuum phase structure? what is the physical, geometric LQG phase?

(DO, L. Sindoni, 1010.5149 [gr-qc];
S. Gielen, DO, L. Sindoni,
1303.3576 [gr-gc], 1311.1238 [gr-qc]

other simple candidates for LQG physical vacuum: GFT condensates

(all GFT quanta (spin net vertices) have the same “wave function”, i.e. are in the same quantum state)

U (B;1y,...., B ®(B such states can be expressed in 2nd quantized language
( i(1); Z(N) N' H one can consider superpositions of states of arbitrary N

single-particle condensate  |o) := exp (6) |0) o(gr)|o) = o(gr)|o)

A

5 / d'g o(9)@ (91 olgik) = olgr)  (olelgr)|o) = o(gr)

new IRREP of observables algebra, inequivalent wrt Fock vacuum (AL vacuum)
symmetry breaking - U(1) symmetry & BF diffeos/translations (not BF vacuum) (A. Baratin,F. Girelli, DO, ’11)
order parameter: condensate wave function - more general than constant triad field



Continuum limit of LQG (at dynamical level)

QFT methods (i.e. GFT reformulation of LQG) useful to address physics of large numbers of LQG d.o.f.s,
i.e. many and refined graphs (continuum limit)

2. understanding LQG phase structure

what is the LQG continuum phase structure? what is the physical, geometric LQG phase?

AL vacuum
DG vacuum

(or BF vacuum)

GFT condensate

KS vacuum /
?

phase transitions

issue is to prove dynamically the choice of vacuum and the phase transitions

experience and results in tensor models and GFTs V. Bonzom, R. Gurau, A. Riello, V. Rivasseau, ’11;
A. Baratin, S. Carrozza, DO, J. Ryan, M. Smerlak, ‘13



Continuum limit of LQG (at dynamical level)

QFT methods (i.e. GFT reformulation of LQG) useful to address physics of large numbers of LQG d.o.f.s,
i.e. many and refined graphs (continuum limit)

3. extracting effective continuum dynamics

general strategy: change vacuum
- obtain effective GFT or spin foam amplitudes around new vacuum
write approximate SD equations in new vacuum

approximate techniques, e.g. mean field theory

applied in simple models for:
conditions on non-perturbative vacuum (DO, L. Sindoni, 1010.5149 [gr-qc))
effective spin foam dynamics (DO, L. Sindoni, 1010.5149 [gr-qc]; E. Livine, DO, J. Ryan, 1104.5509 [gr-qc])

- effective dynamics of simple fluctuations around new vacuum (W. Fairbairn, E. Livine, gr-qc/0702125)

most recently: cosmology from full QG (via GFT formalism) — —>



(Quantum) Cosmology from GFT

S. Gielen, DO, L. Sindoni, arXiv:1303.3576 [gr-qc], arXiv:1311.1238 [gr-qc]

problem 1:
identify quantum states in fundamental theory with continuum spacetime interpretation

many results in LQG (weaves, coherent states, statistical geometry, approximate symmetric states,....)

[ Quantum GFT condensates are continuum homogeneous spacetimes J

described by single collective wave function
(depending on homogeneous anisotropic geometric data)

similar constructions in LQG (Alesci, Cianfrani) and LQC (Bojowald, Wilson-Ewing, .....)

problem 2:
extract from fundamental theory an effective macroscopic dynamics for such states

following procedures of standard BEC

QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs
IS
knon—linear and non-local extension of quantum cosmology equation for collective wave function)

similar equations obtained in non-linear extension of LQC (Bojowald et al. ’12)



http://arxiv.org/abs/arXiv:1303.3576

—ffective cosmological dynamics from GFT

i : follow closely procedure used in real BECs
single-particle GFT condensate: yp

o) =exp(6)[0) 6= / P9 olgnd' (o) o(grk) = olar)

microscopic quantum GFT dynamics obtained (first approximation) from GFT action (real fields)

more precisely, from truncation of SD equations for GFT model

. . 5V
S. Gielen, DO, L. Sindoni, /[dg{] K(g:,9:)p(g;) + A =0

1303.3576 [gr-qc], 1311.1238 [gr-qc] 0p(9i )

when applied to (coherent) GFT condensate state, e , , o) f}
it gives equation for “wave function”: [dgi] /C(gz-, gi)a(gi) - A ]9050 = ()

A 0p(gi)
since:  (gr)|o) = o(gr)|o)

non-linear and non-local extension of quantum cosmology-like equation for “collective wave function

QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs



—ffective cosmological dynamics from GFT

derivation of (quantum) cosmological equations from GFT quantum dynamics very general
it rests on:

continuum homogeneous spacetime ~ GFT condensate

good encoding of discrete geometry in GFT states
2nd quantized GFT formalism

general features:

. quantum cosmology-like equations emerging as hydrodynamics for GFT condensate
. non-linear
. non-local (on “mini-superspace”)

( derivation of (quantum) cosmology from fundamental QG formalism! )

exact form of equations depends on specific model considered

if GFT dynamics involves Laplacian kinetic term, then FRW equation is contained in effective
cosmological dynamics for GFT condensate, with QG corrections

S. Gielen, DO, L. Sindoni, arXiv:1303.3576 [gr-qc], arXiv:1311.1238 [gr-qc]


http://arxiv.org/abs/arXiv:1303.3576

Continuum limit of LQG (at dynamical level)

QFT methods (i.e. GFT reformulation of LQG) useful to address physics of large numbers of LQG d.o.f.s,
i.e. many and refined graphs (continuum limit)

1. making sense of quantum dynamics and LQG partition function (correlations)
2. understanding LQG phase structure

3. extracting effective continuum dynamics

beside the formal role in linking canonical LQG and covariant Spin Foam models
(and in giving a complete definition of the latter)

GFT (2nd quantized LQG formalism) key for further developments!



Thank you for your attention!



