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Anisotropic spinfoam cosmology

Further developments

Approximations
Dipole model

What is the cosmological regime of the
EPRL/FK/KKL spinfoam model?

ZC =

∫
dhvf

∏
f

δ(hf )
∏
v

Av(hvf ) , hf =
∏
v⊂f

hvf (hl)

Vertex amplitude in holomorphic representationa

Av(Hl) =

∫
SL(2,C)

dG′n
∏
l

Kt(Hl, Gt(l)G
−1
s(l))

Kernel

Kt(H,G) =
∑

2j∈N0

(2j + 1) e−
t
2 j(j+1) Tr(D(j)(H)Y †γD(γj,j)(G)Yγ)

aE. Bianchi, E. Magliaro, and C. Perini, Spinfoams in the holomorphic representation, Phys. Rev. D, vol. 82, Dec

2010
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Further developments

Approximations
Dipole model

Amplitude map for a boundary state |Ψ〉

〈W |Ψ〉 =

∫
SU(2)

dhlW (hl)Ψ(hl) →
derive Hamilton

function of Bianchi I

from this amplitude
with

W (hl) =
∑
σ

∫
dhbulkvl

∏
f⊂σ

δ(hf )
∏
v⊂σ

Av(hvl) .

Approximations (conceptual):

kinematical: small boundary graphs (due to homogeneity)

dynamical: small number of verticesa

aC. Rovelli, Discretizing parametrized systems: the magic of Ditt-invariance, arXiv:1107.2310, (2011)

Approximations (mathematical):

one spinfoam history

large spins
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Anisotropic spinfoam cosmology

Further developments

Approximations
Dipole model

The Dipole model a

Heat kernel/complexi�er coherent states

ψtg(h) =
∑

2j∈N0

(2j + 1)e−
t
2 j(j+1) Trj(gh

−1) .

g peaks the state on a point in classical phase
space (A,E).

Question: Does this 2-complex su�ce to describe FLRW with k = 1?

a E. Bianchi, C. Rovelli, and F. Vidotto, Towards spinfoam cosmology, Phys. Rev. D, vol. 82, Oct 2010

7 / 28



Spinfoam cosmology
Anisotropic spinfoam cosmology

Further developments

Approximations
Dipole model

The Dipole model

Amplitude for this 2-complex gives (for one σ)

〈W |Ψ〉 =

∫
dhl

∫
dhbulkvl

∏
f⊂σ

δ(hf )
∏
v⊂σ

Av(hvl) ΨHl(hl)

= Av(Hl)

=

∫
dG1...dG4

4∏
l=1

Kt(Hl, Gs(l)G
−1
t(l))

×
8∏
l=5

Kt(Hl, Gs(l)G
−1
t(l))

= W out(Hl(zl))W
in(Hl(zl))

Regularization for Lorentzian case: cancel two integrations! (4-simplex
and octogon graph just one.)
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Anisotropic spinfoam cosmology
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Approximations
Dipole model

W (~z) =∫
dG1dG2

4∏
l=1

∑
2jl∈N0

djl e
− t2 jl(jl+1) Tr(D(jl)(Hl)Y

†
γD(γjl,jl)(G1G

−1
2 )Yγ)

For large spin: (suppression due to Im(z))

D(jl)(Hl) = D(jl)(R~n1
)D(jl)(e−izl

σ3

2 )D(jl)(R~n2
) , e− Im(zl)jl

≈ e−izljl P̂jD(jl)(R~n1
)D(jl)(R~n2

)

This leads to

W (~z) =

 ∑
2jl∈N0

djl e
− t2 jl(jl+1)−izljl

4

N

j3
←

SPA of norm square of

Livine-Speziale coherent

intertwiner

Claim: This way of applying the large spin approximation kills all the
information relevant for dynamical models!
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Spinfoam cosmology
Anisotropic spinfoam cosmology

Further developments

Approximations
Dipole model

Result after gaussian approximation:

〈W |Ψ〉 = N zi zf e
− 1

2t (z2i+z2f ) FLRW with k = 1??

Further work:

Modi�cation of vertex amplitude to include
cosmological constant:

W (~z) =

 ∑
2jl∈N0

djl e
− t2 jl(jl+1)−iλv0j3/2−izljl

4

N

j3

a E. Bianchi, T. Krajewski, C. Rovelli, and F. Vidotto, Cosmological

constant in spinfoam cosmology, Phys. Rev. D, vol. 83, (2011)

Investigation of additional 2-complexes contributing at the one-vertex
level.
b M. Kisielowski, J. Lewandowski, and J. Puchta, One vertex spin-foams with the dipole cosmology boundary,

arXiv:1203.1530v1, (2012)
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Normalization
Results
Dynamics

PART 2:

Anisotropic spinfoam cosmology
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Spinfoam cosmology
Anisotropic spinfoam cosmology

Further developments

The model
Normalization
Results
Dynamics

Motivation: test spinfoam cosmology in anisotropic regime = classically
dynamical vacuum. Bianchi I:

ds2 = −dt2 + a2
1(t)dx2 + a2

2(t)dy2 + a2
3(t)dz2

Full gravitational action, including YGH-boundary term

(16πG)SG = − 2

∫
M

(a1ȧ2ȧ3 + ȧ1a2ȧ3 + ȧ1ȧ2a3) d4x

+ 4

∫
Σt2

(a1a2ȧ3 + a1ȧ2a3 + ȧ1a2a3) d3y

− 4

∫
Σt1

(a1a2ȧ3 + a1ȧ2a3 + ȧ1a2a3) d3y

Bulk term vanishes for solutions. Kasner solution: ai(t) = tκi with∑
i κi =

∑
i κ

2 = 1.
Ashtekar variables: Aia = γ ȧi(t)δ

i
a (no summation) and

E1
1 = a2(t)a3(t) , E2

2 = a1(t)a3(t) , E3
3 = a1(t)a2(t).

12 / 28



Spinfoam cosmology
Anisotropic spinfoam cosmology
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The model
Normalization
Results
Dynamics

Coherent state labels Hl per link
a,b

Hl = exp

(
i

El
8πG~γ

t

)
hl [A]

Holonomies

hli [A] = exp

(
−i γLiȧi

σ1

2

)

Hl(zl) = exp

(
i

El
8πG~γ

t

)
hl [A] = exp

(
−izl

σl

2

)
z1 = Re(z1) + i Im(z1) = γL1ȧ1 + i

L2L3a2a3t

4πG~γ

aE. Bianchi, E. Magliaro, and C. Perini, Spinfoams in the holomorphic representation, Phys. Rev. D, vol. 82, Dec

2010 bE. Magliaro, A. Marciano, and C. Perini, Coherent states for FLRW space-times in loop quantum gravity,

Phys. Rev. D, vol. 83, Feb 2011
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Further developments

The model
Normalization
Results
Dynamics

〈W |Ψ〉 =
∑
σ

∫
SU(2)

dhl Av(hl) ΨHl(hl) =
∑
σ

Av(Hl)

W (~zout, ~zin) = 〈W |Ψ〉 = W out(Hl(z))W
in(Hl(z))

W (~z) =

∫
dGn

3∏
l=1

∑
2j∈N0

dj e
− t2 j(j+1) Tr(D(j)(Hl(zl))Y

†
γD(γj,j)(GsG

−1
t )Yγ))

Gs(l)G
−1
t(l) = I for s(l) = t(l), `regularize' amplitude
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Further developments

The model
Normalization
Results
Dynamics

〈W |Ψ〉 =
∑
σ

∫
SU(2)

dhl Av(hl) ΨHl(hl) = Av(Hl)

W (~zout, ~zin) = 〈W |Ψ〉 = W out(Hl(z))W
in(Hl(z))

W (~z) =

3∏
l=1

∑
2j∈N0

dj e
− t2 j(j+1) Tr(D(j)(Hl(zl))))

Tr(D(j)(Hi(zi))) =
sin ((2j + 1) zi/2)

sin (zi/2)

Im(zi)�1
≈ −e−i(2j+1)zi/2

−e−izi/2
= e−izij

W (z1, z2, z3) =

3∏
l=1

∑
2j∈N0

(2j + 1) e−
t
2 j(j+1)−izlj
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Further developments

The model
Normalization
Results
Dynamics

Normalization

First lesson: Normalization is important!

Norm of heat kernel coherent states can be calculated explicitly:
(T. Thiemann, O. Winkler) ∥∥ψtg∥∥2

=
〈
ψtg|ψtg

〉
= ψ2t

M2(1)

〈
ψtgi |ψ

t
gi

〉
=

4
√
π e

t
4

t3/2
Im(zi)

sinh (Im(zi))
e

Im(zi)
2

t

Thus, we normalize our amplitude like

A(Hl) =
〈W |Ψ〉
〈Ψ|Ψ〉

=
〈W |Ψ〉∏
l 〈Ψl|Ψl〉

=
〈W |Ψ〉∏
l ‖Ψl‖2

Possible problem: |A(Hl)|2 does in general not provide a probability

distribution. (Non-normalizable.) However: |〈W |Ψ〉|2 = 1 should at least
contain information about the relation of boundary variables.
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Further developments

The model
Normalization
Results
Dynamics

A =
〈W |Ψt(p)〉
‖Ψ‖2

t′=2t,p′=2p
A2 =

〈W |Ψt(p)〉
〈Ψt(p)|Ψt(p)〉

A3 =
〈W |Ψt(p)〉√
〈Ψt(p)|Ψt(p)〉

For a single link: P = ĀA

P1 = N
(

1 + c2

p2

)
sinh2(p2 )e−pe−

c2

t P3 = N
(
c2+p2

p

)
sinh(p)e−pe−

c2

t

P2 = N
(

1 + c2

p2

)
sinh2(p)e−pe−

1
t (c2+p2)

P2 is normalizable and peaks on (c, p) = (0, t/2).
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The model
Normalization
Results
Dynamics

Results:

W (z1, z2, z3) =

3∏
l=1

√
8π

t3/2
(−izl) exp

(
(t/2 + izl)

2

2t

)

A(Hl) =
W (z1, z2, z3)∥∥ψtH1

∥∥2 ∥∥ψtH2

∥∥2 ∥∥ψtH3

∥∥2 =
W (z1)W (z2)W (z3)∥∥ψtH1

∥∥2 ∥∥ψtH2

∥∥2 ∥∥ψtH3

∥∥2

A(Hl) =
1

83/2
exp

(
i

~
SG[c1, p1, c2, p2, c3, p3]

)

Re(SG) = −~
t

(c1p1 + c2p2 + c3p3) +
~
2

(c1 + c2 + c3)

Im(SG) = − ~
2

(
p1 + p2 + p3 −

p2
1 + p2

2 + p2
3

t
− c21 + c22 + c23

t
− 3t

4

)
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Recall gravitational action including boundary term:

(16πG)SG = − 2

∫
M

(a1ȧ2ȧ3 + ȧ1a2ȧ3 + ȧ1ȧ2a3) d4x

+ 4

∫
Σt2

(a1a2ȧ3 + a1ȧ2a3 + ȧ1a2a3) d3y

− 4

∫
Σt1

(a1a2ȧ3 + a1ȧ2a3 + ȧ1a2a3) d3y

We get for the action/Hamilton function in metric variables using

z1 = Re(z1) + i Im(z1) = γL1ȧ1 + i
L2L3a2a3t

4πG~γ

SG[zoutl , zinl ] =
1

4πG

∫
Σout

ȧ1a2a3 + a1ȧ2a3 + a1a2ȧ3 d
3y

− 1

4πG

∫
Σin

ȧ1a2a3 + a1ȧ2a3 + a1a2ȧ3 d
3y

+ `quantum corrections' + imaginary part

Note, that the

di�erent types of

normalization

only e�ect the

imaginary part!

19 / 28



Spinfoam cosmology
Anisotropic spinfoam cosmology

Further developments

The model
Normalization
Results
Dynamics

Dynamics

Question: Does our model/amplitude describe the dynamics of classical
vacuum Bianchi I?

Factorization of amplitudes was critisized early on as to prevent
dynamical situationsa.
Classically we get information about the relation of initial and �nal
boundary data by solving a di�erential equation.
In the quantum theory one should expect the amplitude |〈W |Ψ〉|2 to
carry information about the relation of boundary data! (Peakedness
behaviour.) (E.g. with Λ one �nds linear relation between a and ȧ.)
Our Bianchi I amplitude shows the same peaking behaviour as the
static models. In fact ALL amplitudes obtained from the simple
exp(−izj) term show the same behaviour.
⇒ No dynamics in our model.
Furthermore, I believe, that even for static scenarios the obtained
amplitudes in SFC so far, don't behave in the correct manner.

aF. Hellmann, Expansions in spin foam cosmology, Phys. Rev. D, vol. 84, (2011)
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Why?

For an underlying static spacetime the amplitude should be peaked
when (3)gin = (3)gout and otherwise suppressed!

None of the amplitudes, for all three normalizations, shows this
behaviour.

Can we �x this?

YES!

For a static spacetime we want exp(−i(zout − zin)j) which would
lead to Re(zin) = Re(zout) and Im(zin) = Im(zout).

For a dynamical spacetime we would expect, e.g.
exp(−i(zout − 2zin)j) which would lead to 2 Re(zin) = Re(zout) and
2 Im(zin) = Im(zout).

Question: Can such contributions be obtained from the de�nition of the
vertex amplitude?
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Speculative:

Such contributions are obtained
from the vertex amplitude, but
by applying the large spin
approximation (too early) all
this information is washed away.

One should use non-factorizing
amplitudes and for dynamical
situations 2-complexes where
Γin 6= Γout.

Hope: Make contact with anisotropic quantum reduced LQGa.

aE. Alesci and F. Cianfrani, Quantum - Reduced Loop Gravity: Cosmology, arXiv:1301.2245, (2013)

Problem: detailed understanding of intertwiners for higher valent nodes.
(`Dynamical approximation' of intertwiners before large spin approximation?)
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Recall the amplitude map for a boundary state |Ψ〉 (for a single vertex
essentially the vertex amplitude):

〈W |Ψ〉 =

∫
SU(2)

dhlW (hl)Ψ(hl) = Av(Hl)

with

Av(Hl) =

∫
SL(2,C)

dG′n
∏
l

Kt(Hl, Gt(l)G
−1
s(l))

and Kt(Hl, Gs(l)G
−1
t(l)) =∑

2j∈N0

(2j + 1) e−
t
2 j(j+1) Tr(D(j)(Hl)Y

†
γD(γj,j)(Gs(l)G

−1
t(l))Yγ)

=
∑

2j∈N0

(2j + 1) e−
t
2 j(j+1)

j∑
m,n,o=−j

D(j)
mn(Hl)D(γj,j)

jn,jo (Gs(l))D
(γj,j)
jo,jm(G−1

t(l)) .
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〈W |Ψ〉 =

∫
SU(2)

dhlW (hl)Ψ(hl) = Av(Hl)

=

∫
dG1 · · · dG4Kt(H1, G4G

−1
2 )Kt(H2, G4G

−1
3 )

×Kt(H3, G2G
−1
1 )Kt(H4, G1G

−1
3 )Kt(H5, G3G

−1
3 )

=

∫
dG1 · · · dG4

 ∑
2j1∈N0

· · ·
∑

2j5∈N0

 dj1 · · · dj5e−
t
2 j1(j1+1) · · · e− t2 j5(j5+1)

×

( ∑
m1,n1,o1

· · ·
∑

m5,n5,o5

)
D(j1)
m1n1

(H1) · · · D(j5)
m5n5

(H5)

×
∫
dG1 · · · dG4 D(γj1,j1)

j1n1,j1o1
(G4) · · · D(γj5,j5)

j5o5,j5m5
(G−1

2 )← Intertwiners .
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Intertwiners glue together, e.g. 2-valent case:∑
n1m5

D(j1)
m1n1

(H1)D(j5)
m5n5

(H5)δn1m5δj1j5 = D(j1)
m1n5

(H1H5)

Then applying large spin approximation gives rise to a term

e−i(z1−z5)j .

Again: These arguments are very heuristic for the moment. (E.g.
problem for large valence of nodes.) Nevertheless, they show explicitly
that applying the large spin approximation `too early', kills important
information about how links on the two boundary slices `interact' and
furthermore how we might describe dynamical situations within SFC in
the future.
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Intertwiners glue together, e.g. 2-valent case:∑
n1m5

D(j1)
m1n1

(H1)D(j5)
m5n5

(H5)δn1m5δj1j5 = D(j1)
m1n5

(H1H5)

Then applying large spin approximation gives rise to a term

e−i(z1−z5)j .

Again: These arguments are very heuristic for the moment. (E.g.
problem for large valence of nodes.) Nevertheless, they show explicitly
that applying the large spin approximation `too early', kills important
information about how links on the two boundary slices `interact' and
furthermore how we might describe dynamical situations within SFC in
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PART 3:

Spinfoam cosmology and the octogon graph
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The Octogon graph and spinfoams with timelike faces

Motivation: Describe a truly closed boundary with clear `in-' and `out-'
interpretation.

One can treat all boundary cubes as spacelike, but the idea is to include
timelike boundary cubes. (→ Investigate generalized EPRL/FK SFM due
to Conrady and Hnybidaa,b. Change of asymptotic analysis?)

aF. Conrady, Spin foams with timelike surfaces, Classical and Quantum Gravity, vol. 27, no. 15, (2010)

bF. Conrady and J. Hnybida, A spin foam model for general lorentzian 4-geometries, Classical and Quantum

Gravity, vol. 27, no. 18, (2010)
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Thank you for your attention.
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