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We have recently found, in closed form, the space of physical states corresponding 
to spherically symmetric vacuum space-times in loop quantum gravity. 
 
We wish to consider the quantization of a test scalar fields 
on such quantum space-times. 
 
The idea will be to represent the matter part of the Hamiltonian 
constraint as a parameterized  Dirac observable for the gravitational variables and  
we can therefore evaluate its expectation value on states of the physical 
space of states of vacuum gravity. 
 
We choose states very peaked around a Schwarzschild space-time of a given 
mass. The resulting expectation value of the matter part of the Hamiltonian 
constraint becomes a classical Hamiltonian, quantum corrected due to the  
quantum background space time. We proceed to quantize such Hamiltonian 
in the traditional way, defining modes and creation and annihilation operators 
and obtain its vacua. We then compute the Hawking radiation. 
 
Main result: the quantum background space-time acts as a lattice discretization 
of the field theory, naturally regulating it and eliminating infinities, but otherwise 
changing in small but important ways the traditional picture of QFT on CST. 

Summary: 
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The quantum background: vacuum spherically symmetric LQG 

After a rescaling and combination of the constraints that turns their algebra 
into a Lie algebra, we were able to solve in closed form for the space of  
physical states of spherically symmetric vacuum LQG (RG, JP PRL 110, 211301) 

We use the variables adapted to spherical symmetry developed 
by Bojowald and Swiderski (CQG23, 2129 (2006)). One ends 
up with two canonical pairs, Ex, Eφ, Kx, K φ.  

Kinematical states are 
 given by one  
dimensional  
spin networks, 

4 



A basis of he physical states are given by                                          a diffeo  
equivalent class of one dimensional graphs, the k�s are proportional to the  
eigenvalues of the areas of symmetry and M is the ADM mass. 
 
More details in: RG, J. Olmedo, JP, CQG 31 095009 (2014) arXiv:1310.5996 
 
This constitutes the physical space of states for pure gravity. We now want to study 
a quantum field living on this quantum state. For the combined system we assume 
the states have the form of a direct product between the gravity and the matter 
states. 
 
We will represent the matter part of the Hamiltonian constraint as a parameterized 
Dirac observable of the gravitational degrees of freedom. This will allow to promote 
it to an operator that is well defined on the physical space of states. 
 
Since some people may not be familiar with this technique we will review it a bit. 

gMkg ~   with  ,,~| >
!
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Parameterized Dirac observables: 

People are familiar with Carlo�s evolving constants of the motion. They are  
Dirac observables that are function of a parameter.  

0}),({ ≈αφtQi
For instance,  for the relativistic particle. 
Two independent observables: 

What is perhaps less well known is that they are a mechanism for representing 
gauge dependent quantities via Dirac observables. Their value is not well defined: 
it depends on the value of the parameter. Choosing a parameter is tantamount to 
choosing a gauge, and therefore the quantity becomes gauge invariant. 6 



For instance Ex(x) can be promoted to a parameterized observable, 

One defines a Dirac observable O(z) z in [0,1] 

Where z(x) is the functional parameter that embodies the fact that Ex(x) is  
gauge dependent.  
 
One can also write a parameterized Dirac observable for the metric  
(e.g. tx component)  

Here the functional parameter is Kϕ, which corresponds to a choice of slicing. 
For instance, for usual Schwarzschild coordinates Kϕ=0, and a non-vanishing 
Kϕ can be used to consider horizon penetrating coordinates, like Eddington-Finkelstein 
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The main effect of considering the quantum vacuum is that the equations 
for the scalar field become similar to those of a scalar field discretized on 
a lattice. The lattice in this case is provided by the (one dimensional)  
spin network state of the background space-time. 
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For states with equally spaced nodes and z(x)=x/xmax , 



The spacing in the lattice is given by the condition of the quantization 
of the area of the surfaces of spherical symmetry. That condition implies 
that the points are separated a distance at least L2

Planck/(4GM) in the  
exterior of the black hole.  
 
As a consequence, the discrete equations become excellent approximations 
of the continuum equations at energies lower than the Planck energy, 
and most calculations follow like those in the continuum.  
 
One can proceed to define modes and in terms of them creation and  
annihilation operators and compute the vacua. The calculations of the 
Unruh, Boulware and Hartle-Hawking vacua resemble those of the  
continuum with very small corrections. 
 
The main change is that certain trans Planckian modes that would have  
wavelengths smaller than the lattice spacing are suppressed. This implies that 
physical quantities that may diverge at horizons, like the stress energy 
tensor, remain finite. This may have implications for future attempts to  
do back reaction calculations. 
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The  canonical equations for the scalar field correspond to a spatially discretized  
version of the Klein-Gordon equation in curved space time. 
 

€ 

( −ggabφ,a ),b = 0

The construction of quantum vacua is carried out considering modes that solve the wave 
equation and creation and anhilation operators for these modes. We will only sketch the 
properties fo the Boulware modes 
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Asymptotically                               and one recovers an excellent aproximation to the  
Boulware vacuum. 
 
Asymptotically, near scri- and scri+ the modes are:  
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2πn
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Near to the horizon trans Planckian modes are heavily suppressed due to the  
discreteness of the spin network state. In our treatment there are no arbitrary  
frequency trans-Planckian  modes, the dispersion relation is modified in a  
sub-luminal way (it does not affect  the horizon structure) and there are no  
singularities from physical quantities,  like the expectation value of the stress  
energy tensor.  
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One can perform similar analyses for the Unruh and Hartle-Hawking  
vacua.  
 
A point to be careful about is that our spherical treatment uses from the  
outset variables adapted to the symmetry that are time independent. The  
spin network vertices we have chosen are fixed in those slicings. When 
one considers the slicings required for Hartle-Hawking and Unruh one  
ends up with spacings that are time dependent in the slicings considered 
and the resulting discretized wave equations reflect this. This does not cause 
problems and we have shown that one reproduces the usual results (more 
details in the paper). 



Calculation of Hawking radiation 
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The calculation of the Hawking radiation proceeds in the usual way, 
through the computation of the Bogoliubov coefficients. 

With the states  

and u=t-x*, and U=-exp(u/(4GM)). 

R. Gambini, JP CQG 31, 115003 (2014) 
arXiv: 1312.3595 
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The usual calculation (modified to computing it with the spherical modes) yields 
an expression for the number operator of the out photons in terms of the 
in states of the form, 
 
 
 
 
With z=u2-u1 and i1,i2 the labels associated with the in and out states. 
 
 
This expression has problems at z=0, hence the addition of the iε term. 
In our approach, discreteness leads to |z|> LPlanck, so that problem is 
eliminated. This is similar to the heuristic cutoff that had been proposed by 
Agullo, Navarro-Salas, Olmo and Parker PRD80, 047503 (2009). The  
corrected expression for the Hawking radiation is, 

Notice that it is remarkable that the cutoff that arises naturally is Lorentz invariant. 
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The Casimir effect on a quantum geometry 
 
To compute the Casimir force we will need to compute the integral of the  
expectation value of the T00 component of the stress energy in the region 
between the two shells, integrate it, and compute its derivative with respect to the  
separation of the shells. We will assume the shells are very far away from the origin  
(or black hole) to be able to ignore the centrifugal potential.  
 
We consider a conformally coupled massless scalar field. The 
relevant component of the (improved) energy momentum tensor is, 
 

We begin by considering the spherical modes for a scalar field, 

And imposing Dirichlet boundary conditions at the shells, the fields take the form, 

Which corresponds to a spherical sector from r0 to r0+L  with NI Δ=L 

R. Gambini, J. Olmedo, JP arXiv: 1410.4479 
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The dispersion relation is typical of a lattice 
and the creation and annihilation operators have the usual commutation relations. 

To compute the expectation value of the stress tensor we need to compute radial 
and time derivatives of the field. We start from Green’s function,  

Which can be readily computed with the fields of the previous slide. 

From there we then compute, 

And the stress energy tensor 

With higher order terms all finite in the limit Δ->0 
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To compute the Casimir force, we conduct the previous calculation for a slab 
of width L0>L and add up all the energies inside the slab L and in the regions 
between L and L0, and differentiate with respect to L, 

L0 

L 

This is the correct result, including the numerical coefficient. If one repeats 
the calculation for the s mode only, one gets the right 1+1D result. 

-L1 0 
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Generalization to Reissner-Nordstrom: 

We have generalized the vacuum spherically symmetric 
results to Reissner-Nordstrom. The Hamiltonian constraint 
can be Abelianized with the same technique as in the  
vacuum case. We gauge fix the electromagnetic field so 
the space of spin networks states is the same as in the 
uncharged case. 
 
The metric can be represented as a parameterized Dirac 
observable and the singularity is removed as in the vacuum 
case. 
 
New perspectives on Cauchy Horizons: 

R. Gambini, JP arXiv: 1412:6055  

Background picture  
from Droz, Morsink, 
Israel. 
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Test shells on a quantum space-time: 

This can also be Abelianized and the Dirac quantization completed. 

R. Gambini, JP, CQG 32, 035003 (2015) 
arXiv: 1408.4635 
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Propagation on quantum geometries that are not peaked around a single classical 
geometry 

Initial Final 

Peaked state 

Double 
peaked 



Future work: 
 
 
An important issue is that the presence of the discrete structure violates 
Lorentz invariance. This may improve by considering superpositions of 
backgrounds of different masses, but it may require restrictions on the type 
of matter fields that can be considered. Some initial sketches are in 
R. Gambini, JP IJMPD 23, 2023 (2014) arXiv: 1406.2610. 
 
The finiteness introduced by the lattice opens hopes for back reaction 
calculations. Work is under way, one needs different approximations  
than in the Hawking or Casimir cases, but things look promising as  
everything is finite. A (finite) renormalization is required.  
RG, J. Olmedo, JP, in preparation. 
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Summary:%
•  We%can%formulate%quantum%field%theory%in%quantum%space78mes%for%fields%

on%spherically%symmetric%gravity%backgrounds.%
•  It%approximates%quantum%field%theory%in%curved%space%8me%very%well.%
•  Discreteness%naturally%regularizes%physical%quan88es,%opening%the%

possibility%of%back%reac8on%calcula8ons.%
•  Hawking%radia8on%can%be%computed%and%the%result%coincides%with%previous%

heuris8c%results.%
•  The%Casimir%effect%can%be%computed%and%the%right%dependence%on%

separa8on%is%obtained.%
•  Background%results%generalized%to%charged%case,%new%perspec8ves%on%

Cauchy%
horizon%instabili8es.%

•  Test%shells%studied%on%the%quantum%space78me.%
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