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Spinfoam cosmology P

Dipole modal

What is the cosmological regime of the o
EPRL/FK/KKL spinfoam model?

Ze = /dhvf [T [T Avthor) g =TT Pos(h)
f v

vCf

Vertex amplitude in holomorphic representation®
A (H) = / aG, T KelHi, Gun G
SL(2,C) ;

Kernel
K(H,G)= Y (2j+1)e U+ (D) (H)Y DO (G)Y,)
25€Ng

@E. Bianchi, E. Magliaro, and C. Perini, Spinfoams in the holomorphic representation, Phys. Rev. D, vol. 82, Dec

2010
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@ C. Rovelli, Discretizing parametrized systems: the magic of Ditt-invariance, arXiv:1107.2310, (2011)
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@ one spinfoam history
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Spinfoam cosmology oA

Dipole model

The Dipole model “

Heat kernel/complexifier coherent states

Yh(h)y = > (25 + 1)e 210+ Tuy (gh ™).
2j€Ny

g peaks the state on a point in classical phase
space (A, E).

Question: Does this 2-complex suffice to describe FLRW with & = 17

@ E, Bianchi, C. Rovelli, and F. Vidotto, Towards spinfoam cosmology, Phys. Rev. D, vol. 82, Oct 2010
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Spinfoam cosmology Approximations

Dipole model

The Dipole model

Amplitude for this 2-complex gives (for one o)

W‘\I/ /dhl /dthIk H J(hf) H Av(hvl)\I’Hl(hl>

fCo vCo

= Av(Hl)

4
= /dGldG4 H Kt(Hla GS(I)G&;))
=1
8

x [[ K:(Hi, Goon Gig)
=5

= Wout(H(z)) W (H; (%))

Regularization for Lorentzian case: cancel two integrations! (4-simplex
and octogon graph just one.)
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Spinfoam cosmology

Approximations
Dipole model

W(2) =

4
/dGldGQH S dj, e $H 0D T(DU) (1) Y DG (Gr G )Y)
1=125,€Ng

For large spin: (suppression due to Im(z))

DUD(Hy) = DU (Rg, )P (¢ % )DUD(Ry,) e 0
~ e~ P pUD (Ry YDUD(Ry,)

This leads to
4 SPA of norm square of
W(Z) _ Z d I %]l (jl"!‘l)_’i/zljl E - Livine-Speziale coherent
g 3 intertwiner

.

2j1€Ng
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Approximations
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W(2) =

4
/dGldGQH S dj, e $H 0D T(DU) (1) Y DG (Gr G )Y)
1=125,€Ng

For large spin: (suppression due to Im(z))

DUD(Hy) = DU (Rg, )P (¢ % )DUD(Ry,) e 0
~ e~ P pUD (Ry YDUD(Ry,)

This leads to
4 SPA of norm square of
— _tsi(s i N Livine-Speziale coherent
W(Z) = E djl e 2@t ) =iz -
. 73 intertwiner
271€Np ‘

Claim: This way of applying the large spin approximation kills all the
information relevant for dynamical models!
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(W) = N z; zp e~ 24D FLRW with k = 177

Further work:

Modification of vertex amplitude to include
cosmological constant:

. ot o 3/2
W(z) = § dj e S(Ji+1)—ilvoj iz
2j1€Ng

@ E. Bianchi, T. Krajewski, C. Rovelli, and F. Vidotto, Cosmological

in spinf logy, Phys. Rev. D, vol. 83, (2011)
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Result after gaussian approximation:
(W) = N z; zp e~ 24D FLRW with k = 177

Further work:

Modification of vertex amplitude to include
cosmological constant:

. ot o 3/2
W(z) = § dj e Sa(+1) —idvoj iz
2j1€Ng

@ E. Bianchi, T. Krajewski, C. Rovelli, and F. Vidotto, Cosmological

in spinf logy, Phys. Rev. D, vol. 83, (2011)

Investigation of additional 2-complexes contributing at the one-vertex
level.

b M. Kisielowski, J. L dowski, and J. Puchta, One vertex spin-foams with the dipole cosmology boundary,

arXiv:1203.1530v1, (2012)
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Anisotropic spinfoam cosmology
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The model
Normalization

Anisotropic spinfoam cosmology Results
Dynamics

Motivation: test spinfoam cosmology in anisotropic regime = classically

dynamical vacuum. Bianchi I:
ds* = —dt* + ai(t)dx? + a3(t)dy* + a3(t)dz*

Full gravitational action, including YGH-boundary term
(167G)Sg = — 2/ (a1a2G3 + G1a2a3 + G1aza3) dix
M

+ 4/ (a1a2d3 + aldgag + fllazag) d3y
3ty
— 4/ (a1a2d3 + 0,1[12@3 + dlagag) djy
3ty
Bulk term vanishes for solutions. Kasner solution: a;(t) = t"¢ with

ki =, Kk* =1
Ashtekar variables: wal( )6¢  (no summation) and
Ei = as(t)asz(t) E2 =ai1(t)as(t) , E3=ai(t)az(t).

12 /28



The model
Normalization
Results
Dynamics

Anisotropic spinfoam cosmology

Coherent state labels H; per link®®

. I
Hl = exp <2871'C;h")/t> hl [A] II»
Holonomies i'

b, [A] = exp (—w P ) <[ =

B . B _ o
Hi(z) = exp (Z&TGh’Yt> hi [A] = exp (—zzl2>

LoL t
z1 = Re(z1) +iIm(z1) = yLiay + 4 %

@E. Bianchi, E. Magliaro, and C. Perini, Spinfoams in the holomorphic representation, Phys. Rev. D, vol. 82, Dec

2010 YE. Magliaro, A. Marciano, and C. Perini, Coherent states for FLRW space-ti in loop gravity,

Phys. Rev. D, vol. 83, Feb 2011
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Results
Dynamics

Anisotropic spinfoam cosmology

win =Y [ IRCEROEANESD SEREA

W (Zouts Zin) = (W|W) = Wout(H,;(2)) W (Hy(2))

3
W(z2) = / dG, [ D dj e =20 T(DD (Hy(2)) VI D0 (GG 1Y)
. 1=12j€Ny

GS(I)G;(}) =1 for s(I) = t(I), ‘'regularize’ amplitude
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The model
Normalization
Results

Anisotropic spinfoam cosmology

Dynamics

win =% [ , A0 Wi, () = A4 (1)

W (Zouts Zin) = (W|W) = Wout(H,;(2)) W (Hy(2))

3

wE@) =[] Y dje 20 (DY) (H,(2))))

1=12j€Ny

sin (27 + 1) 2;/2) m(z)>1 —e~ (20 H1)z/2
sin (2;/2) - —e~izi/2

12

Te(DY(Hy(2))) =

|
o

W21, 22, 23) H E, (2] +1) e~ 2IUHD ==
1=125€Ny
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Normalization

First lesson: Normalization is important!
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First lesson: Normalization is important!

Norm of heat kernel coherent states can be calculated explicitly:
(T. Thiemann, O. Winkler)

051" = (whlug) = vk (1)

t ) m(z;)2
(i hp,y = T Ime) et
9il1Vgi t3/2  sinh (Im(z;))

16 /28



The model
Normalization
Results
Dynamics

Anisotropic spinfoam cosmology

Normalization

First lesson: Normalization is important!

Norm of heat kernel coherent states can be calculated explicitly:

(T. Thiemann, O. Winkler)

051" = (whlug) = vk (1)

t 4 e)?
(0 1t ) = 4 /el . Im(z;) Qe
gilrgi t3/2 sinh (Im(z;))

Thus, we normalize our amplitude like
(W|w) (W|w) (W|w)
A(H) = = =
0= ) T L () T P

16 /28



The model
Normalization
Results
Dynamics

Anisotropic spinfoam cosmology

Normalization

First lesson: Normalization is important!

Norm of heat kernel coherent states can be calculated explicitly:

(T. Thiemann, O. Winkler)

051" = (whlug) = vk (1)

t 4 e)?
(0 1t ) = 4 /el . Im(z;) Qe
gilrgi t3/2 sinh (Im(z;))

Thus, we normalize our amplitude like
(W|w) (W|w) (W|w)
A(H) = = =
0= ) T L () T P

Possible problem: |A(H;)|* does in general not provide a probability
distribution. (Non-normalizable.) However: |(W|®¥)|* =1 should at least

contain information about the relation of boundary variables.
16 /28
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Dynamics

Anisotropic spinfoam cosmology

/\
A= W) A, — W) Ao = WV ®)
(R 27 W) 3 (T ()| (p))

For a single link: P = AA

c Cz

Pi=N (1 + ;—2) Sinh2(§)e_pe_72 P;=N (#) sinh(p)e Pe™ ¢

P,=N (1 + ;CTZ) sinh?(p)ePe= (€77
P, is normalizable and peaks on (¢,p) = (0,t/2).
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Anisotropic spinfoam cosmology

Results:
3 . \2
W(Zl,ZQ,Zg) = H ;/37%? (—izl) exp <W>
=1
W (z1, 22, 23) W (z1)W (22)W (23)
A(H)) = =
[ P 7% [ N

18/ 28



The model
Normalization
Results

Anisotropic spinfoam cosmology

Dynamics

Results:
3 )
\/g . t/2+iz)2
W(z1,22,23) = 11:[1 Vel (—iz) exp <(/2tl)>
W (21, 22, 23) W (z1)W (20)W (23)

A = -

L P [P A

1 1
A(Hl) = @ exp (h SG[clap1,627p2,c3,p3])

h h
Re(Sq) = — (c1p1 + capa2 + c3p3) + 5 (c1+c2+c3)

I 24+p24+pE EHcc+cE 3t
Im(SG):—2<P1+p2+P3—p1 Ptz 20 34 t2 3—2
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Anisotropic spinfoam cosmology

Dynamics

Results:
3 )
\/g . t/2+iz)2
W(z1,22,23) = 11:[1 Vel (—iz) exp <(/2tl)>
W (21, 22, 23) W (z1)W (20)W (23)

A(H)) = H2 =

L P [P A

1 1
A(Hl) = @ exp (h SG[clap1,627p2,c3,p3])

h h
Re(Sq) = — (c1p1 + capa2 + c3p3) + 5 (c1+c2+c3)

h 24p24p2 24242 3t
Im(SG):—2<P1+p2+P3—p1 th 4 ; 3_2

Dimensions of an area!
18 /28
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Anisotropic spinfoam cosmology

Recall gravitational action including boundary term:

(16’/TG)SG = — 2/ (aldzdg + dlagdg + dldgag) d4I
M

+ 4/ (a1a2d3 -+ aldgag + dlagag) dgy
P

t2

— 4/ (a1a2a3 + arasasz + d1a2a3) dgy
b

t1

We get for the action/Hamilton function in metric variables using

. . . L2L3a2a3t
z1 =Re(z1) +ilm(z1) =~vLia1 +1 ————
(21) (21) 1nGlhy
. 1 3 Note, that the
ou in . . .
SG [Zl s 2] ] = 00— (10203 + G102a3 + a10203 d Y different types of
47TG Sout

1 normalization
dlazag + a1a2a3 —+ a1a2a3 d3y only effect the

B 47TG Sin

+ ‘quantum corrections’ + imaginary part

imaginary part!

19/ 28
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Dynamics

Question: Does our model/amplitude describe the dynamics of classical
vacuum Bianchi I?7

@ Factorization of amplitudes was critisized early on as to prevent
dynamical situations®.

o Classically we get information about the relation of initial and final
boundary data by solving a differential equation.

o In the quantum theory one should expect the amplitude |(W|¥)|* to
carry information about the relation of boundary data! (Peakedness
behaviour.) (E.g. with A one finds linear relation between a and a.)

@ Our Bianchi | amplitude shows the same peaking behaviour as the
static models. In fact ALL amplitudes obtained from the simple
exp(—izj) term show the same behaviour.

@ = No dynamics in our model.

o Furthermore, | believe, that even for static scenarios the obtained
amplitudes in SFC so far, don't behave in the correct manner.

@F. Hellmann, Expansions in spin foam cosmology, Phys. Rev. D, vol. 84, (2011)
20/28
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Why?

@ For an underlying static spacetime the amplitude should be peaked
when ® g = @ g, and otherwise suppressed!

@ None of the amplitudes, for all three normalizations, shows this
behaviour.

o Can we fix this?

e YES!

o For a static spacetime we want exp(—i(zout — 2in)j) Which would
lead to Re(zin) = Re(zout) and Im(zin) = Im(2zoyt).

@ For a dynamical spacetime we would expect, e.g.
exp(—i(zout — 22in)j) which would lead to 2 Re(zi,) = Re(zout) and
2Tm(zn) = Im(zout)-

Question: Can such contributions be obtained from the definition of the

vertex amplitude?
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Hope: Make contact with anisotropic quantum reduced LQG“.

@E. Alesci and F. Cianfrani, Quantum - Reduced Loop Gravity: Cosmology, arXiv:1301.2245, (2013)
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Speculative:

@ Such contributions are obtained
from the vertex amplitude, but
by applying the large spin
approximation (too early) all
this information is washed away.

@ One should use non-factorizing
amplitudes and for dynamical
situations 2-complexes where
Fin 7& Fout-

Hope: Make contact with anisotropic quantum reduced LQG“.
@E. Alesci and F. Cianfrani, Quantum - Reduced Loop Gravity: Cosmology, arXiv:1301.2245, (2013)

Problem: detailed understanding of intertwiners for higher valent nodes.

(‘Dynamical approximation’ of inter iners before large spin approximation?)
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Dynamics

Recall the amplitude map for a boundary state |¥) (for a single vertex
essentially the vertex amplitude):

W) = [ bW () () = A, (1)
SU(2)
with
Ay = [ a6 [T K, G 6)
SL(2,C) H ! O

and K(H,,Gy0)Gypy) =

D (25 +1) e U T (DY) (Hy) Y D03 (G Gy ) Yr)

2j€Ny
J . .
= > @+ 0eHUD ST DU (H)DGH (G ) DS G ) -
25€Ng

m,n,0=—j
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wiw) - | o W () R0) = A (1)

= /dGl---dG4 Ki(Hy,G4Gy YK (Ho, G4G3 1)
X Kt(H;;, G2G;1)Kt(H4, Gngl)Kt(H57 GgG?Tl)
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wiw) - | o W () R0) = A (1)

= /dGl---dG4 Ki(Hy,G4Gy YK (Ho, G4G3 1)
X Kt(H;;, G2G;1)Kt(H4, Gngl)Kt(H57 GgG?Tl)

:/dG1~-~dG4 Z Z dj, -+ dj e 30D L= 35 (ist)

2j1€Ng 2j5€Np

(Z 5 )os,z;m DU (Hy)

mi,n1,01 ms,Nn5,05

Jimi,j101 J505,]5Ms5

x/dG1 -dGy DY) (Gy) - DI (G Intertwiners .
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Intertwiners glue together, e.g. 2-valent case:

S" DG, (H)DY2), (Hs)0nymsds5s = DY), (Hy Hy)

msns mins
nims
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Then applying large spin approximation gives rise to a term

e~ Hz1—25)7
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Anisotropic spinfoam cosmology

Dynamics

Intertwiners glue together, e.g. 2-valent case:

Z D(h fo{;)nr (H5)5n1m55j1j5 = Dmlzz.; (H1H5)

nims

Then applying large spin approximation gives rise to a term

e~ Hz1—25)7

Again: These arguments are very heuristic for the moment. (E.g.
problem for large valence of nodes.) Nevertheless, they show explicitly
that applying the large spin approximation ‘too early’, kills important
information about how links on the two boundary slices ‘interact’ and
furthermore how we might describe dynamical situations within SFC in
the future.
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Further developments

PART 3:

Spinfoam cosmology and the octogon graph
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Spinfoam cosmology and the octogon graph

Further developments

The Octogon graph and spinfoams with timelike faces

Motivation: Describe a truly closed boundary with clear ‘in-" and ‘out-’
interpretation.

One can treat all boundary cubes as spacelike, but the idea is to include
timelike boundary cubes. (— Investigate generalized EPRL/FK SFM due
to Conrady and Hnybida®®. Change of asymptotic analysis?)

A@F. Conrady, Spin foams with timelike surfaces, Classical and Quantum Gravity, vol. 27, no. 15, (2010)
PE. Conrady and J. Hnybida, A spin foam model for general lorentzian 4-geometries, Classical and Quantum

Gravity, vol. 27, no. 18, (2010)
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Spinfoam cosmology and the octogon graph
Further developments

Thank you for your attention.
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