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Covariant loop quantum gravity. Full definition.

With a cosmological constant λ > 0: 
Amplitude: SL(2,C) ➞ SL(2,C)_q network evaluation.   
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Main Results, old and new

1. Boundary states represent geometries. 
 (Canonical LQG 1990’, Penrose spin-geometry theorem 1971). 

2. Geometry operators have discrete spectra: geometry is discrete at small scale.
 (Canonical LQG main results, 1990’).

3. The classical limit of the vertex amplitude converges to the Regge Hamilton function with λ.   
(Conrady-Freidel, Barrett et al, Bianchi-Perini-Magliaro, Engle, Han..., 2009-2012).

4. The amplitudes (with positive cosmological constant) are UV and IR finite:
(Han, Fairbairn, Moesburger, 2011). 

W q
C < 1



Regime of validity of the expansions:

On the structure of a background independent quantum theory:
Hamilton function, transition amplitudes, classical limit and continuous limit
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Centre de Physique Théorique, Case 907, Luminy, F-13288 Marseille, EU

(Dated: March 24, 2012)

The Hamilton function is a powerful tool for studying the classical limit of quantum systems, which
remains meaningful in background-independent systems. In quantum gravity, it clarifies the physical
interpretation of the transitions amplitudes and their truncations.

I. SYSTEMS EVOLVING IN TIME

Consider a dynamical system with configuration vari-
able q 2 C, and lagrangian L(q, q̇). Given an initial con-
figuration q at time t and a final configuration q0 at time
t0, let qq,t,q0,t0 : ! C be a solution of the equations of
motion such qq,t,q0,t0(t) = q and qq,t,q0,t0(t

0) = q0. Assume
for the moment this exists and is unique. The Hamilton
function is the function on (C ⇥ )2 defined by

S(q, t, q0, t0) =

Z t0

t

dt L(qq,t,q0,t0 , q̇q,t,q0,t0), (1)

namely the value of the action on the solution of the
equation of motion determined by given initial and final
data. This function, introduced by Hamilton in 1834 [?
] codes the solution of the dynamics of the system, has
remarkable properties and is a powerful tool that remains
meaningful in background-independent physics.

Let H be the quantum hamiltonian operator of the
system and |qi the eigenstates of its q observables. The
transition amplitude

W (q, t, q0, t0) = hq0|e� i
~H(t0�t)|qi. (2)

codes all the quantum dynamics. In a path integral for-
mulation, it can be written as

W (q, t, q0, t0) =

Z q(t0)=q0

q(t)=q

D[q] e
i
~
R t0
t dtL(q,q̇). (3)

In the limit in which ~ can be considered small, this can
be evaluated by a saddle point approximation, and gives

W (q, t, q0, t0) ⇠ e
i
~S(q,t,q0,t0). (4)

That is, the classical limit of the quantum theory can be
obtained by reading out the Hamilton function from the
quantum transition amplitude:

lim
~!0

(�i~) logW (q, t, q0, t0) = S(q, t, q0, t0). (5)

The functional integral in (3) can be defined either by
perturbation theory around a gaussian integral, or as a
limit of multiple integrals. Let us focus on the second def-
inition, useful in non-perturbative theories such as lattice
QCD and quantum gravity, which are not defined by a

gaussian point. Let L(qn, qn�1, tn, tn�1) be a discretiza-
tion of the lagrangian. The multiple integral

WN (q, t, q0, t0) =

Z
dqn
µ(qn)

e
i
~
PN

n=1 aL(qn,qn�1,tn,tn�1) (6)

where µ(qn) is a suitable measure factor, tn=n(t0�t)/N ⌘
na, and the boundary data are q0 = q and qN = q0, has
two distinct limits. The continuous limit

lim
N!1

WN (q, t, q0, t0) = W (q, t, q0, t0) (7)

gives the transition amplitude. While the classical limit

lim
~!0

(�i~) logWN (q, t, q0, t0) = SN (q, t, q0, t0). (8)

gives the Hamilton function of the classical dis-
cretized system, namely the value of the actionPN

n=1 aL(qn, qn�1, tn, tn�1) on the sequence qn that ex-
tremizes this action at given boundary data. The dis-
cretization is good if the classical theory is recovered as
the continuous limit of the discretized theory, that is, if

lim
N!1

SN (q, t, q0, t0) = S(q, t, q0, t0). (9)

Summarizing:
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TABLE I. Continuous and classical limits

The interest of this structure is that it remains mean-
ingful in di↵eomorphism invariant systems and o↵ers an
excellent conceptual tool for dealing with background in-
dependent physics. To see this, let’s first consider its gen-
eralization to finite dimensional parametrized systems.

II. PARAMETRIZED SYSTEMS

I start by reviewing a few well-known facts about
background independence. The system considered above

Structure of the theory

No critical point 

No infinite renormalization

Physical scale: Planck length
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Covariant LQG is good

• There is one single known physical spinfoam amplitudes (4d, Lorentzian,correct degrees of freedom.)

• The theory is defined by its transition amplitudes, order by order in the 2-complex.

• The transition amplitudes with cosmological constant λ are finite. [Han, Fairbairn, Moesburger, Zhang.]



But

• Since Λ=λ-1 is very large (Λ~10120), radiative correction might be large, invalidating the expansion!  
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But

• Since Λ=λ-1 is very large (Λ~10120), radiative correction might be large, invalidating the expansion!  

Covariant LQG is good

• There is one single known physical spinfoam amplitudes (4d, Lorentzian,correct degrees of freedom.)

• The theory is defined by its transition amplitudes, order by order in the 2-complex.

• The transition amplitudes with cosmological constant λ are finite. [Han, Fairbairn, Moesburger, Zhang.]



Problem:

• Since Λ=λ-1 is very large (Λ~10120), radiative correction might be large, invalidating the expansion.  

Strategy:

• Large corrections are likely described by the divergences of the λ=0 theory.

• Study divergences of the λ=0 theory to understand the viability of the expansion. 



The first radiative correction 
to the edge amplitude 

is logarithmic in λ-1

[Aldo Riello 2013]

The first radiative correction 
to the vertex amplitude 

is finite.
[Aldo Riello 2013]

(up to possible technical loopholes, not yet closed)
  

cfr:

New main message (good news):
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“Riello triangles”
“Riello tetrahedra”“Riello segments”
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3 BF Theory 11

external half edges are noted simply h and h̃.

v ṽ

a=1

a=2

a=3

a=4

( ja , na) ( ja , ña) ( ja , na)

¿

( ja , ña)

∫ dha ∫ d h̃a

∫ dh ∫ d h̃

∫ d m̂a∣ma 〉 〈ma∣

∫ d m̂ab∣mab 〉 〈mab∣

j ab

Figure 1: The melon graph. On the right, its faces and extra structure entering the LS represen-
tation are put into evidence. Triangles point in the direction of the action of the SU (2) elements
{h, ha , h̃, h̃a }. Dots represent insertions of the resolution of the identity. External faces are drawn in
a dashed line.

With this notation the melon graph amplitude reads
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where the � functions were introduced in order to implement the gauge fixing conditions dis-
cussed at the end of the previous subsection. Integrating out h and h̃, and introducing the short-
hand notation Z
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and performing the integrals over the m̂a ’s, one gets immediately:

W BF,⇤M (ja , n a , ñ a ) =
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Figure 3: The figure shows the combinatoric structure of the internal faces of the melon graph,
and how it corresponds to two tetrahedra with faces identified.

Each (internal) edge a corresponds to a face of the tetrahedron. Hence one can associate
to the vertex opposite to this face the same label a . Then the edge ~̀ab going from the ver-
tex a to the vertex b is given by a solution16 of the stationary point equations via the formula
~̀ab := ha ¬ ✏ab jab m̂ab . Remark that by Eq. 3.24 the edges relative to the same face “close”
forming a triangle, as they should in a geometrical tetrahedron. Moreover, the dihedral angle
⇥ab between faces a and b (“around” the edge ~̀ab ) is, essentially, given by 2✏ab'ab .

Furthermore, the combinatorics of the melon graph, tells how the faces of the two tetra-
hedra have to be identified to form a (closed) three-manifold. This is done along the graph
edges. In other term the face a of a tetrahedron is identified with the face a of the other one.
Topologically, the so obtained manifold is a three-sphere.17 However, subtleties can arise from
orientation issues. For the time being, it is enough to observe that, since the two tetrahedra
have the same edge-lengths, they must be congruent or one the parity-reversed of the other.
Mathematically this choice is reflected at each vertex in the choice of an overall sign (⌫v ) in the
relation between the angles ⇥ab and the phases 2✏ab'ab .

3.2.4 The BF Amplitude18

As discussed in the previous section, the stationary point equations 3.23 and 3.24 define
two geometrical tetrahedra (one per each graph vertex) of edge-lengths given by the internal

16Not any set of spins {jab } admits a solution to the stationary point equations. Explicit conditions for the existence
of a solution shall be given further. Also, the role of the degenerate sectors of such geometries shall be discussed in
Sect. 9.4.

17In order to visualize this fact, it is useful to go one dimension down: glueing two copies of a triangle by their
congruent sides, and “inflating” the so obtained “sandwich”, one clearly obtains a two-sphere.

18This section makes use of some results demonstrated only later, in the context of the EPRL-FK model. Most of
these results apply unaltered to the BF case, just by restricting them to elements of SU(2). However, this shall not
always be the case. Whenever this happens it will be explicitly remarked in the text.

→     Reduced closure relations
for the Riello tetrahedra! 
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Z
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→     Saddle point

→     Compute  dimensions of the saddle point

→     Symmetries !

→     Saddle point equations
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Not a large number !

Proportional to the edge for large j?

ln(1/�~G) = ln 10120 = 1.7 (4⇡)2



cfr:

The first radiative correction 
to the edge amplitude 

is logarithmic in Λ-1

[Aldo Riello 2013]

The first radiative correction 
to the vertex amplitude 

is finite.
[Aldo Riello 2013]

(up to possible technical loopholes, not yet closed)
  

New main message (good news):



• Is the large-j expansion credible?  
• Yes: it does the correct result in the BF case (large polynomial divergences.)

Additional moral: Gravity is much more convergent than BF!

 

• Previous results: 
• Euclidean spin-zero external legs [Perini Speziale CR, 09] (using properties of nJ-symbols) 
• Euclidean generic external legs [Krajewski Mangen Rivasseau Tanasa Vitale 10] (using qft techniques). 

In all the cases the same result. 

Additional moral: Euclidean and Lorentzian are rather similar:  cfr: Jacek Puchta on the cosmological integral 

• The edge correction is the “melon” of tensor models: much is known about summing melons !

General comments:



• Can this be used to prove that radiative corrections do not invalidate the expansion? 

• Are these the only elementary divergences? 

• What about overlapping divergences?

• Can this be used to compute the running of G or λ between the Planck scale and our scale? 

• If this is small, there is no naturalness problem for the cosmological constant.
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