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Introduction: the grand plan
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Motivation for 2D dilatonic models

Generic action of 2D dilatonic models

S = −
ˆ
M

d2x
√
−g [ΦR− U(Φ)∇aΦ∇aΦ− 2V(Φ)]

Why dilatonic models?
- Alternatives to dark matter/Λ
- Cosmology (inflaton)
- Equivalent to some symmetry reduced models (3+1 sph. symmet.)
- Chameleon theories
- Interesting BH properties
- Some (like CGHS) classically completely solvable
- Extensive work in string and QFT in CST community. May able to do some
comparisons.
- ...
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Some important submodels

Model U(Φ) V(Φ)
Schwarzschild −(2Φ)−1 −(2G4)−1

CGHS 0 −λ2
Jackiw-Teitelboim 0 −ΛΦ

Witten BH Φ−1 −λ
2

2 Φ
Liouville Gravity a beαΦ

Rindler Ground State −aΦ−1 − 1
2 BΦa

· · · · · · · · ·
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Grand scheme of the dilatonic project

2D dilatonic models

Generic Canonical 
formulation in Polar-type 

variables

CGHS:
Dirac quantization: 

singularity resolution in LQG

CGHS:
Deparametrization, true H,

classical reduced phase space 
formulation

Thermodynamics: 
polymer path integral

CGHS:
Hawking radiation in LQG
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The problem:
Access to the semiclassical

apprximation
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2D dilatonic models (black holes)

The main class: generic 2D dilatonic

S = −
ˆ
M

d2x
√
−g [ΦR− U(Φ)∇aΦ∇aΦ− 2V(Φ)]− 1

2

ˆ
∂M

dx
√

qΦK︸ ︷︷ ︸
GHY

Gibbons-Hawking-York (GHY) boundary term: removing necessity of
introducing Neumann boundary conditions δ (∂agbc) = 0.
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Thermodynamics & access to semiclassical approx.

Study thermodynamics using Euclidean path integral

Z =

ˆ
DgDΦ exp

(
−1
~

SE[g,Φ]

)
Path integral ≈ Partition function in canonical ensemble.

Semiclassical (i.e. saddle point) approximation: dominated by δS = 0.
- Physics: most contributions coming from classical path
- Math: given

S[gcl + δg,Φcl + δΦ] = S[gcl,Φcl] + δS[gcl,Φcl; δg, δΦ] +
1
2
δ2S[gcl,Φcl; δg, δΦ] + . . .

exp
(
− 1

~S[g,Φ]
)

gets most important contribution from the minimum of S.
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Thermodynamics & access to semiclassical approx.

If
- S is finite
- δS = 0
- δ2S > 0 (minimum)

Z ≈ exp
(
−1
~

S[gcl,Φcl]

)ˆ
DgDΦ exp

(
− 1

2~
δ2S[gcl,Φcl; δg, δΦ]

)
gives the semiclassical approximation

All looks cool except ... it is not!
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Z ≈ exp
(
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)ˆ
DgDΦ exp

(
− 1

2~
δ2S[gcl,Φcl; δg, δΦ]

)
gives the semiclassical approximation
All looks cool except ... it is not!

1- δS 6= 0 for all field variations that preserve the path integral boundary
conditions: collapse of saddle point approximation

δS
∣∣∣∣
on-shell

∼
ˆ
∂M

dx
√

q
[
Ξabδqab + ΥΦδΦ

]
even though δqab → 0 and δΦ→ 0 at ∂M, the coefficients Ξab and/or ΥΦ

diverge so rapidly =⇒δS 6→ 0. (details later slides)
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Thermodynamics & access to semiclassical approx.

If
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(
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3- Gaussian integral diverges (not always)
ˆ

DgDΦ exp
(
− 1

2~
δ2S[gcl,Φcl; δg, δΦ]

)
→∞
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Common solutions vs. our proposed solutions and
strategy

Common solutions:
1- Ad hoc “background subtraction”: resolves S→∞, not δS 6= 0; does not
correctly reproduce some thermodynamics (consistency with the first law)

2- Add a Hamilton-Jacobi counter-term: resolves both; correct thermodynamics

Our speculation: polymerization may cure things. Even if not, any positive
effect?

Two cases may happen by polymerization:
1- It eliminates the need to add a boundary counter-term.
2- It does not eliminate the counter-term but modifies it.
In both cases what corrections to thermodynamics of the BH.

Strategy: analyze a simple toy model first.
Several analog models with the same problems (half binding potential).
One very simple one: particle in an inverse square potential.
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A bit more details of the problem
in dilatonic black holes
and common solutions
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Divergence of Son-shell of the black hole - 1
Solutions to EOM posses at least one Killing with orbits being curves of
Φ =const.

Choose a gauge (diagonal metric). Solutions can be written as (can also be
done gauge invariant)

ds2 = ξ(r)dτ2 +
1
ξ(r)

dr2, Φ = Φ(r)

where

∂rΦ = e−Q(Φ) ξ(r) = w(Φ)eQ(Φ)

(
1− 2M

w(Φ)

)
with

Q(Φ) =

ˆ Φ

dΦ̃U(Φ̃) w(Φ) =

ˆ Φ

dΦ̃V(Φ̃)eQ(Φ̃)

Killing ∂τ with norm
√
ξ(r). If ξ(r) = 0 =⇒ Killing horizon (BH). Then

wh = 2M.
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Divergence of Son-shell of the black hole - 2

Boundary conditions w.r.t. Φ

Φh ≤ Φ <∞ =⇒ wh︸︷︷︸
2M

≤ w < w∞︸︷︷︸
∞

thus the on shell action

S
∣∣∣∣
cl

= −β (w∞ − wh)− 2Φh

blows up (see more clear later in toy model).

Background subtraction: take out w∞ =⇒ wrong thermodynamics.
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Problem with first variation of the action - 1

The statement that δS 6= 0 for all variations of fields that preserve boundary
conditions, may seem odd...

Isn’t Gibbons- Hawking-York (GHY) term there to make variational principle
well-defined?

GHY only ensures that fields only need Dirichlet conditions at ∂M.
It does not guarantee that the boundary term in δS vanishes for arbitrary δγab
and δΦ that preserve these boundary conditions.

Saeed Rastgoo (UAM-I, Mexico City) Polymerization & saddle point approximation issues Third EFI, Tux, Feb. 20, 2015 15 / 27



Problem with first variation of the action - 1

The statement that δS 6= 0 for all variations of fields that preserve boundary
conditions, may seem odd...

Isn’t Gibbons- Hawking-York (GHY) term there to make variational principle
well-defined?

GHY only ensures that fields only need Dirichlet conditions at ∂M.
It does not guarantee that the boundary term in δS vanishes for arbitrary δγab
and δΦ that preserve these boundary conditions.

Saeed Rastgoo (UAM-I, Mexico City) Polymerization & saddle point approximation issues Third EFI, Tux, Feb. 20, 2015 15 / 27



Problem with first variation of the action - 1

The statement that δS 6= 0 for all variations of fields that preserve boundary
conditions, may seem odd...

Isn’t Gibbons- Hawking-York (GHY) term there to make variational principle
well-defined?

GHY only ensures that fields only need Dirichlet conditions at ∂M.
It does not guarantee that the boundary term in δS vanishes for arbitrary δγab
and δΦ that preserve these boundary conditions.

Saeed Rastgoo (UAM-I, Mexico City) Polymerization & saddle point approximation issues Third EFI, Tux, Feb. 20, 2015 15 / 27



Problem with first variation of the action - 2
δS on previous solutions

δS =

ˆ
dτ
[
−1

2
∂rΦδξ +

(
U(Φ)ξ(Φ)∂rΦ−

1
2
∂rξ

)
δΦ

]

Take the first term. By EOM
∂rΦ = e−Q(Φ).

If on ∂M we have ξ → const., we may assume δξ → 0.
But if ξΦ→∞ →∞ on ∂M, we cannot assume δξ → 0. Then we should appeal
to general solutions and find the behavior of δξ. It turns out

δξ = eQ(Φ)δM

The first term on δS becomes ˆ
dτδM 6= 0

i.e. solutions do not extremize the action for generic variations δξ that
preserve the boundary conditions on ξ.
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i.e. solutions do not extremize the action for generic variations δξ that
preserve the boundary conditions on ξ.
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Counter-term method

The common solution: add a boundary counter term that is the solution to the
Hamilton-Jacobi equation of the on-shell action

SCT = −
ˆ
∂M

dτ
√

q
(√

e−Q(Φ) (w(Φ) + c)
)
.

The final action becomes
Sf = S + SCT

where S|cl <∞ and δS = 0.

Essentially does something similar to GHY term: removes the need to consider
boundary conditions when the fields Θ→∞ on ∂M, i.e δΘ 6= 0.
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Counter-term effect on thermodynamics
Thermodynamics is affected: Helmholtz free energy

F = T(Φ)Sf

with T(Φ) the Tolman factor: proper local temperature related to β−1

(Hawking) temperature at infinity by a redshift factor

T(Φ) =
1√
ξ(Φ)

β−1

Entropy:

S = − ∂F
∂T(Φ)

∣∣∣∣
Φc

=
A

4Geff
, Geff =

G2

Φh

Φc value of the dilaton field at
the location of the cavity wall in contact with a thermal reservoir. Φh at horizon.

The same way: chemical potential, internal energy, specific heat, enthalpy, etc.

As mentioned: does polymerization change any of these?
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The toy model:
Problems and lessons
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Analog problems in the toy model

A (class of) surprisingly simple model has the same problems: for

S =

ˆ
dt
(

q̇2

2
− 1

q2

)
the on-shell action becomes

S[qcl] =
1
2

qclq̇cl

∣∣∣∣∞
0

+ finite

Due to the form of potential, q→∞ and q̇→ constant.
Similar to w→∞ to the form of dilaton potential, leading to S→∞ in BH case.

The variation

δS =
∂L
∂q̇
δq
∣∣∣∣∞
0

+ EOM 6= 0

since qtf→∞ →∞.
In BH: coefficient falling faster than field variation.
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Choice 1: bounded momentum, discrete q

With (q,Vλ):

q|µ〉 = µ|µ〉, Vλ|µ〉 = |µ− λ〉

H =
2− Vλ − V−λ

2λ2 +
1
q2

Effective H becomes

H =
sin2 (λp)

λ2 +

(
V−λ
iλ

[
√

q,Vλ] + [
√

q,Vλ]
V−λ
iλ

)4

where we used Thiemann’s regularization and a symmetrization

1
√

q
=

2
iλ

V−λ {
√

q,Vλ} .
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Choice 1: bounded momentum, discrete q
This

H =
sin2 (λp)

λ2 +

(
V−λ
iλ

[
√

q,Vλ] + [
√

q,Vλ]
V−λ
iλ

)4

doesn’t seem to solve

S[qcl] =
1
2

qclq̇cl

∣∣∣∣∞
0

+ · · · → ∞

since
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For the same reason,
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∂q̇
δq
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+ EOM 6= 0

Apparently only advantage: V can be represented using Thiemann’s trick.
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Choice 2: bounded q, discrete momentum

With (Uµ, p):

Uµ|λ〉 = λ|λ− µ〉, p|λ〉 = λ|λ〉

H =
p2

2
+ V(Uµ)

Likely to bound potential and thus avoid the on-shell action divergence.
Also since if classical q brought to finite values, δqt→∞ → 0.
May solve both problems: no need for a counter-term.

However, hard to see how V = 1
q2 can be represented in this case...
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Choice 2: bounded q, discrete momentum

Thiemann’s trick with “wrong polarization” of variables: how

1
q2

?
= {f(Uµ), g(p)}

Classical choices may be available e.g.

1√
iµ

{√
ln (Uµ), p

}
=

1
√

q

but seem unsuitable for representation.

Semi-good news: dilaton potential in some models is linear.
Bad news: not all the saddle point problems mentioned are due to dilaton
potential.
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A heuristic model
Based on the insight from previous tries: A heuristic model bounding potential

Heff =
p2

2
+

µ2

sin2 (µq)

Since the potential (and thus q) is bounded, δqt→∞ → 0. Also the boundary

term of the on-shell action 1
2 qclq̇cl

∣∣∣∣∞
0

is finite.
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Some lessons for the BH from the toy model
Most important problem with BH seems to be w

w(Φ) =

ˆ Φ

dΦ̃V(Φ̃)eQ(Φ̃)

Q(Φ) =

ˆ Φ

dΦ̃U(Φ̃)

∂rΦ =e−Q(Φ)

What matters: dilaton potential, fall-off of dilaton and if Φ is bunded (similar
to potential in toy model).

May have dilemma in choice of polymerization:
- Φ related to entropy and area etc. Bounding Φ or making it discrete seem to
have important differences.
- A physically reasonable choice may not be easy to represent.

Well-posedness of (or access to) semiclassical approximation, related to choice
of polymerization which is related to thermodynamics (not surprisingly)?
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