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A 2nd quantized (Fock space) formulation of LQG 
  
(and what is can be useful for)                                       



Plan of the talk
•    Part I: from LQG to GFT


!
• LQG states as “many-particle states”


!
•   Second quantization of spin networks and Group Field Theory


!
• kinematics: states, observables and GFT fields/observables

• dynamics: canonical projector and GFT action


!
!
!

• Part II: What is the 2nd quantised (QFT) formalism good for?

!

• relating LQG and Spin Foam models

!

• dealing with continuum limit (many d.o.f.) at dynamical level

• defining full LQG dynamics via QFT methods

• continuum phase structure and LQG vacua


• GFT condensates

• extracting effective continuum dynamics


• (Quantum) Cosmology as GFT condensate hydrodynamics



Introduction

we already know:

   


GFT <---> Spin Foams      -    actually: GFT = Spin Foams

!

GFT is often presented as the 2nd quantized version of LQG

!
!

we show (Part I):

!

• this is true in a precise sense: reformulation of LQG as GFT

!

•   very general correspondence (both kinematical and dynamical)

!

• do not need to pass through Spin Foams (LQG/SF correspondence obtained via GFT)

!

Reisenberger,Rovelli, ’00

(DO, 1310.7786 [gr-qc])

L. Freidel, ’06

DO, ’06, ’11


A. Baratin, DO, ’11

the reformulation provides powerful new tools to address LQG open issues (Part II)



Part I

!

2nd quantized LQG:

!

From Loop Quantum Gravity 

                                        to Group Field Theory

DO,1310.7786 [gr-qc]



The (kinematical) Hilbert space(s) of LQG
algebra of observables: holonomy-flux algebra for paths (+ dual surfaces)


!
quantum states: cylindrical functions of holonomies (fluxes) along links (surfaces) for graphs (+surfaces)
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• huge

• different graphs ~ orthogonal states

• prominence to graphs

• based on kinematical continuum limit 

(states effectively defined on “infinitely refined graph”)


• equivalence classes of graphs

• different graphs ~ orthogonal states
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plus gauge invariance at vertices
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The (kinematical) Hilbert space(s) of LQG
algebra of observables: holonomy-flux algebra for paths (+ dual surfaces)


!
quantum states: cylindrical functions of holonomies (fluxes) along links (surfaces) for graphs (+surfaces)
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plus gauge invariance at d-valent vertices

turned into Hilbert space by:

!

• considering Hilbert space of states for V   “open vertices”

!
!

• embedding                         

!

• summing over V
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modified class of quantum states: 

• extended: closed + open graphs

• restricted: d-valent graphs

can generalise

W. Kaminski, M. Kieselowski, J. Lewandowski, ’09
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Spin network functions as “many-particles” states

Any LQG state can be written in terms of “many-vertices” states
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“gluing” of spin network vertices: 
imposition of symmetry, identification 

of variables, specific linear combination
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same in other basis: fluxes, spins

every cylindrical function is contained in new Hilbert space

embedding H�̃V
d
⇢ HV ' L2
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GdV /GV

� 3 '
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~g1, ...,~gV
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provides the right tools to study the physics of many LQG degrees of freedom, to bypass the need to deal explicitly
with complicated spin networks and spin foams, and to derive e↵ective descriptions for collective variables and features
of the non-perturbative sector of the theory. All these are reasons for using quantum field theory reformulations of
many-body quantum physics in condensed matter theory and particle physics, so it should come as no surprise that
we encounter the same advantages in quantum gravity. Our paper exemplifies this use of the GFT formalism: we
will indeed bypass the spin foam formulation of the dynamics, provide both a definition of interesting, albeit very
simple, non-perturbative quantum states of the theory, interpreted as cosmological quantum spacetimes, and extract
an e↵ective cosmological dynamics for them, using the second quantised features of the GFT formalism.

We now give some more details on this second quantised formalism, and on the link between LQG and GFT, and
thus the direct LQG relevance of our results. For a more extensive treatment, see [15].

In first-quantised language, one has a Hilbert space H̃d of states associated to V d-valent graph vertices (which
includes particular states associated to both open and closed graphs, of the type defining the Hilbert space of LQG).
Each such vertex is a node with d outgoing open links, and can be thought as dual to a polyhedron with d faces2.
V -particle states are given by wavefunctions describing V vertices or their dual polyhedra, of the type

�(gji ) = �(g11 , g
1
2 , . . . , g

1
d; . . . ; g

V
1 , gV2 , . . . , gVd ) , (7)

where each open link outgoing from each vertex is associated a group element of the group G (G = SU(2), Spin(4),
or SL(2,C) in quantum gravity GFT models, and G = SU(2) in standard LQG), with gauge invariance at vertices
in V : �(gji ) = �(gji �j) for V elements �j of G. The set of such functions (restricting to square-integrable ones) can
be turned into the Hilbert space L2(Gd·V /GV ) by defining the inner product via the Haar measure on the group, or
some right/left-invariant measure in the non-compact case.

The Hilbert space for these functions, H̃d, includes as a special class of states the usual cylindrical functions of LQG,
associated to closed d-valent graphs �. There is a relation E(�) ⇢ ({1, . . . , V }⇥ {1, . . . , d})2 (satisfying [(i a) (i a)] 62
E(�)) which specifies the connectivity of such a graph: if [(i a) (j b)] 2 E(�), there is a directed edge connecting the
a-th link at the i-th node to the b-th link at the j-th node, with source i and target j. Cylindrical functions are then
of the form  �({Gab

ij }), where the group elements Gab
ij 2 G are assigned to each link e := [(i a) (j b)] 2 E(�) of the

graph. These are labelled by two pairs of indices: the first pair identifies the pair of vertices (ij) connected, while the
second pair identifies the outgoing edges (ab) of each vertex glued together to form the link. We assume the gauge
invariance  �({Gab

ij }) =  �({�iGab
ij �

�1
j }), for any V group elements �i associated to the vertices.

Given a closed d-valent graph with V vertices (specified by E(�)), a cylindrical function  � can be obtained by
group-averaging of any wavefunction ��,

 �({Gab
ij }) =

Y
e2E(�)

Z
G

d↵ab
ij ��({gai ↵ab

ij ; g
b
j↵

ab
ij }) =  �({gai (gbj)�1}) , (8)

in such a way that each edge in � is associated with two group elements gai , g
b
j 2 G. The integrals over the ↵’s

glue open spin network vertices corresponding to the function �, pairwise along common links, thus forming the spin
network represented by the closed graph �. The same construction can be phrased in the flux representation and in
the spin representation.

Let us denote by Hv the subspace of single-particle (single-vertex) states, i.e. elements of H̃d with V = 1. A general
V -particle state can be decomposed into products of elements of Hv,

�(giI) = hgiI |�i =

0@ VY
i=1

X
~�i

1A�~�1...~�V hg1I |~�1i · · · hgVI |~�V i , (9)

2 In this paper, we restrict attention to the simplicial case, in which d equals the spacetime dimension, and each GFT quantum (or spin

network vertex) is dual to a (d� 1)-simplex, i.e. a tetrahedron in d = 4.

6

wave function for many open spin net vertices
wave function 


for closed graph
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Spin network functions as “many-particles” states

LQG kinematical scalar product for given graph (with V vertices) is restriction of scalar 
product for V open-vertices states

H�̃V
d
⇢ HVembedding with standard Haar measure
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this shows embedding of Hilbert space of given graph into new Hilbert space

same pattern of “gluings”

however, generic cylindrical functions for different graphs 
are embedded differently in new Hilbert space: 

Hext

d
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M

V

HV

• states associated to different graphs with same number of vertices are NOT orthogonal

• states associated to graphs with different number of vertices ARE orthogonal 

• prominence to number of vertices, not to graph structure

• no cylindrical consistency, no projective limit



Spin network functions as “many-particles” states

each state can be decomposed in products of “single-particle” (vertices) basis states:
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Peter-Weyl decomposition)
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require also symmetry under relabelling of vertices (permutations of vertices)



2nd quantized reformulation: kinematics
standard procedure for writing same states in 2nd quantized form 

��̃ (⇥g1, ...,⇥gi, ...,⇥gj , ...,⇥gV ) = ��̃ (⇥g1, ...,⇥gj , ...,⇥gi, ...,⇥gV )

symmetry under vertex relabeling bosonic statistics

(only a justification, 
not a proof: 
assumption!)

sketch of procedure (1):

•     define ordering of links in each vertex (e.g. 1 < 2 < ... < d)

• define ordering (e.g lexicographic) for single-vertex labels (e.g. (j,m,I))

•   count how many times each set of labels appears and label states by these numbers:


!
!
!
!

• normalize states 

•    re-write generic wave function in “occupation number” basis:
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2nd quantized reformulation: kinematics
sketch of procedure (2):

•   send number of vertices to infinity - no constraint on occupation numbers

!

• orthonormal basis (in LQG scalar product): 

!

• define creation/annihilation operators:
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can define conjugate bosonic field operators:



Spin networks in 2nd quantization

generic quantum state: arbitrary collection of spin network vertices (including glued ones) or 
tetrahedra (including glued ones)

Fock vacuum: “no-space” (“emptiest”) state   | 0 >         ~ AL LQG vacuum

 (this is the natural background independent, diffeo-invariant vacuum state)

Quantization of Systems with Constraints
Two dynamical models for full LQG

Outlook and Work in Progress

Hamiltonian formulation of GR
Relational Formalism: Observables & Evolution

Basis of Hkin

Spin network functions [Ashtekar, Isham, Lewandowski, Rovelli, Smolin ’90]
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Kristina Giesel Dynamics of LQG

single field “quantum”: spin network vertex or tetrahedron

(“building block of space”)
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'(g1, g2, g3, g4)$ '(B1, B2, B3, B4)! C

Introduction and Motivation

Introduction and Motivation (III)

The type of group field theory we consider is defined in terms of a field �
on SO(4)4, creating an elementary building block of space:
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The group elements gi specify the geometry of the elementary tetrahedron by
giving the holonomies of the gravitational SO(4) connection along links dual to
the four faces (in Riemannian signature – the extension to SL(2,C) is doable but
more tedious [wip])
Invariance under SO(4) gauge transformations on the vertex:

�(g1, g2, g3, g4) = �(g1h, g2h, g3h, g4h) , h ⇥ SO(4).
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2nd quantized reformulation: kinematics - observables
any LQG operator can be written in 2nd quantized form

“(n+m)-body” operator

(acts on spin network with n vertices, gives spin network with m vertices)

�On+m � ⇥⇤�1, ...., ⇤�m|�On+m|⇤��
1, ..., ⇤�

�
n⇤ = On+m (⇤�1, ..., ⇤�m, ⇤��

1, ..., ⇤�
�
n) �

� �On+m

�
⇥̂, ⇥̂†⇥ =

⇤
d⇤g1...d⇤gm d⇤g�

1...d⇤g
�
n ⌅⇥†(⇤g1)...⌅⇥†(⇤gm)On+m (⇤g1, ...,⇤gm,⇤g�

1, ...,⇤g
�
n) ⌅⇥(⇤g�

1)...⌅⇥(⇤g�
n)

“2-body” operator

(acts on single-vertex, does not create new vertices)

⌃O2 � ⇥⇤�|⌃O2|⇤��⇤ = O2 (⇤�, ⇤��) �

� ⌃O2

�
⇧⇥, ⇧⇥†⇥ =

⇤

⇥�,⇥��

O2 (⇤�, ⇤��) ĉ†⇥�ĉ⇥�� =
⌅

d⇤g d⇤g� ⇧⇥†(⇤g) O2 (⇤g,⇤g�) ⇧⇥(⇤g�)

basic field operators and the set of observables as functions of them define 
the quantum kinematics of the corresponding  GFT

Ô = \O (E,A)



2nd quantized reformulation: dynamics
can use general correspondence for operators to rewrite also any dynamical quantum 

equation for LQG states in 2nd quantized form

projector operator will in general decompose into 2-body, 3-body, ...., n-body operators (weighted by 
(coupling) constants), i.e. will have non-zero “matrix elements” involving 2, 3, ..., n spin network vertices

�P�⇤ = |�⇤ �
⇥
�2

�P2 + �3
�P3 + ....

⇤
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�
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�
n)

assume quantum dynamics is encoded in “physical projector equation”:

�P |�⇥ = |�⇥ |�⇥ � Hext
d or: �F̂ | i =

⇣
P̂ � Î

⌘
| i = 0

the same quantum dynamics can be expressed in 2nd quantized form (using general map for operators):
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2nd quantized reformulation: dynamics
partition function (and correlations) of GFT is then obtained from partition function (and correlations) for 

spin networks, recast in 2nd quantised language

first candidate (“microcanonical ensemble”): 

14

We have chosen the normal ordering for creation/annihilation operators, as customary in many-body physics [32].
Other choices of operator ordering can be considered, resulting in quantum corrections to the above. These quantum
corrections can be absorbed into a redefinition of the kernels Pn,m or, if their functional form is left invariant, into
a ‘renormalization’of the coupling constants λn,m (this is one more reason why we do not insist on a specific value
for these coupling constants). It is important to keep in mind the presence of such quantum corrections, in order to
understand better (the subtleties of) the correspondence with the GFT quantum dynamics.

Let us discuss how the above 2nd quantized quantum dynamical operator equation leads to the identification of
the corresponding GFT model in terms of a classical action, encoding the same dynamics. Here is where the present
level of understanding of the LQG quantum dynamics, of its spin foam counterpart, and of the GFT encoding of the
same, forces us to proceed in a more tentative and heuristic manner. Still, we will see that our tentative conclusions
will be at least compatible with present knowledge.

A first choice we make is to phrase the question in a quantum statistical language, that is, to try to answer it in
the context of a definition of a quantum statistical partition function for the theory14.

The starting point is of course the operator equation 36. Knowing this, once would like to define a partition function
Z for the quantum LQG theory, in turn defined in terms of a statistical density operator ρ̂. The first obvious choice
would be to define an analogue of the microcanonical ensemble: ρ̂m = δ( bF )

Zm
with:

Zm =
∑

s

⟨s| δ(F̂ )|s⟩ , (37)

where s denotes an arbitrary complete basis of states in the Hilbert (Fock) space of the quantum theory.
This choice would mean that one defines a (quantum statistical) dynamics in which only states solving the dynamical

equation 36 contribute. It would be the obvious option in a strict canonical continuum quantum gravity theory, in
which physical states of quantum spacetime are only those solving the canonical constraint operator. However, it is
not the only possible option in a generalized theory that on the one hand is defined in a more abstract, algebraic and
discrete context (where the very notion of diffeomorphisms and other continuous symmetries is more ambiguous) and
on the other hand includes in its covariant ‘histories’, i.e. dynamical processes, spacetimes that would not admit (in
the continuum) a canonical quantization procedure. Of course, an example of the latter is a path integral prescription
for the dynamics which includes topology change for space and/or spacetime.

One may expect from general arguments, and we will indeed confirm it in the following, that the GFT dynamics
corresponds to a quantum LQG dynamics of this generalized type. This generalized quantum dynamics in quantum
statistical terms amounts to a choice of a density operator of the canonical type15: ρ̂c = e− bF

Zc
with:

Zc =
∑

s

⟨s|e− bF |s⟩ , (38)

where we have put any “inverse temperature” constant β = 1, for simplicity. This choice corresponds to allowing
a non-zero weight to quantum states not solving the constraint equation 36, but at the same time weighting more
such solutions compared to generic states (and so that only such solutions are obtained in the limit β → ∞, where
one reproduces the microcanonical ensemble). One could also imagine working with imaginary weights, i.e. with an
imaginary constant β = iT , giving such weights the appearance of an evolution operator for the generator F̂ in time
T . However, in this context, this rewriting may be probably more misleading than helpful. In any case, as we are
treating such temperature/time as a constant, and our quantum states do not depend on it, such rewriting would
change nothing in our results.

14 We are well aware of the many difficulties in formulating quantum statistical mechanics in a generally covariant context and, even more,
in a background independent context, to to be applied to quantum spacetime itself (see for example [60]). Our tentative steps can be
seen as a suggestion to start a similar programme in the general LQG/GFT context, taking advantage of the 2nd quantized formulation
and of the analogy with quantum many-body systems.

15 Obviously the term ‘canonical’ is used here in a different sense than in ‘canonical quantization’, that is in the sense of ensembles.

|s> is arbitrary basis

only states solving dynamical constraint contribute (natural from continuum canonical theory)

more general context (abstract structures, no continuum, topology change, …) 
suggest more general ansatz (“canonical ensemble”):
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We have chosen the normal ordering for creation/annihilation operators, as customary in many-body physics [32].
Other choices of operator ordering can be considered, resulting in quantum corrections to the above. These quantum
corrections can be absorbed into a redefinition of the kernels Pn,m or, if their functional form is left invariant, into
a ‘renormalization’of the coupling constants λn,m (this is one more reason why we do not insist on a specific value
for these coupling constants). It is important to keep in mind the presence of such quantum corrections, in order to
understand better (the subtleties of) the correspondence with the GFT quantum dynamics.

Let us discuss how the above 2nd quantized quantum dynamical operator equation leads to the identification of
the corresponding GFT model in terms of a classical action, encoding the same dynamics. Here is where the present
level of understanding of the LQG quantum dynamics, of its spin foam counterpart, and of the GFT encoding of the
same, forces us to proceed in a more tentative and heuristic manner. Still, we will see that our tentative conclusions
will be at least compatible with present knowledge.

A first choice we make is to phrase the question in a quantum statistical language, that is, to try to answer it in
the context of a definition of a quantum statistical partition function for the theory14.

The starting point is of course the operator equation 36. Knowing this, once would like to define a partition function
Z for the quantum LQG theory, in turn defined in terms of a statistical density operator ρ̂. The first obvious choice
would be to define an analogue of the microcanonical ensemble: ρ̂m = δ( bF )

Zm
with:

Zm =
∑

s

⟨s| δ(F̂ )|s⟩ , (37)

where s denotes an arbitrary complete basis of states in the Hilbert (Fock) space of the quantum theory.
This choice would mean that one defines a (quantum statistical) dynamics in which only states solving the dynamical

equation 36 contribute. It would be the obvious option in a strict canonical continuum quantum gravity theory, in
which physical states of quantum spacetime are only those solving the canonical constraint operator. However, it is
not the only possible option in a generalized theory that on the one hand is defined in a more abstract, algebraic and
discrete context (where the very notion of diffeomorphisms and other continuous symmetries is more ambiguous) and
on the other hand includes in its covariant ‘histories’, i.e. dynamical processes, spacetimes that would not admit (in
the continuum) a canonical quantization procedure. Of course, an example of the latter is a path integral prescription
for the dynamics which includes topology change for space and/or spacetime.

One may expect from general arguments, and we will indeed confirm it in the following, that the GFT dynamics
corresponds to a quantum LQG dynamics of this generalized type. This generalized quantum dynamics in quantum
statistical terms amounts to a choice of a density operator of the canonical type15: ρ̂c = e− bF

Zc
with:

Zc =
∑

s

⟨s|e− bF |s⟩ , (38)

where we have put any “inverse temperature” constant β = 1, for simplicity. This choice corresponds to allowing
a non-zero weight to quantum states not solving the constraint equation 36, but at the same time weighting more
such solutions compared to generic states (and so that only such solutions are obtained in the limit β → ∞, where
one reproduces the microcanonical ensemble). One could also imagine working with imaginary weights, i.e. with an
imaginary constant β = iT , giving such weights the appearance of an evolution operator for the generator F̂ in time
T . However, in this context, this rewriting may be probably more misleading than helpful. In any case, as we are
treating such temperature/time as a constant, and our quantum states do not depend on it, such rewriting would
change nothing in our results.

14 We are well aware of the many difficulties in formulating quantum statistical mechanics in a generally covariant context and, even more,
in a background independent context, to to be applied to quantum spacetime itself (see for example [60]). Our tentative steps can be
seen as a suggestion to start a similar programme in the general LQG/GFT context, taking advantage of the 2nd quantized formulation
and of the analogy with quantum many-body systems.

15 Obviously the term ‘canonical’ is used here in a different sense than in ‘canonical quantization’, that is in the sense of ensembles.

or, introducing a new parameter weighting differently quantum states 
with different numbers of vertices (“grandcanonical ensemble”):

15

In the same spirit, one can weight differently quantum states with more or less ‘particles’, that is many or few spin

network vertices, and move to a grandcanonical ensemble, defined by the density operator ρ̂c = e
− (bF − µ bN)

Zg
, with

Zg =
∑

s

⟨s|e− ( bF −µ bN)|s⟩ , (39)

where the sign of the ‘chemical potential’µ determines whether quantum states with many or few spin network
vertices are favored. In the following, we work in this general context. We will show that, indeed, this is the choice
that corresponds to existing group field theories, clarifying in the process what one should expect when studying the
correspondence between the corresponding spin foam amplitudes and canonical LQG.

Now we want to rewrite the above partition function in GFT terms, that is as a GFT path integral. The way we
proceed is the field theory analogue16 of the standard procedure of constructing the coherent state path integral in
quantum mechanics [53]. Indeed, the 2nd quantized formulation of 36 is already set up to make this procedure the
most convenient one.

We introduce then a 2nd quantized basis of eigenstates of the annihilation operator, that is the GFT quantum field
operator, |ϕ⟩ = e

P
χ⃗ ϕχ⃗bc†χ⃗ |0⟩ = e

R
dg⃗ ϕ(g⃗)bϕ(g⃗)† |0⟩ satisfying:

ĉχ⃗|ϕ⟩ = ϕχ⃗ |ϕ⟩ ⟨ϕ|ĉχ⃗
† = ϕχ⃗ ⟨ϕ| (40)

or equivalently ϕ̂(g⃗)|ϕ⟩ = ϕ(g⃗) |ϕ⟩ ⟨ϕ|ϕ̂†(g⃗) = ϕ(g⃗) ⟨ϕ| (41)

I =
∫

DϕDϕ e− |ϕ|2 |ϕ⟩⟨ϕ| |ϕ|2 ≡
∫

dg⃗ ϕ(g⃗)ϕ(g⃗) =
∑

χ⃗

ϕχ⃗ ϕχ⃗ (42)

The functions ϕ and ϕ can be understood as the classical GFT fields, as we are going to see17. The measure of
integration DϕDϕ is the (formally defined) functional measure for fields on Gd entering the GFT path integral. In
terms of this basis of states (and using the bosonic statistics of the GFT states), the partition function reads:

Zg =
∑

s

⟨s|e− ( bF −µ bN)|s⟩ =
∫

DϕDϕ e− |ϕ|2 ⟨ϕ| e− ( bF −µ bN) |ϕ⟩ . (43)

It is clear that we have here the GFT path integral with a quantum amplitude

e− |ϕ|2 ⟨ϕ| e− ( bF −µ bN) |ϕ⟩ ≡ e−Seff (44)

that can be expressed in terms of an effective action Seff (ϕ,ϕ). The task of relating the partition function of the
quantum LQG theory, defined by some specific operator F̂ to the GFT path integral of specific models turns into the
task of understanding the form of the effective action Seff .

For generic operators F̂ , this is a very difficult task [53], of course. The general strategy for solving it, how-
ever, is clear: one should a) expand the exponential operator function of F̂ in power series of polynomials of cre-
ation/annihilation operators, and then b) normal order them, in such a way that their expectation value in the
coherent state basis gives a functional of GFT fields according to the general formula:

⟨ϕ|
[∫

dg⃗1...dg⃗m dg⃗′1...dg⃗′n ϕ̂
†(g⃗1)...ϕ̂†(g⃗m)O (g⃗1, ..., g⃗m, g⃗′1, ..., g⃗

′
n) ϕ̂(g⃗′1)...ϕ̂(g⃗′n)

]
|ϕ⟩ =

=
∫

dg⃗1...dg⃗m dg⃗′1...dg⃗′n ϕ(g⃗1)...ϕ(g⃗m)O (g⃗1, ..., g⃗m, g⃗′1, ..., g⃗
′
n)ϕ(g⃗′1)...ϕ(g⃗′n) ; (45)

16 With the obvious functional analytic issues, which we neglect in the following, as our goal is to show the correspondence between LQG
and GFT, not to solve the issue of defining in rigorous mathematical terms either the first or the second.

17 These are exactly the simple GFT condensate states that have been given a cosmological interpretation in [46]

this is the expression leading most directly 
to GFTs and Spin Foam models

tool: 2nd quantised coherent states ————->>>>



2nd quantized reformulation: dynamics
basis of 2nd quantized coherent states:

15

In the same spirit, one can weight differently quantum states with more or less ‘particles’, that is many or few spin

network vertices, and move to a grandcanonical ensemble, defined by the density operator ρ̂c = e
− (bF − µ bN)

Zg
, with

Zg =
∑

s

⟨s|e− ( bF −µ bN)|s⟩ , (39)

where the sign of the ‘chemical potential’µ determines whether quantum states with many or few spin network
vertices are favored. In the following, we work in this general context. We will show that, indeed, this is the choice
that corresponds to existing group field theories, clarifying in the process what one should expect when studying the
correspondence between the corresponding spin foam amplitudes and canonical LQG.

Now we want to rewrite the above partition function in GFT terms, that is as a GFT path integral. The way we
proceed is the field theory analogue16 of the standard procedure of constructing the coherent state path integral in
quantum mechanics [53]. Indeed, the 2nd quantized formulation of 36 is already set up to make this procedure the
most convenient one.

We introduce then a 2nd quantized basis of eigenstates of the annihilation operator, that is the GFT quantum field
operator, |ϕ⟩ = e

P
χ⃗ ϕχ⃗bc†χ⃗ |0⟩ = e

R
dg⃗ ϕ(g⃗)bϕ(g⃗)† |0⟩ satisfying:

ĉχ⃗|ϕ⟩ = ϕχ⃗ |ϕ⟩ ⟨ϕ|ĉχ⃗
† = ϕχ⃗ ⟨ϕ| (40)

or equivalently ϕ̂(g⃗)|ϕ⟩ = ϕ(g⃗) |ϕ⟩ ⟨ϕ|ϕ̂†(g⃗) = ϕ(g⃗) ⟨ϕ| (41)

I =
∫

DϕDϕ e− |ϕ|2 |ϕ⟩⟨ϕ| |ϕ|2 ≡
∫

dg⃗ ϕ(g⃗)ϕ(g⃗) =
∑

χ⃗

ϕχ⃗ ϕχ⃗ (42)

The functions ϕ and ϕ can be understood as the classical GFT fields, as we are going to see17. The measure of
integration DϕDϕ is the (formally defined) functional measure for fields on Gd entering the GFT path integral. In
terms of this basis of states (and using the bosonic statistics of the GFT states), the partition function reads:

Zg =
∑

s

⟨s|e− ( bF −µ bN)|s⟩ =
∫

DϕDϕ e− |ϕ|2 ⟨ϕ| e− ( bF −µ bN) |ϕ⟩ . (43)

It is clear that we have here the GFT path integral with a quantum amplitude

e− |ϕ|2 ⟨ϕ| e− ( bF −µ bN) |ϕ⟩ ≡ e−Seff (44)

that can be expressed in terms of an effective action Seff (ϕ,ϕ). The task of relating the partition function of the
quantum LQG theory, defined by some specific operator F̂ to the GFT path integral of specific models turns into the
task of understanding the form of the effective action Seff .

For generic operators F̂ , this is a very difficult task [53], of course. The general strategy for solving it, how-
ever, is clear: one should a) expand the exponential operator function of F̂ in power series of polynomials of cre-
ation/annihilation operators, and then b) normal order them, in such a way that their expectation value in the
coherent state basis gives a functional of GFT fields according to the general formula:

⟨ϕ|
[∫

dg⃗1...dg⃗m dg⃗′1...dg⃗′n ϕ̂
†(g⃗1)...ϕ̂†(g⃗m)O (g⃗1, ..., g⃗m, g⃗′1, ..., g⃗

′
n) ϕ̂(g⃗′1)...ϕ̂(g⃗′n)

]
|ϕ⟩ =

=
∫

dg⃗1...dg⃗m dg⃗′1...dg⃗′n ϕ(g⃗1)...ϕ(g⃗m)O (g⃗1, ..., g⃗m, g⃗′1, ..., g⃗
′
n)ϕ(g⃗′1)...ϕ(g⃗′n) ; (45)

16 With the obvious functional analytic issues, which we neglect in the following, as our goal is to show the correspondence between LQG
and GFT, not to solve the issue of defining in rigorous mathematical terms either the first or the second.

17 These are exactly the simple GFT condensate states that have been given a cosmological interpretation in [46]

gives: Zg =
X

s

hs|e� ( bF �µ bN)|si ⌘
Z

D'D' e�Seff (',')

Seff (',') = S (',') + O(~) =
h'| bF |'i
h'|'i + O(~)where the quantum corrected action is:

this is the GFT partition function with classical GFT action:

S
�
⇥, ⇥†⇥ =

⌃
d⇤g ⇥†(⇤g) ⇥(⇤g) �

�
⇥⇧

n,m/n+m=2

�n+m

⇤⌃
d⇤g1...d⇤gm d⇤g�1...d⇤g

�
n ⇥†(⇤g1)...⇥†(⇤gm) Vn+m (⇤g1, ...,⇤gm,⇤g�1, ...,⇤g

�
n) ⇥(⇤g�1)...⇥(⇤g�n)

⌅

Vn+m (⇤g1, ...,⇤gm,⇤g�1, ...,⇤g
�
n) = Pn+m (⇤g1, ...,⇤gm,⇤g�1, ...,⇤g

�
n)

E. Alesci, K. Noui, F. Sardelli, ’08
the GFT interaction term is the Spin Foam vertex amplitude

quantum corrections give new interaction terms or renormalisation of existing ones



2nd quantized reformulation: dynamics - 3d example
test construction in “known” example: 3d quantum gravity (euclidean)

such action decomposes into an action on 2, 4, 6,... spin network vertices 
(glued to form closed graphs, because of gauge invariance of P - 


graphs formed by an odd number of spin net vertices do not arise)

we expect these to give rise to the known Boulatov GFT model for 3d QG

(NB: because matrix elements are real, 

do not expect any distinction between using the GFT field and its conjugate)

Hamiltonian and diffeo constraints impose flatness of gravity holonomy

general matrix elements of projector operator:

���| ⇥P |�⇥
��⇥ = ���|

�

f⇤�̃��,��

� (Hf ) |�⇥
��⇥

(independent) closed loops

K. Noui, A. Perez, ’04

Vn+m (�g1, ...,�gm,�g�
1, ...,�g

�
n) = Pn+m (�g1, ...,�gm,�g�

1, ...,�g
�
n)

this in turn should give possible GFT interaction terms 

E. Alesci, K. Noui, F. Sardelli, ’08



2nd quantized reformulation: dynamics - 3d example
indeed....

using gauge invariance of GFT fields (i.e. of spin net vertices)
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exactly usual tetrahedral interaction term of Boulatov GFT

gives the identity kernel
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can then compute diagrams of order 6,8,.... - GFT action will in general contain infinite number of interactions 

already shown to correspond to GFT diffeos - even clearer in flux variables 
(A. Baratin,F. Girelli, DO, ’11)

so-called “pillow” interaction term, also considered in Boulatov GFT
L. Freidel, D. Louapre, ’02



Part II: 
!

What for? 

extended discussion



Relating LQG and Spin Foams via GFT
LQG can be reformulated in 2nd quantized form to give a GFT - kinematical and dynamical correspondence

key issues:

!

• class of diagrams to be summed over? subsector of canonical dynamics?

!

• choice of quantum statistics? relation to diffeomorphisms and to GFT symmetries?

!

• criteria for restricting GFT interactions (matrix elements of canonical projector P)

!

• exact relation between Hilbert spaces (physical meaning of graph structures)

!

• role and significance of open spin networks?


• more rigorous meaning to canonical partition function, ensembles and thermodynamic potentials

(A. Baratin,F. Girelli, DO, ’11)

(V. Bonzom, R. Gurau, V. Rivasseau, ’12)

(B. Bahr, T. Thiemann, ’07)

(L. Freidel, ’06)

insights:

!

• direct route LQG <—> GFT (SF fully defined via perturbative expansion of GFT)

!

• SF vertex is elementary matrix element of projector operator

!

• SF partition function (transition amplitude) contains more than canonical projector 
equations (scalar product)   L. Freidel, ’06; T. Thiemann, A. Zipfel, ‘13

E. Alesci, K. Noui, F. Sardelli, ’08



Continuum limit of LQG (at dynamical level)
QFT methods (i.e. GFT reformulation of LQG) useful to address physics of large numbers of LQG d.o.f.s, 

i.e. many and refined graphs (continuum limit)

1. making sense of quantum dynamics and LQG partition function (correlations)


2. understanding LQG phase structure


3. extracting effective continuum dynamics

(superpositions of “many-vertices” states, refinement as creation of new vertices, etc) 



Continuum limit of LQG (at dynamical level)
QFT methods (i.e. GFT reformulation of LQG) useful to address physics of large numbers of LQG d.o.f.s, 

i.e. many and refined graphs (continuum limit)

1.making sense of quantum dynamics and LQG partition function (correlations)

•  approximate tools for computing quantum dynamics (transition amplitudes) around appropriate 

vacuum state (spin foam perturbative expansion)


• control quantum corrections and interactions of many quantum LQG degrees of freedom, 

compute effective dynamics at different scales (# LQG d.o.f.):


GFT (perturbative) renormalization


!

!

• give non-perturbative meaning to full partition function, control the full sum over spin foams: 

constructive GFT (and summability)

(V. Bonzom, J. Ben Geloun, ’11; 
A. Riello, ’13; J. Ben Geloun, ’12; 
S. Carrozza, DO, V. Rivasseau, 

’12, ’13; S. Carrozza, ‘14)

(L. Freidel, D. Louapre, ’03; J. Magnen, K. Noui, V. Rivasseau, M. Smerlak, ‘09)

alternative: spin foam (lattice) 
refinement/coarse graining  


(B. Bahr, B. Dittrich, ’09, ’10; B. Bahr, B. 
Dittrich, F. Hellmann, W. Kaminski, ‘12)



Continuum limit of LQG (at dynamical level)
QFT methods (i.e. GFT reformulation of LQG) useful to address physics of large numbers of LQG d.o.f.s, 

i.e. many and refined graphs (continuum limit)

2.  understanding LQG phase structure 

what is the LQG continuum phase structure? what is the physical, geometric LQG phase?

AL vacuum |0iAL

ALh0|ES |0iAL = 0 8S
�ALES << 1 �ALAS >> 1

physical vacuum with non-degenerate space-time and geometry and GR as effective dynamics?

in canonical LQG context:    

T. Koslowski, 0709.3465 [gr-qc] 

in covariant SF/GFT context:

DO, 0710.3276 [gr-qc]

LQG condensate vacuum (condensate of spin networks)

totally degenerate geometry (emptiest state)

connection highly fluctuating


unique diffeo invariant

J. Lewandowski, A. Okolow, H. Sahlmannm T. Thiemann’06

C. Fleischack, ‘06



Continuum limit of LQG (at dynamical level)
QFT methods (i.e. GFT reformulation of LQG) useful to address physics of large numbers of LQG d.o.f.s, 

i.e. many and refined graphs (continuum limit)

2.  understanding LQG phase structure 

what is the LQG continuum phase structure? what is the physical, geometric LQG phase?

AL vacuum |0iAL

ALh0|ES |0iAL = 0 8S
�ALES << 1 �ALAS >> 1

totally degenerate geometry (emptiest state)

connection highly fluctuating


diffeo invariant

KS vacuum |0iKS

KSh0|ES |0iKS = ES 8S
�KSES << 1 �KSAS >> 1

non-degenerate geometry (triad condensate)

connection highly fluctuating


diffeo covariant

T. Koslowski, H. Sahlmann, 1109.4688 [gr-qc]



Continuum limit of LQG (at dynamical level)
QFT methods (i.e. GFT reformulation of LQG) useful to address physics of large numbers of LQG d.o.f.s, 

i.e. many and refined graphs (continuum limit)

2.  understanding LQG phase structure 

what is the LQG continuum phase structure? what is the physical, geometric LQG phase?

AL vacuum |0iAL

ALh0|ES |0iAL = 0 8S
�ALES << 1 �ALAS >> 1

KS vacuum |0iKS

KSh0|ES |0iKS = ES 8S
�KSES << 1 �KSAS >> 1

DG vacuum 

(or BF vacuum)

|0iDG

DGh0|F (A)|0iDG = 0

�DGA << 1 �DGES >> 1

B. Dittrich, M. Geiller, 1401.6441 [gr-qc]



Continuum limit of LQG (at dynamical level)
QFT methods (i.e. GFT reformulation of LQG) useful to address physics of large numbers of LQG d.o.f.s, 

i.e. many and refined graphs (continuum limit)

2.  understanding LQG phase structure 

what is the LQG continuum phase structure? what is the physical, geometric LQG phase?

AL vacuum

KS vacuum

DG vacuum 

(or BF vacuum)

?

?

?
phase transitions



The idea of “geometrogenesis”:  
continuum spacetime and geometry from GFT

• GFT is QG analogue of QFT for atoms in condensed matter system

!
!

• continuum spacetime (with GR-like dynamics) emerges from collective behaviour of large numbers 
of GFT building blocks (e.g. spin nets, simplices), possibly only in one phase of microscopic system 


!
• continuum spacetime as a peculiar quantum fluid


!
!
!

• more specific hypothesis: continuum spacetime is GFT condensate

• GR-like dynamics from GFT hydrodynamics


!
!

•  even more specific suggestion: phase transition leading to spacetime and geometry (GFT 
condensation) is what replaces Big Bang singularity (geometrogenesis)


• cosmological evolution as relaxation towards (simple) condensate state

• exact GFT condensate state to correspond to highly symmetric spacetime

(...., Hu ’95, Volovik ’10,...., Oriti ’07, ’11, ’13, Rivasseau ’11, ’12, Sindoni ’11)



Continuum limit of LQG (at dynamical level)
QFT methods (i.e. GFT reformulation of LQG) useful to address physics of large numbers of LQG d.o.f.s, 

i.e. many and refined graphs (continuum limit)

2.  understanding LQG phase structure 

what is the LQG continuum phase structure? what is the physical, geometric LQG phase?

all GFT quanta have the same (gauge invariant) “wave function”, i.e. are in the same quantum state

 
�
Bi(1), ...., Bi(N)

�
=

1
N !

NY

m=1

�(Bi(m))

•    such states can be expressed in 2nd quantized language 

one can consider superpositions of states of arbitrary N

continuum geometric interpretation: homogeneous (anisotropic) quantum geometries

other simple candidates for LQG physical vacuum: GFT condensates
(DO, L. Sindoni, 1010.5149 [gr-qc];


S. Gielen, DO, L. Sindoni, 

1303.3576 [gr-qc], 1311.1238 [gr-qc]



Quantum GFT condensates
two simple choices of quantum GFT condensate states 


(homogeneous continuum quantum spacetimes)
single-particle condensate


(Gross-Pitaevskii approximation)
two-particle dipole condensate


(Bogoliubov approximation)

•   simplest • naturally gauge invariant

•   takes into account some correlations

• same geometric variables (in SU(2) case): data for homogeneous anisotropic geometries  

•   truly non-perturbative  quantum states (infinite QG dofs, superposition of graphs)

• support perturbations at any sampling scale N

• 2nd quantized coherent states

• can be studied using BEC techniques 

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
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I
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) = 0 . (23)
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to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
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⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)
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For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⌅cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di⇥er-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ⌃ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⇧̂ :=

⌅
d4g ⇧(gI)⌃̂

†(gI) (16)

if we require ⇧(gIk) = ⇧(gI) for all k ⇥ SU(2); with-
out loss of generality ⇧(k⇥gI) = ⇧(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⌅̂ :=
1

2

⌅
d4g d4h ⌅(gIh

�1
I )⌃̂†(gI)⌃̂

†(hI), (17)

where due to (1) and [⌃̂†(gI), ⌃̂†(hI)] = 0 the function ⌅
can be taken to satisfy ⌅(gI) = ⌅(kgIk⇥) for all k, k⇥ in
SU(2) and ⌅(gI) = ⌅(g�1

I ). ⌅ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⇧⌦ := exp (⇧̂) |0⌦ , |⌅⌦ := exp
⇥
⌅̂
⇤
|0⌦ . (18)

|⇧⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⌅⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⌃:

S[⌃] =
1

2

⌅
d4g d4g⇥ ⌃(gI)K̂(gI , g

⇥
I)⌃(g

⇥
I) + ⇥V5[⌃] (19)

leading to the quantum equation of motion

⌅
d4g⇥ K̂(gI , g

⇥
I)⌃̂(g

⇥
I) + ⇥

�V̂5

�⌃̂(gI)
= 0 . (20)

Since |⇧⌦ is an eigenstate of ⌃̂(gI), when (20) acts on |⇧⌦
it becomes a non-linear equation for ⇧:

⌅
d4g⇥ K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥

�V5

�⌃(gI)

���
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= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |⌅⌦ all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ⌅: Multiplying (20) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⌅(gIg

⇥⇥
I
�1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ⌅.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(�gI + µ) ⌅(gIg
⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)
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to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

•  simplest
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For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di⇥er-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (16)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (17)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (18)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (19)

leading to the quantum equation of motion

⌅
d4g⇥ K̂(gI , g

⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (20)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (20) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ⇤: Multiplying (20) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ⇤.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(�gI + µ) ⇤(gIg
⇥
I
�1

) = 0 . (23)
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For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ⌅k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 �!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di⇥er-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& ⇤� g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(g& )⇧̂

†(g& ) (16)

if we require ⌅(g& k) = ⌅(g& ) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥g& ) = ⌅(g& ) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(g& h

�1
& )⇧̂†(g& )⇧̂

†(h& ), (17)

where due to (1) and [⇧̂†(g& ), ⇧̂†(h& )] = 0 the function ⇤
can be taken to satisfy ⇤(g& ) = ⇤(kg& k⇥) for all k, k⇥ in
SU(2) and ⇤(g& ) = ⇤(g�1

& ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (18)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(g& )K̂(g& , g

⇥
& )⇧(g

⇥
& ) + ⇥V5[⇧] (19)

leading to the quantum equation of motion

⌅
d4g⇥ K̂(g& , g

⇥
& )⇧̂(g

⇥
& ) + ⇥

�V̂5

�⇧̂(g& )
= 0 . (20)

Since |⌅⇧ is an eigenstate of ⇧̂(g& ), when (20) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(g& , g

⇥
& )⌅(g

⇥
& ) + ⇥

�V5

�⇧(g& )

���
⇥=�

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ⇤: Multiplying (20) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥& , g

⇥⇥
& )⇤(g& g

⇥⇥
&
�1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ⇤.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(� I + µ) ⇤(g& g
⇥
&
�1

) = 0 . (23)
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Continuum limit of LQG (at dynamical level)
QFT methods (i.e. GFT reformulation of LQG) useful to address physics of large numbers of LQG d.o.f.s, 

i.e. many and refined graphs (continuum limit)

2.  understanding LQG phase structure 

what is the LQG continuum phase structure? what is the physical, geometric LQG phase?

all GFT quanta (spin net vertices) have the same “wave function”, i.e. are in the same quantum state

 
�
Bi(1), ...., Bi(N)

�
=

1
N !

NY

m=1

�(Bi(m)) such states can be expressed in 2nd quantized language 

one can consider superpositions of states of arbitrary N

single-particle condensate

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:
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⇥
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg
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I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
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) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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d4g⇥ K̂(gI , g

⇥
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⇥
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�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:
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We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g
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•  simplest
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new IRREP of observables algebra, inequivalent wrt Fock vacuum (AL vacuum)

symmetry breaking - U(1) symmetry & BF diffeos/translations (not BF vacuum)


order parameter: condensate wave function - more general than constant triad field
(A. Baratin,F. Girelli, DO, ’11)

other simple candidates for LQG physical vacuum: GFT condensates
(DO, L. Sindoni, 1010.5149 [gr-qc];


S. Gielen, DO, L. Sindoni, 

1303.3576 [gr-qc], 1311.1238 [gr-qc]



Continuum limit of LQG (at dynamical level)
QFT methods (i.e. GFT reformulation of LQG) useful to address physics of large numbers of LQG d.o.f.s, 

i.e. many and refined graphs (continuum limit)

2.  understanding LQG phase structure 

what is the LQG continuum phase structure? what is the physical, geometric LQG phase?

AL vacuum

KS vacuum

DG vacuum 

(or BF vacuum)

?

?

GFT condensate

phase transitions

issue is to prove dynamically the choice of vacuum and the phase transitions

experience and results in tensor models and GFTs V. Bonzom, R. Gurau, A. Riello, V. Rivasseau, ’11;


 A. Baratin, S. Carrozza, DO, J. Ryan, M. Smerlak, ‘13



Continuum limit of LQG (at dynamical level)
QFT methods (i.e. GFT reformulation of LQG) useful to address physics of large numbers of LQG d.o.f.s, 

i.e. many and refined graphs (continuum limit)

3.extracting effective continuum dynamics

general strategy: change vacuum


• obtain effective GFT or spin foam amplitudes around new vacuum


• write approximate SD equations in new vacuum


• approximate techniques, e.g. mean field theory

applied in simple models for:


• conditions on non-perturbative vacuum (DO, L. Sindoni, 1010.5149 [gr-qc])


• effective spin foam dynamics (DO, L. Sindoni, 1010.5149 [gr-qc]; E. Livine, DO, J. Ryan, 1104.5509 [gr-qc])


• effective dynamics of simple fluctuations around new vacuum (W. Fairbairn, E. Livine, gr-qc/0702125)

most recently: cosmology from full QG (via GFT formalism) ——>



(Quantum) Cosmology from GFT
S. Gielen, DO, L. Sindoni,  arXiv:1303.3576 [gr-qc], arXiv:1311.1238 [gr-qc]

problem 1: 

identify quantum states in fundamental theory with continuum spacetime interpretation

many results in LQG (weaves, coherent states, statistical geometry, approximate symmetric states,....)

problem 2:

extract from fundamental theory an effective macroscopic dynamics for such states 

Quantum GFT condensates are continuum homogeneous spacetimes

following procedures of standard BEC

described by single collective wave function 

(depending on homogeneous anisotropic geometric data)

QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs 

is


non-linear and non-local extension of quantum cosmology equation for collective wave function

similar equations obtained in non-linear extension of LQC (Bojowald et al. ’12)

similar constructions in LQG (Alesci, Cianfrani) and LQC (Bojowald, Wilson-Ewing, .....)

http://arxiv.org/abs/arXiv:1303.3576


Effective cosmological dynamics from GFT
follow closely procedure used in real BECs

non-linear and non-local extension of quantum cosmology-like equation for “collective wave function

!

QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs

single-particle GFT condensate:

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⌦ := exp (⌅̂) |0⌦ , |⇤⌦ := exp
⇥
⇤̂
⇤
|0⌦ . (19)

|⌅⌦ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⌦
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⌦ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⌦
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⌦ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)
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= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg
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I
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) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)
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For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think of N as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di⇥er-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (16)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (17)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (18)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (19)

leading to the quantum equation of motion

⌅
d4g⇥ K̂(gI , g

⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (20)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (20) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ⇤: Multiplying (20) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ⇤.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(�gI + µ) ⇤(gIg
⇥
I
�1

) = 0 . (23)

Quantum GFT condensates

two simple choices of quantum GFT condensate states 

(homogeneous continuum quantum spacetimes)

single-particle condensate
(Gross-Pitaevskii approximation)

two-particle dipole condensate
(Bogoliubov approximation)
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to a t ransformat ion of g i j under t he adjoint act ion of
G L (3), which t ransforms physically dist inct met rics into
each ot her. A ny not ion of homogenei ty also depends on
t he embedding.

We address bot h of t hose issues by recalling t hat t he
group G carries a nat ural basis of vector fields, t he left-
invariant vector fields. F ixing a G -invariant inner prod-
uct in t he L ie algebra g t his basis is unique up to t he
act ion of O (3). We now demand t hat t he embedded tetra-
hedra are al igned with the left-invar iant vector fields,

v i ( m ) = e i ( x m ), (14)

where { e i } are t he vector fields on M ob t ained by push-
forward of a basis of left-invariant vector fields on G .

T he defini t ion (13) of t he physical met ric now reads

g i j ( m ) = g( x m )(e i ( x m ), e j ( x m )) , (15)

so t hat g i j ( m ) are t he met ric components in t he frame
{ e i } . In t his frame a homogeneous met ric will be one
wi t h const ant coe  cients. We can t hen say t ha t a dis-
crete geomet ry of N tet rahedra, specified by t he da t a
g i j ( m ) , is compatible with spatial homogene ity if

g i j ( m ) = g i j ( k )  k , m = 1, . . . , N . (16)

T his cri terion only uses int rinsic geomet ric da t a and does
not depend on any embedding informat ion apar t from
t he choice of G . I t is a very nat ural not ion of spat ial
homogenei ty in t he discrete contex t .

A discrete geomet ry compatible wi t h spa t ial homo-
genei ty is in addi t ion compat ible wi t h spat ial isot ropy
if G = R 3 , SU (2) or Hom(2) and g i j = a2  i j for some a .

St a tements abou t t he met ric at a fini te number of
points are in general physically meaningless. O ur inter-
pret at ion is to view t he informat ion given by knowing t he
met ric at N points as a sampling of an underlying cont in-
uous geomet ry; if t he points are dist ribu ted in a region of
size L (measured wi t h respect to a background met ric),
we can sample wavenumbers up to N 1 / 3 / L . In t his sense
our cri terion for homogenei ty is, at any N , an approxi-
mat ion to t he defini t ion for cont inuous geomet ries.

We can say more if we t hink of N as variable: Consider
a compact region of M whose geomet ry is approxima ted
bet ter and bet ter by let t ing N increase, leading to di  er-
ent sets of discrete dat a for each N . If (16) holds for all
of t hese sets of dat a, i .e. for any N , t he spa t ial geomet ry
is homogeneous to arbi t rary accuracy.

In t he quant um t heory, we can ident ify a quant um
st ate which is a superposi t ion of st ates of N tet rahedra
all sat isfying (16), for all N , as represent ing a cont inuum
homogenous geomet ry wi t h met ric (15). In many-body
quant um mechanics, second-quant ized coherent st ates
have t his proper ty: We interpret second-quant ized co-
herent st ates in G F T , corresponding to a macroscopic
occupat ion of a single-tet rahedron configurat ion, as de-
scribing continuum homogeneous geomet ries.

C osmological dynamics. — T he G F T dynamics de-
termines t he evolu t ion of such st a tes. In addi t ion to
t he gauge invariance (1), we require t hat t he st ate is in-
variant under right mul t iplica t ion of all group elements,
g I   g I h, corresponding to invariance under (8) so t ha t
t he st a te only depends on gauge-invariant dat a.

A ssuming t hat t he simplici ty const raints have been im-
plemented by (6),  is a field on SU (2)4 and we require
t his addi t ional symmet ry under t he act ion of SU (2). I t
can be imposed on a one-par t icle st ate created by

 ̂ : =
 

d4 g  (g I )  ̂ † (g I ) (17)

if we require  (g I k ) =  (g I ) for all k  SU (2); wi t h-
ou t loss of generali ty  (k ⇥g I ) =  (g I ) for all k ⇥  SU (2)
because of (1).

A second possibili ty is to use a two-par t icle operator
which automatically has t he required gauge invariance:

 ̂ : =
1
2

 
d4 g d4 h  (g I h�1

I )  ̂ † (g I )  ̂ † (h I ), (18)

where due to (1) and [  ̂ † (g I ),  ̂ † (h I )] = 0 t he funct ion  
can be t aken to sa t isfy  (g I ) =  (kg I k ⇥) for all k , k ⇥ in
SU (2) and  (g I ) =  (g�1

I ).  is a funct ion on t he gauge-
invariant configura t ion space of a single tet rahedron.

We t hen consider two types of candidate st a tes for
macroscopic, homogeneous configurat ions of tet rahedra:

|   : = exp (  ̂ ) |0 , |   : = exp
 

 ̂
 

|0 . (19)

|   corresponds to t he simplest case of single-par t icle con-
densa t ion wi t h gauge invariance imposed by hand; |   
au toma t ically has t he right gauge invariance.

L et us consider generic G F T models in four dimen-
sions, whose act ions consist of a kinet ic term and an in-
teract ion quint ic (bu t ot herwise general) in t he field  :

S [  ] =
1
2

 
d4 g d4 g⇥  (g I ) K̂ (g I , g⇥

I )  (g⇥
I ) +  V5 [  ] (20)

leading to t he quant um equat ion of mot ion
 

d4 g⇥ K̂ (g I , g⇥
I )  ̂ (g⇥

I ) +  
 V̂5

  ̂ (g I )
= 0 . (21)

Since |   is an eigenst a te of  ̂ (g I ), when (21) acts on |   
i t becomes a non-linear equat ion for  :

 
d4 g⇥ K̂ (g I , g⇥

I )  (g⇥
I ) +  

 V5

  (g I )

   
⇥ = �

= 0 . (22)

We are t hen in a scenario similar to t he one of [3].
O n t he st ate |   all odd correlat ion funct ions vanish.

T he two terms in (21) can t hen give independent con-
st raints on t he funct ion  : M ul t iplying (21) wi t h a field
operator and t aking an expect a t ion value, we find

 
d4 g⇥⇥ K̂ (g⇥

I , g⇥⇥
I )  (g I g⇥⇥

I
�1 ) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

3

to a transformation of gij under the adjoint action of
GL(3), which transforms physically distinct metrics into
each other. Any notion of homogeneity also depends on
the embedding.

We address both of those issues by recalling that the
group G carries a natural basis of vector fields, the left-
invariant vector fields. Fixing a G-invariant inner prod-
uct in the Lie algebra g this basis is unique up to the
action of O(3). We now demand that the embedded tetra-
hedra are aligned with the left-invariant vector fields,

vi(m) = ei(xm), (14)

where {ei} are the vector fields on M obtained by push-
forward of a basis of left-invariant vector fields on G.

The definition (13) of the physical metric now reads

gij(m) = g(xm)(ei(xm), ej(xm)) , (15)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇥cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (16)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di�er-
ent sets of discrete data for each N . If (16) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (16), for all N , as representing a continuum
homogenous geometry with metric (15). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.
Assuming that the simplicity constraints have been im-

plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (17)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (18)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (19)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (20)

leading to the quantum equation of motion
⌅

d4g⇥ K̂(gI , g
⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (21)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (21) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (22)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (21) can then give independent con-
straints on the function ⇤: Multiplying (21) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (23)

•  simplest
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For the SO(4) invariant quantities gij , we similarly obtain

gij(m) = g(xm)(ei(xm), ej(xm)) , (14)

so that gij(m) are the metric components in the frame
{ei}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
gij(m), is compatible with spatial homogeneity if

gij(m) = gij(k) ⌅k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and gij = a2 �ij for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1/3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di⇥er-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
gI ⇤� gI h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(gI)⇧̂

†(gI) (16)

if we require ⌅(gIk) = ⌅(gI) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥gI) = ⌅(gI) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(gIh

�1
I )⇧̂†(gI)⇧̂

†(hI), (17)

where due to (1) and [⇧̂†(gI), ⇧̂†(hI)] = 0 the function ⇤
can be taken to satisfy ⇤(gI) = ⇤(kgIk⇥) for all k, k⇥ in
SU(2) and ⇤(gI) = ⇤(g�1

I ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (18)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(gI)K̂(gI , g

⇥
I)⇧(g

⇥
I) + ⇥V5[⇧] (19)

leading to the quantum equation of motion

⌅
d4g⇥ K̂(gI , g

⇥
I)⇧̂(g

⇥
I) + ⇥

�V̂5

�⇧̂(gI)
= 0 . (20)

Since |⌅⇧ is an eigenstate of ⇧̂(gI), when (20) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(gI , g

⇥
I)⌅(g

⇥
I) + ⇥

�V5

�⇧(gI)

���
⇥=�

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ⇤: Multiplying (20) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥I , g

⇥⇥
I )⇤(gIg

⇥⇥
I
�1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ⇤.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(�gI + µ) ⇤(gIg
⇥
I
�1

) = 0 . (23)
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For the SO(4) invariant quantities g!", we similarly obtain

g!"(#) = g(x#)(e!(x#), e"(x#)) , (14)

so that g!"(#) are the metric components in the frame
{e!}. In this frame a homogeneous metric will be one
with constant coe⇤cients. We can then say that a dis-
crete geometry of N tetrahedra, specified by the data
g!"(#), is compatible with spatial homogeneity if

g!"(#) = g!"($) ⌅k,m = 1, . . . , N. (15)

This criterion only uses intrinsic geometric data and does
not depend on any embedding information apart from
the choice of G. It is a very natural notion of spatial
homogeneity in the discrete context.

A discrete geometry compatible with spatial homo-
geneity is in addition compatible with spatial isotropy
if G = R3, SU(2) or Hom(2) and g!"= a2 �!"for some a.

Statements about the metric at a finite number of
points are in general physically meaningless. Our inter-
pretation is to view the information given by knowing the
metric at N points as a sampling of an underlying contin-
uous geometry; if the points are distributed in a region of
size L (measured with respect to a background metric),
we can sample wavenumbers up to N1 % 3/L. In this sense
our criterion for homogeneity is, at any N , an approxi-
mation to the definition for continuous geometries.

We can say more if we think ofN as variable: Consider
a compact region of M whose geometry is approximated
better and better by letting N increase, leading to di⇥er-
ent sets of discrete data for each N . If (15) holds for all
of these sets of data, i.e. for any N , the spatial geometry
is homogeneous to arbitrary accuracy.

In the quantum theory, we can identify a quantum
state which is a superposition of states of N tetrahedra
all satisfying (15), for all N , as representing a continuum
homogenous geometry with metric (14). In many-body
quantum mechanics, second-quantized coherent states
have this property: We interpret second-quantized co-
herent states in GFT, corresponding to a macroscopic
occupation of a single-tetrahedron configuration, as de-
scribing continuum homogeneous geometries.

Cosmological dynamics. — The GFT dynamics de-
termines the evolution of such states. In addition to
the gauge invariance (1), we require that the state is in-
variant under right multiplication of all group elements,
g& ⇤� g& h, corresponding to invariance under (8) so that
the state only depends on gauge-invariant data.

Assuming that the simplicity constraints have been im-
plemented by (6), ⇧ is a field on SU(2)4 and we require
this additional symmetry under the action of SU(2). It
can be imposed on a one-particle state created by

⌅̂ :=

⌅
d4g ⌅(g& )⇧̂

†(g& ) (16)

if we require ⌅(g& k) = ⌅(g& ) for all k ⇥ SU(2); with-
out loss of generality ⌅(k⇥g& ) = ⌅(g& ) for all k⇥ ⇥ SU(2)
because of (1).
A second possibility is to use a two-particle operator

which automatically has the required gauge invariance:

⇤̂ :=
1

2

⌅
d4g d4h ⇤(g& h

�1
& )⇧̂†(g& )⇧̂

†(h& ), (17)

where due to (1) and [⇧̂†(g& ), ⇧̂†(h& )] = 0 the function ⇤
can be taken to satisfy ⇤(g& ) = ⇤(kg& k⇥) for all k, k⇥ in
SU(2) and ⇤(g& ) = ⇤(g�1

& ). ⇤ is a function on the gauge-
invariant configuration space of a single tetrahedron.
We then consider two types of candidate states for

macroscopic, homogeneous configurations of tetrahedra:

|⌅⇧ := exp (⌅̂) |0⇧ , |⇤⇧ := exp
⇥
⇤̂
⇤
|0⇧ . (18)

|⌅⇧ corresponds to the simplest case of single-particle con-
densation with gauge invariance imposed by hand; |⇤⇧
automatically has the right gauge invariance.
Let us consider generic GFT models in four dimen-

sions, whose actions consist of a kinetic term and an in-
teraction quintic (but otherwise general) in the field ⇧:

S[⇧] =
1

2

⌅
d4g d4g⇥ ⇧(g& )K̂(g& , g

⇥
& )⇧(g

⇥
& ) + ⇥V5[⇧] (19)

leading to the quantum equation of motion

⌅
d4g⇥ K̂(g& , g

⇥
& )⇧̂(g

⇥
& ) + ⇥

�V̂5

�⇧̂(g& )
= 0 . (20)

Since |⌅⇧ is an eigenstate of ⇧̂(g& ), when (20) acts on |⌅⇧
it becomes a non-linear equation for ⌅:

⌅
d4g⇥ K̂(g& , g

⇥
& )⌅(g

⇥
& ) + ⇥

�V5

�⇧(g& )

���
⇥=�

= 0 . (21)

We are then in a scenario similar to the one of [3].
On the state |⇤⇧ all odd correlation functions vanish.

The two terms in (20) can then give independent con-
straints on the function ⇤: Multiplying (20) with a field
operator and taking an expectation value, we find

⌅
d4g⇥⇥ K̂(g⇥& , g

⇥⇥
& )⇤(g& g

⇥⇥
&
�1

) = 0 . (22)

Since (22) is linear, it could be interpreted as a standard
quantum cosmological equation of motion for ⇤.
A condensation of correlated pairs of GFT particles,

for this class of GFT models, is only possible if the ki-
netic operator K̂ admits a nontrivial kernel. As one ex-
ample for such a kinetic operator we can consider the
Laplace-Beltrami operator on SU(2)4 (whose presence
can be motivated by GFT renormalization [8]) together
with a ‘mass term’, so that (22) becomes

(� I + µ) ⇤(g& g
⇥
&
�1

) = 0 . (23)
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when applied to (coherent) GFT condensate state, 
it gives equation for “wave function”: 

Z
[dg0i] K̃(gi, g

0
i)�(g0i) + �

�Ṽ
�'(gi)

|'⌘� = 0

⇥̂(gI)|�� = �(gI) |��since:

more precisely, from truncation of SD equations for GFT model

S. Gielen, DO, L. Sindoni, 

1303.3576 [gr-qc], 1311.1238 [gr-qc]



Effective cosmological dynamics from GFT

derivation of (quantum) cosmological equations from GFT quantum dynamics very general

it rests on:


!
• continuum homogeneous spacetime ~ GFT condensate

• good encoding of discrete geometry in GFT states

• 2nd quantized GFT formalism

general features:

• quantum cosmology-like equations emerging as hydrodynamics for GFT condensate

• non-linear

• non-local (on “mini-superspace”)

exact form of equations depends on specific model considered

if GFT dynamics involves Laplacian kinetic term, then FRW equation is contained in effective 
cosmological dynamics for GFT condensate, with QG corrections

derivation of (quantum) cosmology from fundamental QG formalism!

S. Gielen, DO, L. Sindoni,  arXiv:1303.3576 [gr-qc], arXiv:1311.1238 [gr-qc]

http://arxiv.org/abs/arXiv:1303.3576


Continuum limit of LQG (at dynamical level)
QFT methods (i.e. GFT reformulation of LQG) useful to address physics of large numbers of LQG d.o.f.s, 

i.e. many and refined graphs (continuum limit)

1. making sense of quantum dynamics and LQG partition function (correlations)


2. understanding LQG phase structure


3. extracting effective continuum dynamics

GFT (2nd quantized LQG formalism) key for further developments!

beside the formal role in linking canonical LQG and covariant Spin Foam models 
(and in giving a complete definition of the latter)



Thank you for your attention!


