Interfacing loop quantum gravity with cosmology.

THIRD EFI WINTER CONFERENCE ON QUANTUM GRAVITY

TUX, AUSTRIA, 16-20.02.2015

Tomasz Pawłowski

Departamento de Ciencias Físicas, Universidad Andres Bello & Instytut Fizyki Teoretycznej Unwersytet Warszawski arXiv:1411.0323

Motivation

- Loop Quantum Gravity
 - Sound background independent quantization formalism
 - In certain scenarios (specific matter content) quantization program completed, but ...
 - Systems too complicated to handle computationally (on geniune level).
 - Practical applications need simplifications.
- Loop Quantum Cosmology
 - Quantization of simple models using methods of LQG
 - Sufficiently simple for succesful extraction of dynamical results (bounce, perturbations, ...), but ...
 - not derived as a sector (reduction) of LQG
- How to bridge the two?
 - Controllable and precise interface $LQG \leftrightarrow LQC$.

Outline

- The review of approaches
- The rules of engagement
- LQG brief recall
 - Main properties of the framework
 - Components relevant for cosmological models
- LQC similarities and differences wrt full theory
 - Simplifications and framework definition.
 - Capabilities of the program
- The interface
 - Selection of state subspace
 - Averaging over symmetries

Review of approaches

- Problem: Diffeomorphism invariant formalism of LQG vs symmetries as a subclass of the diffeomorphisms.
- Several methods to embed LQC in/extract from LQG
 - Embedding objects from LQG (e.g. holonomies) as subclass of ones in LQG. C Fleishchack, J Brunneman 2007-10, J Engle 2013
 - Symmetries as relation between observables and coherent states peaked about the symmetry. J Engle 2007
 - Dynamic limit of specific LQG coherent states
 - $U(1)^3$ simplification E Alesci, G Cianfrani 2014
 - Gauge fixing + symmetries as quantum constaints
 - $U(1)^3$ simplification N Bodendorfer 2014
 - Tetrahedron gas in GFT S Gielen, D Oritti, L Sindoni 2013-14.
 - Extracting of relevant global DOF at kinematical level
 - Regular lattice of j = 1/2 edges: A Ashtekar, E Wilson-Ewing 2009

The rules of engagement

- Genuine LQG no simplifications
- No control over dynamics (quasi) kinematical sector
 - Interface (dictionary), not a cosmological limit.
- Maximally robust independent of the details of the construction on LQG side
 - Using only prescription independent components
- Explicit control of the input:
 - relations implied by the consistency requirements vs prescription dependent input
- The purpose
 - LQC fixing heuristic input
 - LQG filter on prescriptions via consistency with cosmological sector

LQG - outline

Ashtekar, Lewandowski, Rovelli, Smolin, Thiemann, ...

- Main principle: explicit background independence.
- Canonical: Einstein Hilbert action + Holst term + 3 + 1 splitting
- Basic variables: holonomies $U_{\gamma}(A)$ of SU(2) connections and fluxes $K^{i}(S)$ of densitized triads holonomy-flux algebra.
- Algebra of constraints: Gauss, diffeomorphisms, Hamiltonian.
 - Dirac program
 - quantization ignoring the constraits (kinematical)
 - constraints implemented as quantum operators
 - Physical space, kernel of the constraints
 - implementation: constrints solved in hierarchy.
- Kinematical level GNS quantization of the holonomy-flux algebra
 - Unique background-independent representation (LOST)

LQG - basic structure

- main properties
 - Well defined diff-invariant space \mathcal{H}_{diff}
 - Well-def diff-inv observables
 - spectra of volume, area are discrete.
- Kinematical level: GNS quantization of the holonomy-flux algebra
 - Hilbert space \mathcal{H}_{kin} : spanned by the spin-network states:
 - Embedded graph with oriented edges,
 - spin labels *j* on its edges,
 - intertwiners *I* on vertices,
 - Discreteness: disjoint graphs orthogonal.
- Gauss constr. solution: Explicit projection to gauge-invariant subspace
 - *j*'s restricted by angular momentum addition rules.

LQG - the constraints

- Diffeo constraint solution: Group averaging technique
 - averaging over embeddings
 - In certain formulations (fixed graph topology) graphs become abstract.
- Result: diffeo-invariant Hilbert space \mathcal{H}_{diff} .
 - Well defined geometric observables.
- Hamiltonian constraint: formulation dependent
 - Graph preserving: combinatorial operator changing the labels.
 - Graph changing (example): adds edges to form triangular loops.
- Observation: interface non-dynamic should be independent on the matter content
 - Freedom to choose a convenient mater field.
- Solution to H-constr: deparametrization wrt that field.

– p. 8

LQG - the deparametrization

M Domagala, K Giesel, W Kaminski, L Lewandowski, T Thiemann 2010 V Husain, TP 2011, K Giesel, T Thiemann 2012

Idea: Couple gravity to matter fields. Use them as reference frame.

• Separation of the Hamiltonian constraint

$$H=0 \iff p_T^n= ilde{H}, n=1,2$$

 (T, p_T) - canonical "time" field pair.

- Interface relates geometry DOF: should be matter content independent.
- Convenient choice: Irrotational or Gaussian dust
 - System with true physical Hamiltonian of explicitly known action.
 - Physical Hilbert space known explicitly: $\mathcal{H}_{phy} = \mathcal{H}_{diff}$
 - Evolution is governed by a Schrödinger equation

$$i\frac{\partial\Psi}{\partial t} = [\hat{H}_G + \hat{H}_m]\Psi$$

 All known (kinematical) diffeo-invariant observables now become physical.

LQG - interface components

- The area operator: of given area S
 - Action depends only on labels of edges intersecting the surface.

 $\operatorname{Ar}(S)\Psi = 4\pi\gamma\ell_{\operatorname{Pl}}^{2} \left[\sum_{e^{+}} \sqrt{j_{e^{+}}(j_{e^{+}}+1)} + \sum_{e^{-}} \sqrt{j_{e^{-}}(j_{e^{-}}+1)} \right] \Psi$

 e^{\pm} - edges starting/terminating on S.

- The field strength operator:
 - All components of H must be expressed in terms of U_{γ} , K^i Thiemann regularization.
 - The curvature of A approximated by holonomies along the loop \triangle

$$F^i_{ab} X^a Y^b(x) = \lim_{\operatorname{Ar}(\triangle) \to 0} \frac{U_{\triangle} - 1}{\operatorname{Ar}(\triangle)}$$

- Depending on prescription:
 - loop is a plaquet (minimal closed loop) of a graph edges or
 - a small triangular loop is formed near the vertex.

Loop Quantum Cosmology

A. Ashtekar, M. Bojowald, and many others ...

- Main principle: Application of LQG quantization method to simplified models.
- Present stage: Includes inhomogeneities but always as quasi-global degrees of freedom.
 - Inhomogeneous/matter degrees of freedom always live on the homogeneous "background" spacetime.
- Main results:
 - Modification to early universe dynamics (big bounce) A. Ashtekar, TP, P. Singh, 2006
 - Evolution of cosmological perturbations
 A. Ashtekar, I. Agullo, W. Nelson, 2012
 - G. Mena-Marugan, J. Olmedo, 2013

• Further applied to models outside of cosmology.

LQC - classical framework • The model: Bianchi I universe with T^3 topology

- $g = -dt^2 + a_1^2(t)dx^2 + a_2^2(t)dy^2 + a_3^2(t)dz^2$
- Gauge fixing: Background structure present: fiducial metric ${}^{o}q = dx^2 + dy^2 + dz^2$ and orth. triad ${}^{o}e_i^a$.
- Geometry degrees of freedom: scale factors a_i and can. momenta
- Gauss and diffeomorphism constraints automatically satified. (gauge)
- Holonomy-flux algebra:
 - Holonomies along integral curves ${}^{o}e_{i}^{a}$ suffice to separate homogeneous connections.
 - Fluxes across "unit fiducial squares" (T^2) suffice to separate the triads.
 - Holonomy along the edge in direction of ${}^{o}e_{i}^{a}$ of length λ $h_{(\lambda)}^{i} = \cos(\lambda c^{i}/2)\mathbb{I} + 2\sin(\lambda c^{i}/2)\tau^{i} \qquad 2i\tau^{k} = \sigma^{k}$
 - The unit fluxes: $p_i = a_1 a_2 a_3 / a_i$ areas of T^2 closed surfaces

LQC quantization: kinematics

Direct application of the LQG quantization algorithm:

- Degrees of freedom: canonical pairs (c^i, p_i) .
- An equivalent of holonomy algebra in LQG is generated by almost periodic functions: $N_{(\lambda)}(c^i) := \exp(i\lambda c^i/2)$
- The Gel'fand spectrum of this algebra (support of the elements of \mathcal{H}_{kin}^{grav}) analog of is the Bohr compactification of real line $\bar{\mathcal{R}}_{Bohr}^3$.
- Basic operators: \hat{p}_i , $\hat{N}^i_{(\lambda)}$.
 - No "connection coefficient" operator \hat{c}^i
 - "Triad coefficient" operator \hat{p}_i defined through flux operator.

LQC quantization: kinematics

- Final results: The GNS construction leads to Gravitational kinematical Hilbert space $\mathcal{H}_{kin}^{grav} = [L^2(\bar{\mathcal{R}}_{Bohr}, d\mu_{Haar})]^3$.
- Bohr compactification: Space of almost periodic functions $\lambda \mapsto N_{(\lambda)}(c)$. The scalar product

$$\langle f_1 | f_2 \rangle = \lim_{L \to \infty} (1/2L) \int_{-L}^{L} \bar{f}_1(c) f_2(c)$$

• Representation of states in which operators \hat{p}_i are diagonal. Eigenstates of \hat{p}_i labeled by μ_i satisfy

$$\langle \mu_1, \mu_2, \mu_3 | \mu_1', \mu_2', \mu_3' \rangle = \delta_{\mu_1, \mu_1'} \delta_{\mu_2, \mu_2'} \delta_{\mu_3, \mu_3'}$$

• Action of fundamental operators:

 $\hat{p}_i |\mu_i, ...\rangle = \frac{4}{3} \pi \gamma \ell_{\rm Pl}^2 \mu |\mu_i, ...\rangle \quad \exp(i\lambda c^i/2) |\mu_i, ...\rangle = |\mu_i + \lambda, ...\rangle$

- Application of deparametrization:
 - Schrödigner equation: Hamiltonian a difference operator.
 - Dynamics controlled numerically (wip)

LQC - intreface elements

- Areas:
 - Physically relevant: areas of T^2 closed surfaces p_i (products of a_i).
 - (remember: p_i are fluxes)
- Field strangth:
 - Same as in LQG, but now the (square) loop is generated by fiducial triad. (square plaquet)
 - Due to background structure the minimal loop has associated physical area σ_i .
- Standard (heuristic) interface:
 - The area σ_i taken to be 1st nonzero eigenvalue of Ar(S) in LQG.
 - The choice fixes displacements λ as phase space functions.
 - Consequence: upper bound on en. density $\rho < \rho_c \approx 0.41 \rho_{\rm Pl}$
 - Element critical for dynamics predictions.

The interface

- Motivation: Homog. sector emerging in U(1)³ simplifications to LQG (E. Alesci, N. Bodendorfer, 2014) or GFT (S. Gielen et al, 2014).
- Selected interface elements are well defined in both theories.
- Idea: Associate the LQC degrees of freedom of specific LQG states using correspondence between interface elements.
 - Choice of LQG states needs to allow for implementing the auxiliary structure present in LQC.
- The construction:
 - Select the spin networks topologically equivalent to cubical lattices.
 - Partially gauge fix the state by equipping embedding manifold with metric ^oq in which the lattice becomes regular.
 - Can be replaced by averaging over subgroup of diffeos.
 - Remaining gauge freedom: rigid translations!
 - Define LQC quantities as averages of LQG observables over remianing translations (treated as active diffeomorphisms).

State compatibility issues

- Separable Hilbert space two options:
 - Single lattice (superselection sector).
 - Continuum of lattices and integrable Hilbert space F Barbero, TP, E Villaseñor 2014
- Graph modifying Hamiltonian
 - allow subgraphs of the lattice completed by j = 0 edges.
 - triangular loop realised as square loop with additional 2-valent node.
 - bacground metric defined at each time step
 - Regularity requirement can be replaced by averaging over diffeomorphisms (preserving parallelity of edges).

Interface - the consequences

• Averaged area of a minimal plaquet:

$$\sigma_i = 8\pi\gamma \ell_{\rm Pl}^2 \langle \sqrt{j_{e_i}(j_{e_i}+1)} \rangle_i$$

- Depends on the statistics of *j*-labels of the spin network!
- Noncompact sector:
 - Take the infrared regulator fiducial cube (cell) \mathcal{V}
 - Average with boundaries identified.
 - Take the limit $\mathcal{V} \to \mathbb{R}^3$
 - Result the same as in T^3 .
- Isotropic sector:
 - Additional diffeomorphisms: rigid rotations.
 - Single lattice cannot reproduce isotropic spacetime!
 - Averaging over SO(3): (use Euler angles)
 - Use the state supported on (continuous) family of rotated lattices.

Area statistics

- The statistics:
 - The precise statistics of *j* depends on the specific construction (prescription) of the Hamiltonian.
- Possible solution (example): Statistics evaluated in context of the black hole entropy in LQG (Ernesto's talk).
 - BH horizon area: sum over graph edges intersecting the surface.
 - Entropy: counting of microstates of given area.
 - Numerical counting for small BH's

 (A. Corichi, J. Diaz-Polo, E. Fernandez-Borja, I Agullo 2007)
 The stair-like structure of entropy indicates the average *j* ≈ 0.86
 → suggestion of some modification to LQC area gap.
 - Critical energy density (upper bound): $\rho_c \approx 0.29 \rho_{\rm Pl}$.
- Consistency of LQC gives restrictions on possible statistics of spin networks in LQG.

The consequences

- 1. LQC side:
 - improved dynamics requires external (dynamical) input
 - modification of the area gap/ energy density bound: $0.41\rho_{\rm Pl} \approx \rho_c \rightarrow \approx 0.29\rho_{\rm Pl}$
- 2. LQG side:
 - Graph preserving Hamiltonians have no possibility to produce correct dynamics.
 - Isotropic spacetime cannot be amulted by a single lattice state.
 - LQC sourced consistency requires the average (*j*) approaching constant in low energy/curvature limit.

Thank you for your attention!

Research and presentation supported in part by National Center for Science (NCN), Poland under grant no. 2012/05/E/ST2/03308 and the Chilean FONDECYT regular grant no. 1140335.

