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Motivation
• Loop Quantum Gravity

• Sound background independent quantization formalism

• In certain scenarios (specific matter content) quantization program

completed, but ...
• Systems too complicated to handle computationally

(on geniune level).
• Practical applications need simplifications.

• Loop Quantum Cosmology

• Quantization of simple models using methods of LQG

• Sufficiently simple for succesful extraction of dynamical results

(bounce, perturbations, ...), but ...
• not derived as a sector (reduction) of LQG

• How to bridge the two?

• Controllable and precise interface LQG↔LQC.
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Outline

• The review of approaches

• The rules of engagement

• LQG - brief recall

• Main properties of the framework

• Components relevant for cosmological models

• LQC - similarities and differences wrt full theory

• Simplifications and framework definition.

• Capabilities of the program

• The interface

• Selection of state subspace

• Averaging over symmetries
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Review of approaches
• Problem:Diffeomorphism invariant formalism of LQG vs symmetries as

a subclass of the diffeomorphisms.

• Several methods to embed LQC in/extract from LQG

• Embedding objects from LQG (e.g. holonomies) as subclass ofones

in LQG. C Fleishchack, J Brunneman 2007-10, J Engle 2013

• Symmetries as relation between observables and coherent states

peaked about the symmetry.J Engle 2007

• Dynamic limit of specific LQG coherent states
• U(1)3 - simplificationE Alesci, G Cianfrani 2014

• Gauge fixing + symmetries as quantum constaints
• U(1)3 - simplificationN Bodendorfer 2014
• Tetrahedron gas in GFT -S Gielen, D Oritti, L Sindoni 2013-14.

• Extracting of relevant global DOF at kinematical level
• Regular lattice ofj = 1/2 edges:A Ashtekar, E Wilson-Ewing

2009
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The rules of engagement
• Genuine LQGno simplifications

• No control over dynamics– (quasi) kinematical sector

• Interface (dictionary), not a cosmological limit.

• Maximally robust– independent of the details of the construction on

LQG side

• Using only prescription independent components

• Explicit control of the input:

• relations implied by the consistency requirements vs prescription

dependent input

• The purpose

• LQC – fixing heuristic input

• LQG – filter on prescriptions via consistency with cosmologicalsector
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LQG - outline
Ashtekar, Lewandowski, Rovelli, Smolin, Thiemann, ...

• Main principle:explicit background independence.

• Canonical:Einstein Hilbert action + Holst term +3 + 1 splitting

• Basic variables: holonomiesUγ(A) of SU(2) connections and fluxes

Ki(S) of densitized triads –holonomy-flux algebra.

• Algebra of constraints:Gauss, diffeomorphisms, Hamiltonian.

• Dirac program
• quantization ignoring the constraits (kinematical)
• constraints implemented as quantum operators
• Physical space, kernel of the constraints

• implementation:constrints solved in hierarchy.

• Kinematical levelGNS quantization of the holonomy-flux algebra

• Unique background-independent representation (LOST)
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LQG - basic structure
• main properties

• Well defined diff-invariant spaceHdiff

• Well-def diff-inv observables

• spectra of volume, area arediscrete.

• Kinematical level:GNS quantization of the holonomy-flux algebra

• Hilbert spaceHkin: spanned by the spin-network states:
• Embedded graph with oriented edges,
• spin labelsj on its edges,
• intertwinersI on vertices,
• Discreteness:disjoint graphs orthogonal.

• Gauss constr. solution:Explicit projection to

gauge-invariant subspace

• j’s restricted by angular momentum

addition rules.
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LQG - the constraints
• Diffeo constraint solution:Group averaging technique

• averaging over embeddings

• In certain formulations (fixed graph topology) graphs become

abstract.

• Result:diffeo-invariant Hilbert spaceHdiff .

• Well defined geometric observables.

• Hamiltonian constraint:formulation dependent

• Graph preserving:combinatorial operator changing the labels.

• Graph changing(example): adds edges to form triangular loops.

• Observation:interface non-dynamic – should be independent on the

matter content

• Freedom to choose a convenient mater field.

• Solution to H-constr:deparametrization wrt that field.
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LQG - the deparametrization
M Domagala, K Giesel, W Kaminski, L Lewandowski, T Thiemann 2010

V Husain, TP 2011, K Giesel, T Thiemann 2012

Idea:Couple gravity to matter fields. Use them as reference frame.

• Separation of the Hamiltonian constraint

H = 0 ⇔ pn
T = H̃ , n = 1, 2

(T, pT ) - canonical “time” field pair.

• Interface relates geometry DOF:should be matter content independent.

• Convenient choice:Irrotational or Gaussian dust

• System withtrue physical Hamiltonian of explicitly known action.

• Physical Hilbert space known explicitly:Hphy = Hdiff

• Evolution is governed bya Schrödinger equation

i∂Ψ
∂t

= [ĤG + Ĥm]Ψ

• All known (kinematical) diffeo-invariant observables nowbecome

physical. – p. 9



LQG - interface components
• The area operator:of given areaS

• Action depends only on labels of edges intersecting the surface.

Ar(S)Ψ = 4πγℓ2Pl

[

∑

e+

√

je+(je+ + 1) +
∑

e−

√

je−(je− + 1)
]

Ψ

e± - edges starting/terminating onS.

• The field strength operator:

• All components ofH must be expressed in terms ofUγ , Ki –

Thiemann regularization.

• The curvature ofA approximated by holonomies along the loop△

F i
abX

aY b(x) = limAr(△)→0
U△−1
Ar(△)

• Depending on prescription:
• loop is a plaquet (minimal closed loop) of a graph edges or
• a small triangular loop is formed near the vertex.
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Loop Quantum Cosmology
A. Ashtekar, M. Bojowald, and many others ...

• Main principle:Application of LQG quantization method to simplified

models.

• Present stage:Includes inhomogeneities butalwaysas quasi-global

degrees of freedom.

• Inhomogeneous/matter degrees of freedom always live on the

homogeneous “background” spacetime.

• Main results:

• Modification to early universe dynamics

(big bounce)A. Ashtekar, TP, P. Singh, 2006
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• Evolution of cosmological perturbations

A. Ashtekar, I. Agullo, W. Nelson, 2012

G. Mena-Marugan, J. Olmedo, 2013

• Further applied to models outside of cosmology.
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LQC - classical framework
• The model:Bianchi I universe withT 3 topology

g = −dt2 + a2
1(t)dx2 + a2

2(t)dy2 + a2
3(t)dz2

• Gauge fixing:Background structure present:

fiducial metricoq = dx2 + dy2 + dz2 and orth. triadoea
i .

• Geometry degrees of freedom:scale factorsai and can. momenta

• Gauss and diffeomorphism constraints automatically satified. (gauge)

• Holonomy-flux algebra:

• Holonomies along integral curvesoea
i suffice to separate

homogeneous connections.

• Fluxes across “unit fiducial squares” (T 2) suffice to separate the

triads.

• Holonomy along the edgein direction ofoea
i of lengthλ

hi
(λ) = cos(λci/2)I + 2 sin(λci/2)τ i 2iτk = σk

• The unit fluxes:pi = a1a2a3/ai – areas ofT 2 closed surfaces

orthogonal tooea.
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LQC quantization: kinematics
Direct application of the LQG quantization algorithm:

• Degrees of freedom:canonical pairs(ci, pi).

• An equivalent of holonomy algebra in LQG is generated by almost

periodic functions: N(λ)(c
i) := exp(iλci/2)

• The Gel‘fand spectrum of this algebra(support of the elements ofHgrav
kin )

analog ofis the Bohr compactification of real linēR3
Bohr.

• Basic operators:̂pi, N̂ i
(λ).

• No “connection coefficient” operator̂ci

• “Triad coefficient” operator̂pi defined through flux operator.
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LQC quantization: kinematics
• Final results:The GNS construction leads to Gravitational kinematical

Hilbert spaceHgrav
kin = [L2(R̄Bohr, dµHaar)]

3 .

• Bohr compactification:Space of almost periodic functionsλ 7→ N(λ)(c).

The scalar product

〈f1|f2〉 = limL→∞(1/2L)
∫ L

−L
f̄1(c)f2(c)

• Representation of statesin which operatorŝpi are diagonal. Eigenstates

of p̂i labeled byµi satisfy

〈µ1, µ2, µ3|µ
′
1, µ

′
2, µ

′
3〉 = δµ1,µ′

1
δµ2,µ′

2
δµ3,µ′

3

• Action of fundamental operators:

p̂i |µi, ...〉 = 4
3
πγℓ2Plµ |µi, ...〉 exp(iλci/2) |µi, ...〉 = |µi + λ, ...〉

• Application of deparametrization:

• Schrödigner equation: Hamiltonian – a difference operator.

• Dynamics controlled numerically (wip)
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LQC - intreface elements
• Areas:

• Physically relevant:areas ofT 2 closed surfacespi (products ofai).
• (remember:pi are fluxes)

• Field strangth:

• Same as in LQG, but now the (square) loop is generated by fiducial

triad. (square plaquet)

• Due to background structure the minimal loophas associated physical

areaσi.

• Standard (heuristic) interface:

• The areaσi taken to be1st nonzero eigenvalue ofAr(S) in LQG.

• The choice fixes displacementsλ as phase space functions.
• Consequence:upper bound on en. densityρ < ρc ≈ 0.41ρPl

• Element critical for dynamics predictions.

• Can we build it in more robust way?
– p. 15



The interface
• Motivation: Homog. sector emerging inU(1)3 simplifications to LQG

(E. Alesci, N. Bodendorfer, 2014)or GFT(S. Gielen et al, 2014).

• Selected interface elements are well defined in both theories.

• Idea:Associate the LQC degrees of freedom of specific LQG states using

correspondence between interface elements.

• Choice of LQG states needs to allow for implementing the auxiliary

structure present in LQC.

• The construction:

• Selectthe spin networks topologically equivalent to cubical lattices.

• Partially gauge fixthe state by equipping embedding manifold with

metricoq in which the latticebecomes regular.
• Can be replaced by averaging over subgroup of diffeos.
• Remaining gauge freedom: rigid translations!

• DefineLQC quantities asaveragesof LQG observables over

remianing translations (treated as active diffeomorphisms). – p. 16



State compatibility issues
• Separable Hilbert spacetwo options:

• Single lattice (superselection sector).

• Continuum of lattices and integrable Hilbert space

F Barbero, TP, E Villaseñor 2014

• Graph modifying Hamiltonian

• allow subgraphs of the lattice completed byj = 0 edges.

• triangular loop realised as square loop with additional 2-valent node.

• bacground metric defined at each time step

• Regularity requirement can be replaced by averaging over

diffeomorphisms (preserving parallelity of edges).
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Interface - the consequences
• Averaged area of a minimal plaquet:

σi = 8πγℓ2Pl〈
√

jei
(jei

+ 1)〉i

• Depends on the statistics ofj-labels of the spin network!

• Noncompact sector:

• Take the infrared regulator – fiducial cube (cell)V

• Average with boundaries identified.

• Take the limitV → R
3

• Result the same as inT 3.

• Isotropic sector:

• Additional diffeomorphisms: rigid rotations.
• Single lattice cannot reproduce isotropic spacetime!

• Averaging overSO(3): (use Euler angles)
• Use the state supported on (continuous) family of rotated lattices.

• Result: σi = 12πγℓ2Pl〈
√

je(je + 1)〉 3/2 factor difference! – p. 18



Area statistics
• The statistics:

• The precise statistics ofj depends on the specific construction

(prescription) of the Hamiltonian.

• Possible solution (example):Statistics evaluated in context of the black

hole entropy in LQG (Ernesto’s talk).

• BH horizon area:sum over graph edges intersecting the surface.

• Entropy:counting of microstates of given area.

• Numerical countingfor small BH’s

(A. Corichi, J. Diaz-Polo, E. Fernandez-Borja, I Agullo 2007)

The stair-like structure of entropy indicates the averagej ≈ 0.86

→ suggestion ofsome modification to LQC area gap.
• Critical energy density(upper bound): ρc ≈ 0.29ρPl.

• Consistency of LQCgives restrictionson possible statistics of spin

networks in LQG.
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The consequences
1. LQC side:

• improved dynamics requires external (dynamical) input

• modification of the area gap/ energy density bound:

0.41ρPl ≈ ρc →≈ 0.29ρPl

2. LQG side:

• Graph preserving Hamiltonians have no possibility to produce correct

dynamics.

• Isotropic spacetime cannot be amulted by a single lattice state.

• LQC sourced consistency requires the average〈j〉 approaching

constant in low energy/curvature limit.
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Thank you for your attention!

Research and presentation supported in part by National Center for Science (NCN), Poland under

grant no. 2012/05/E/ST2/03308 and the Chilean FONDECYT regular grant no. 1140335.
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