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Introduction and motivation I.

The idea of this work is to extend the result of [Gambini, Pullin, Olmedo
(2013)] (for the 3+1 spherically symmetric model) to the CGHS model.
Also trying to be slightly critical.

Both of these systems are a sub-models of a generic 2D dilatonic model:
one might be curious in how to do the extension.

Closer inspection reveals that one key point in extending this method is
using the Bojowald-Swiderski variables [Bojowald, Swiderski (2006)].

We actually had written the CGHS in these variables before [Gambini,
Pullin, SR (2009)] so we had the chance of kind of a of straightforward
extension.

Here, in a rather step by step way,
I we show how to write the CGHS in these variables,
I and the quantization happens to have many similar element as in 3+1 (at the

risk of repeating somethings). This is expected given many similarities of
these two models.
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Introduction and motivation II.

CGHS is historically and technically interesting on its own:
I It has black hole solution, Hawking radiation etc., but relatively simple and

classically solvable even in the presence of matter.
I It is a detailed studied system, massive previous work. There are many

results in the literature that might somehow connect to the LQG analysis of
the model.

I Particularly e.g. the work of [Ashtekar, Pretorius, Ramazanoglu (2010)]:
F interesting result about evaporation, backreaction, asymptotic properties of

spacetime,
F mean field approximation not loop quantization, semiclassical, numerical (not

entirely analytical).

I It would be nice to demonstrate this interesting result (singularity resolution)
for this popular model. It adds to the variety of the results we have for the
CGHS.

I Important: a warm up “exercise” for CGHS with matter.
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The CGHS model
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CGHS black hole
CGHS: a 2D dilatonic model with a pure gravitational Lagrangian

Sg-CGHS =

ˆ
d2x
√
−|g|e−2φ

(
R + 4gab∂aφ∂bφ+ 4λ2

)
(1)

with φ the dilaton field and 4λ2 the cosmological constant.
In conformal gauge and in double null coordinates x± = x0 ± x1:

g+− = −1
2

e2ρ, g−− = g++ = 0 (2)

when no matter is present, the solution is:

e−2ρ = e−2φ =
M
λ
− λ2x+x− (3)

with cons. of integ. M which turns out to be the ADM (or Bondi) mass.
Scalar curvature

R =
4Mλ

M
λ − λ2x+x−

(4)

corresponds to a black hole of mass M at

x+x− =
M
λ3 . (5)
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Kruskal diagram of the vacuum CGHS black hole

Singularity

Singularity

Future right 
event horizon

Past right
event horizon

Future left 
event horizon

Past left
event horizon

Very similar to the Kruskal diagram of the Schwarzschild.
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CGHS vs. 3+1 spherically symmetric
model,

from a generic 2D dilatonic model
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The 1+1 generic dilatonic model

The most general diffeomorphism invariant action yielding second order
differential equations for the metric g and a scalar (dilaton) field Φ
[Klosch, Strobl (97)]

S1+1 =

ˆ
d2x
√
−|g|

{
Y(Φ)R +

1
2

gab∂aΦ∂bΦ + V(Φ)

}
(6)

Y(Φ) the non-minimal coupling term, V(Φ) the dilaton potential, the
dilaton kinetic term can be removed via a conformal transformation.

Both CGHS and 3+1 sph. sym. can be cast in this form and look similar

SCGHS =

ˆ
d2x
√
−|g|

(
1
8

Φ2R +
1
2

gab∂aΦ∂bΦ− 1
8

Φ2Λ

)
(7)

Sspher =

ˆ
d2x
√
−|g|

(
1
4

Φ2R +
1
2

gab∂aΦ∂bΦ +
1
2

)
(8)
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A subtle difference

Although CGHS and 3+1 sph. sym. can be cast in this form and look
similar

SCGHS =

ˆ
d2x
√
−|g|

(
1
8

Φ2R +
1
2

gab∂aΦ∂bΦ− 1
8

Φ2Λ

)
(9)

Sspher =

ˆ
d2x
√
−|g|

(
1
4

Φ2R +
1
2

gab∂aΦ∂bΦ +
1
2

)
(10)

but
I Φ in 3+1 sph. sym. is just a part of the metric in

ds2 = gµνdxµdxν + Φ2(dθ2 + sin2(θ)dφ2).
I Φ in CGHS is truly a distinct degree of freedom not present in the CGHS

metric. It is truly a scalar field non-minimally coupled to gravity. Although, as
we see later, it affects the geometry.

Due to this difference, one should take extra care, e.g. in representation of
operators on the Hilbert space and interpreting the results.
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The classical road map

We saw that the CGHS and 3+1 have a common generic form, so one
wonders if the aforementioned singularity resolution method can be
extended to the CGHS.

One of the reasons that the this method of singularity resolution works for
the 3+1 spherically symmetric: it is written in Bojowald-Swiderski
variables [Bojowald, Swiderski (2006)].

Let’s try to write the CGHS in the same variables, and see if the resolution
method can be applied here too. So, the classical plan is

I as always, write the generic (or both specific) model(s) in first order tetrad
formalism, add the torsion free condition with a Lagrange multiplier X I, ADM
decompose, then

I find out how to get to the Bojowald-Swiderski variables for the 3+1 by a
canonical transformation, and then

I use the general guidance from this procedure to find the same variables for
the CGHS.
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Bojowald-Swiderski Variables for the
CGHS (and 3+1 spherically symmetric)
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CGHS vs. 3+1 sph. sym.: conformal transformation

To get to the 3+1 variables: use a conformal transformation to remove
the dilaton kinetic term.

For the similar variables in CGHS: we choose not to do a conformal
transformation [Gambini, Pullin, SR (2009)]⇒ variables are
direct-geometric⇒ no need to take extra care at the end; direct
interpretation of variables. At the end this is just a choice; not very
important.
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CGHS vs. 3+1 sph. sym.: canonical variables I.
3+1 sph. sym. (I = {0,1}):

Variables:
{∗XI, ω1

}
Momenta:

PI =
∂L
∂∗ẊI

= 2
√

qnI, (11)

Pω =
∂L
∂ω̇1

= 2 Y(Φ)︸ ︷︷ ︸
1
4 Φ2

. (12)

CGHS (I = {0,1}):
Variables:

{∗XI, ω1,Φ
}

Momenta:

PI =
∂L
∂∗ẊI

= 2
√

qnI, (13)

Pω =
∂L
∂ω̇1

= 2 Y(Φ)︸ ︷︷ ︸
1
8 Φ2

, (14)

PΦ =
∂L
∂Φ̇

=

√
q

N

(
N1Φ′ − Φ̇

)
.

(15)

No conformal transformation in CGHS⇒ presence of dilaton kinetic term
(and thus Φ̇) in the Lagrangian⇒ (14) is a new primary constraint

µ = Pω − 2 Y(Φ)︸ ︷︷ ︸
1
8 Φ2

≈ 0. (16)
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CGHS vs. 3+1 sph. sym.: canonical transformations

3+1 sph. sym.: new variables are
{(Kx, Ex), (Kϕ, Eϕ), (Qη, η)}

Using the det. of spatial metric q:

‖P‖2 = P2
0 − P2

1 = 4q =
4 (Eϕ)

2

(Ex)
1
2

(17)
and thus

Pω =Ex, (18)

‖P‖ =
2Eϕ

(Ex)
1
4
, (19)

P0 =
2Eϕ

(Ex)
1
4

cosh(η), (20)

P1 =
2Eϕ

(Ex)
1
4

sinh(η) (21)

CGHS: new variables are
{(Kx, Ex), (Kϕ, Eϕ), (Qη, η), (Φ, PΦ)}

Using the det. of spatial metric q:

‖P‖2 = P2
0 − P2

1 = 4q = 4 (Eϕ)
2

(22)
and thus

Pω =Ex, (23)

‖P‖ =2Eϕ, (24)

P0 =2 cosh(η)Eϕ, (25)

P1 =2 sinh(η)Eϕ, (26)
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CGHS vs. 3+1 sph. sym.: canonical variables II.

After these transformations we have the following pairs

3+1 sph. sym. (after fixing
Gauss):

Canonical pairs:

{(Kx, Ex), (Kϕ, Eϕ)} (27)

Total H

H = NH+ N1D (28)

CGHS (after fixing Gauss):

Canonical pairs:

{(Kx, Ex), (Kϕ, Eϕ), (Φ, PΦ)}
(29)

Total H

H = NH+ N1D + Bµ (30)

Due to this gauge fixing:

Kx = ω1 (31)
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CGHS without conformal trans.: a 2nd class system I.
The preservation of µ leads to a new constraint α

µ̇ ≈ 0⇒ α = Kϕ +
1
2

PΦΦ

Eϕ
≈ 0 (32)

These two are second class {µ, α} 6≈ 0⇒ solve them

µ = 0⇒ Φ = 2
√

Ex, (33)

α = 0⇒ PΦ = −KϕEϕ√
Ex

. (34)

+ introduce the Dirac brackets:

{Kx(x), Ex(y)}D = {Kϕ(x), Eϕ(y)}D = {f(x), Pf (y)}D = δ(x − y), (35)

{Kx(x),Kϕ(y)}D =
Kϕ
Ex δ(x − y), (36)

{Kx, Eϕ}D = −Eϕ

Ex δ(x − y), (37)

{Ex,Kϕ}D = {Ex, Eϕ}D = {f , any}D = {Pf , any}D = 0, (38)
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CGHS without conformal trans.: a 2nd class system II.

The total Hamiltonian, after the second class procedure, is now

H = NH+ N1D (39)

The canonical pairs present in the Hamiltonian are

{(Kx, Ex), (Kϕ, Eϕ)} (40)

Also with a simple redefinition

Ux = Kx +
EϕKϕ

Ex (41)

the Dirac brackets can be cast into the “standard” form:

{Ux(x), Ex(y)}D = {Kϕ(x), Eϕ(y)}D = {f(x), Pf (y)}D = δ(x − y) (42)

with the rest of them being zero.
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Lie algebra of constraints
A rescaling of shift

N
1

= N1 +
NKϕ
Ex′ (43)

followed by a rescaling of lapse

N = N
EϕEx

Ex′ (44)

leads to a total derivative H:

H = N

[
∂

∂x

(
1
2

Ex′2

Eϕ2Ex − 2Exλ2 − 1
2

K2
ϕ

Ex

)]
︸ ︷︷ ︸

H

+N
1 [−UxEx′ + f ′Pf + EϕK′ϕ

]︸ ︷︷ ︸
D

(45)
This means (it is generic [Corichi and SR (in prep.)])

{H(N),H(M)}D = 0 (46)

Now we have a Lie algebra (symbolically)

{D,D}D = D, {D,H}D = H, {H,H}D = 0 (47)

and the Dirac quantization can be pursued.
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Preparing H for quantization
Integrating the Hamiltonian constraint by parts, renaming N

′ → N and
rescaling by N → 2NEϕ (Ex)

2 we will get an H suitable for representation:

H(N) =

ˆ
dx NEx

[
4 (Ex)

2 Eϕλ2 + K2
ϕEϕ − 4GMEϕEx − (Ex′)

2

Eϕ

]
(48)

The term GM appears since the Hamiltonian constraint should be
functionally differentiable, and hence we need a boundary term
(corresponding to time translation symmetry) at infinity added to the
action.
Also note that due to our rescaling of N and N1 =⇒ no Ux present in H(N)
=⇒ no associated “nonlocal effect” present (at least) in H(N) upon
quantization.
To see the difference between CGHS and 3+1 sph. sym., compare the
above H(N) with the one for the 3+1 sph. sym.

H(N) =

ˆ
dx NEx

[
Eϕ + K2

ϕEϕ − 2GMEϕ√
Ex
− (Ex′)

2

4Eϕ

]
(49)
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Quantization
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Kinematical Hilbert space I.

The full kinematical Hilbert space is

Hkin = H M
kin ⊗

(⊕
g

H g
kin-spin

)
, (50)

H M
kin corresponds to the global degree of freedom M is HM

kin = L2(R, dM),

H g
kin-spin is the space of function

〈Ux,Kϕ|g,~k, ~µ〉 =
∏
ej∈g

exp

(
i
2

kj

ˆ
ej

dx Ux(x)

)∏
vj∈g

exp
(

i
2
µjKϕ(vj)

)
(51)

for a graph g, with kj ∈ Z the edge color, and µj ∈ R the vertex color (as
usual point “holonomies” are almost-periodic function⇒ nonseparable
Hilbert space.)

Hilbert space of the point “holonomies” is L2(RBohr, dµBohr); of the normal
“holonomies” is space of square summable functions `2.
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Kinematical Hilbert space II.

The full kinematical Hilbert space is then

Hkin = H M
kin⊗

(⊕
g

H g
kin-spin

)
= L2(R, dM)⊗

(⊕
g

[
`2 ⊗ L2(RBohr, dµHaar)

])
.

(52)

The set {|g,~k, ~µ,M〉} is the basis set of kinematical Hilbert space of a
graph, H g

kin .

Business as usual for the inner product:
I a spin network defined on g can be regarded as a spin network with support

on a larger graph ḡ ⊃ g by assigning trivial labels to the edges and vertices
which are not in g.

I For any two graphs g and g′, take ḡ = g ∪ g′. Then the inner product is

〈g,~k, ~µ,M|g′,~k′, ~µ′,M′〉 = δ(M −M′)
∏
edges

δkj,k′j

∏
vertices

δµj,µ
′
j

(53)

Also we are taking the following polymerization Kϕ → sin(ρKϕ)/ρ.
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Representing the operators I.
With the Hamiltonian constraint

H(N) =

ˆ
dx NEx

[
4 (Ex)

2 Eϕλ2 + K2
ϕEϕ − 4GMEϕEx − (Ex′)

2

Eϕ

]
(54)

we need to represent

Ex, Eϕ, Ex′,M,
1

Eϕ
,K2

ϕEϕ. (55)
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Representing the operators I.
With the Hamiltonian constraint

H(N) =

ˆ
dx NEx

[
4 (Ex)

2 Eϕλ2 + K2
ϕEϕ − 4GMEϕEx − (Ex′)

2

Eϕ

]
(54)

we need to represent

Ex, Eϕ, Ex′,M,
1

Eϕ
,K2

ϕEϕ. (55)

Due to the canonical relations, we have the following representation

Êϕ|g,~k, ~µ,M〉 =`2
Pl

∑
vj∈g

δ(x − xj)µj|g,~k, ~µ,M〉 (56)

Êx|g,~k, ~µ,M〉 =`2
Plkj|g,~k, ~µ,M〉 (57)

Classically in CGHS, Eϕ correspond to the only component of the spatial
metric, while Ex correspond to the dilaton field (different from 3+1 sph.
sym.). Dilaton affecting geometry (also spectrum of area
∝ 1/Y(Φ) ∝ 1/Ex, [Cianfrani, Montani (2009)]).
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Representing the operators I.
With the Hamiltonian constraint

H(N) =

ˆ
dx NEx

[
4 (Ex)

2 Eϕλ2 + K2
ϕEϕ − 4GMEϕEx − (Ex′)

2

Eϕ

]
(54)

we need to represent

Ex, Eϕ, Ex′,M,
1

Eϕ
,K2

ϕEϕ. (55)

Also by means of spectral decomposition of Êx,

Êx
′
|g,~k, ~µ,M〉 = `2

Pl (kj − kj−1) |g,~k, ~µ,M〉. (56)

And
M̂|g,~k, ~µ,M〉 = M|g,~k, ~µ,M〉. (57)

M̂ corresponds to the Dirac observable on the boundary associated to the
mass of the black hole.
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Representing the operators I.
With the Hamiltonian constraint

H(N) =

ˆ
dx NEx

[
4 (Ex)

2 Eϕλ2 + K2
ϕEϕ − 4GMEϕEx − (Ex′)

2

Eϕ

]
(54)

we need to represent

Ex, Eϕ, Ex′,M,
1

Eϕ
,K2

ϕEϕ. (55)

For 1/Eϕ we can use the Thiemann’s trick

sgn(Eϕ)√
|Eϕ|

=
2
G
{Kϕ,

√
Eϕ}D (56)

aŝ[ 1
Eϕ

]
|g,~k, ~µ,M〉 =

∑
vj∈g

δ(x−x(vj))
sgn(µj)

`2
Plρ

2
(|µj+ρ|1/2−|µj−ρ|1/2)2|g,~k, ~µ,M〉.

(57)
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Representing the operators II.
Finally we represent K2

ϕEϕ by Θ̂(x) as [Martin-Benito, Mena Marugan,
Olmedo, Pawlowski]

Θ̂(x)|g,~k, ~µ,M〉 =
∑
vj∈g

δ(x − x(vj))Ω̂
2
ϕ(vj)|g,~k, ~µ,M〉, (58)

where the non-diagonal operator Ω̂ϕ(vj) is defined as

Ω̂ϕ(vj) =
1

4iρ
|Êϕ|1/4[ ̂sgn(Eϕ)

(
N̂ϕ2ρ−N̂ϕ−2ρ

)
+
(
N̂ϕ2ρ−N̂ϕ−2ρ

) ̂sgn(Eϕ)
]
|Êϕ|1/4

∣∣∣
vj

.

(59)
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Representing the operators II.
Finally we represent K2

ϕEϕ by Θ̂(x) as [Martin-Benito, Mena Marugan,
Olmedo, Pawlowski]

Θ̂(x)|g,~k, ~µ,M〉 =
∑
vj∈g

δ(x − x(vj))Ω̂
2
ϕ(vj)|g,~k, ~µ,M〉, (58)

where the non-diagonal operator Ω̂ϕ(vj) is defined as

Ω̂ϕ(vj) =
1

4iρ
|Êϕ|1/4[ ̂sgn(Eϕ)

(
N̂ϕ2ρ−N̂ϕ−2ρ

)
+
(
N̂ϕ2ρ−N̂ϕ−2ρ

) ̂sgn(Eϕ)
]
|Êϕ|1/4

∣∣∣
vj

.

(59)

By means of the spectral decomposition of Êϕ we can use the following in
above

|Êϕ|1/4(vj)|g,~k, ~µ,M〉 = `
1/2
Pl |µj|1/4|g,~k, ~µ,M〉, (60)

̂sgn
(
Eϕ(vj)

)
|g,~k, ~µ,M〉 = sgn(µj)|g,~k, ~µ,M〉, (61)
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Representing the operators II.
Finally we represent K2

ϕEϕ by Θ̂(x) as [Martin-Benito, Mena Marugan,
Olmedo, Pawlowski]

Θ̂(x)|g,~k, ~µ,M〉 =
∑
vj∈g

δ(x − x(vj))Ω̂
2
ϕ(vj)|g,~k, ~µ,M〉, (58)

where the non-diagonal operator Ω̂ϕ(vj) is defined as

Ω̂ϕ(vj) =
1

4iρ
|Êϕ|1/4[ ̂sgn(Eϕ)

(
N̂ϕ2ρ−N̂ϕ−2ρ

)
+
(
N̂ϕ2ρ−N̂ϕ−2ρ

) ̂sgn(Eϕ)
]
|Êϕ|1/4

∣∣∣
vj

.

(59)
The operator N̂ϕ±nρ(x) associated to the holonomy is

N̂ϕ±nρ(x)|g,~k, ~µ,M〉 = |g,~k, ~µ′±nρ,M〉, n ∈ N (60)

where the new vector ~µ′±nρ either has just the same components as ~µ up to
µj → µj ± nρ if x coincides with a vertex of the graph located at x(vj), or it
will be ~µ with a new component {. . . , µj,±nρ, µj+1, . . .} with
x(vj) < x < x(vj+1).
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How to recognize a singularity (in a quantum regime)?

To remove the singularity, first we should find it! (obviously!)

Classically a way of finding a singularity is to have all Riemann invariants
blow up at some point/region.

I A naive guess: at the quantum level, construct an operator corresponding to
Riemann invariant(s) and check the spectra? well known problems...

Hint: a (homogeneous) cosmological singularity can be associated to the
vanishing of the spectrum of the volume in all the vertices (volume of the
whole universe goes to zero).

I (Obviously) a black hole singularity can not be pictured as above. It is
localized object in a region of spacetime. Exact above criteria is not useful in
detecting black hole singularities.

Can we find a way around? e.g. a relation between vanishing of the
(spectrum) of the volume (operator) in a region/point and the blowing up
of the Riemann invariant there? In 2D, yes!
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The idea behind this singularity resolution method

The principal idea is
1 to show that having zero volume spectrum for some points/regions =⇒

existence of singularity in those points/regions, and
2 to show that states with singularity (singular states), can be “decoupled”

from physical Hilbert space: starting from a nonsingular state, the evolution
generated by Hamiltonian constraint never lands you on a singular state.
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The relation between zero volume and singularity in
2D, I.

In 2D, the spatial metric qij has only one component thus q11 = det(q) = q.

Thus a generic ADM decomposed 2D metric can be written as

gµν =

(
−N2 +

(
N1
)2 q11 −N1q11

−N1q11 q11

)
=

(
−N2 +

(
N1
)2 q −N1q

−N1q q

)
.

(61)

Classically the volume of region R in spatial hypersurface Σ is

V(R) =

ˆ
R

dx
√

q. (62)

Thus a point/region with vanishing volume in 2D corresponds to q = 0
and thus the metric becomes

gµν =

(
−N2 0

0 0

)
. (63)

All the Riemann invariants of the above metric blow up: singularity.
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The relation between zero volume and singularity in
2D, II.

Note: this only happens generically in 2D, and not 4D. In general in 4D,
vanishing of the volume may not correspond to a singularity, it only
means we have a degenerate spatial metric at that point/region.
Assumption: this relation (zero volume =⇒ singularity) can be carried on
to quantum theory as well.

I States with vanishing volume spectrum at some vertices are the states
containing singularity at those vertices.

I In the CGHS, the classical volume of a region R is

V(R) =

ˆ
R

dx Eϕ, (64)

and thus the quantum volume operator acts as

V̂|g,~k, ~µ,M〉 ∝
∑
vj∈g

µj|g,~k, ~µ,M〉, (65)

I Thus states with some (not all) µj = 0 are the singular states
(non-cosmological singularities).

We have argued for the relation between zero volume and singularity.
Now let’s show the resolution of the singularity...
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Action of the Hamiltonian constraint

Acting the Hamiltonian constraint on |g,~k, ~µ,M〉 yields

Ĥ(N)|g,~k, ~µ,M〉 =
∑
vj∈g

N(xj)(`
4
Plkj)

[
f0(µj, kj,M)|g,~k, ~µ,M〉

− f+(µj)|g,~k, ~µ+4ρj ,M〉

− f−(µj)|g,~k, ~µ−4ρj ,M〉
]

(66)

It can be seen that the RHS above vanishes for kj = 0.

Also the functions f± and f0 are such that the RHS of above is vanishing
for µj = 0.

Above equation slightly different in 3+1 sph. sym. (details of the forms of
the f ’s for example) but the above two point are true there too.
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Singularity resolution I.

Remember any state with µj = 0 at some vertices has singularity at those
vertices.

Let’s call {|g,0〉} the set of states with µj = 0 and/or kj = 0.

These states have finite norm and can be decoupled from the physical
Hilbert space. Then we are left only with the orthogonal complement of
{|g,0〉} for the physical Hilbert space.

This is not good enough for the non-cosmological singularities. We need to
decouple states with some of the µj’s being zero (“localized” singularities).
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Singularity resolution II.
The action of the Ĥ(N) has some other interesting properties:

I It does not create vertices: the number of vertices on a given graph g is
preserved under the action of this constraint.

I It only relates those states with µj belonging to semilattices of steps 4ρ.
I It yields the following difference equation one for each vertex

−f+(µj − 4ρ)φj(kj, kj−1, µj − 4ρ,M)− f−(µj + 4ρ)φj(kj, kj−1, µj + 4ρ,M)

+f0(kj, kj−1, µj,M)φj(kj, kj−1, µj,M) = 0
(67)

where states have been written as

〈Ψg| =
ˆ ∞

0
dM

∑
~k

∑
~µ

〈g,~k, ~µ,M|ψ(M)χ(~k)

V∏
j=1

φj(kj, kj−1, µj,M) (68)

with ψ(M) being the analog of Kuchař mass function and χ(~k) an arbitrary
function of finite norm.

Thus (especially looking at (67)), starting from a state with none of its µj’s
being zero (i.e. a state containing no singularity), the evolution never
lands you in a state with any of µj’s being zero: dynamically decoupling
any singular state from evolution (i.e. from physical Hilbert space).
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Singularity resolution III.

Expecting that (semi-)classically: starting from a Cauchy hypersurface
with any lapse and shift (remember the generic 2D result), one never hits a
singularity at all.

By the way: a note on the firewall proposal!
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Some other properties of the action of Ĥ(N)

(Also see Javier’s talk)

The color of edges {kj} in preserved: leaving the set of integers {kj} of
each graph g invariant under successive action of Ĥ(N).

The functions f±(µj) vanish in the intervals [0,∓2ρ] respectively⇒
different orientations of the labels µj are decoupled.

The solution states belong to the subspaces with support on the
semilattices µj = εj ± 4njρ, with n ∈ N and εj ∈ (0,4ρ]:

I The constraint only relates states belonging to separable subspaces of the
kinematical one.
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Getting to physical space and all that

Business as usual: to get to the physical states that respect both of the
symmetries of the model, group average over Hamiltonian and
diffeomorphism constraint and get the Hphys using the induced inner
product by the averaging process.
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Remarks on new observables
These following strictly quantum observables in the bulk were first noticed in
[Gambini and Pullin (2013)] for the 3+1 case. We get the same observables
for the CGHS:

Under the action of Ĥ(N), the number of the vertices is preserved:
I An observable N̂v corresponding to the fixed number Nv of vertices,

N̂vΨphys = NvΨphys (69)

Due to the symmetry group, the order of the position of the vertices of the
diffeomorphism invariant states is preserved: they can not pass each other.

I An observable Ô associated to the order of the vertices in the graph such that

Ô(z)Ψphys = `2
PlkInt(zNv)Ψphys, z ∈ [0, 1] (70)

with Int(zNv) being the integer part of zNv.

Particularly the observable in (70) arises due to the existence of only one
(radial) direction in both models. One can expect that such a quantum
observable exists in all genuinely 2D diffeomorphism invariant models (or
all symmetry reduced models) where there is only one radial direction.
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Final remarks and some future directions

Many things still need to be understood better...

An obvious way to go after this analysis is try to think about the Hawking
radiation [Corichi and SR (in prep.)].

One can try to apply the same method to the CGHS with matter (also see
the previous item). This will be more complicated for several reasons,
among them the form of the Hamiltonian constraint that can not be
integrated by part when matter is present. As a result its representation
and ordering will be more involved. But nevertheless, it looks there is a
way [Corichi and SR (in prep.)].

One can also (perhaps for more insight?) write the generic system in Boj.
Swid. variables [Corichi and SR (2014)] and find out what happens there
in quantum theory, i.e. is this resolution a generic result for some or all of
the 2D dilatonic models? and if some, then what is the criteria? [Corichi
and SR (in prep.)]
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