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Introduction - last time...

Fermi coordinates:

gµν(x)  OIJ
gµν ;f (s0, s j ) := s I

,µ(x)sJ
,ν(x)gµν(x)|x s.t. f (s0,sj )=x
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This time - Setup

Idea: use (metric dependent!) distances and angles to coordinatise a spatial slice.

• On a manifold Σ consider fields (qij , pij , φα, πα) forming a phase space Γ.

• Fix σ0 and e0I - a basis of Tσ0Σ, for a given γ ∈ Γ take

eI =
∑
J

MIJe0J

where eI is an ONB w.r.t. q and MIJ is lower-triangular.

• To every point σ assign (z I ) - "Cartesian" adapted coordinates such that

expσ0 (z I eI ) = σ

and (ya) = (y r , yA) - "spherical" adapted coordinates such that

z1 = y r sin yθ cos yϕ z2 = y r sin yθ sin yϕ z3 = y r cos yθ

• The map q 7→ (ya) is invariant w.r.t. diffeomorphisms ψ ∈ Diffσ0 which preserve
the observer, namely such that

ψ(σ0) = σ0 ψ′(σ0) = M

Jędrzej Świeżewski, University of Warsaw
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Observables

Introduce observables:

Qab(r , θ) : (q, p, φα, πα) 7→ qab(r , θ)

Pab(r , θ) : (q, p, φα, πα) 7→ pab(r , θ)

Φα(r , θ) : (q, p, φα, πα) 7→ φα(r , θ)

Πα(r , θ) : (q, p, φα, πα) 7→ πα(r , θ)

where in each case the field is evaluated at a point σ such that (ya(σ)) = (r , θ) in
coordinates adapted to q.

• The above observables are Diffσ0 -invariant.
• By construction

Qrr (r , θ) = 1 QrA(r , θ) = 0

• Denote the interesting observables by F (r , θ) where

F runs through {QAB ,PAB ,Φα,Π
α}

Jędrzej Świeżewski, University of Warsaw



Observables

Introduce observables:

Qab(r , θ) : (q, p, φα, πα) 7→ qab(r , θ)

Pab(r , θ) : (q, p, φα, πα) 7→ pab(r , θ)

Φα(r , θ) : (q, p, φα, πα) 7→ φα(r , θ)

Πα(r , θ) : (q, p, φα, πα) 7→ πα(r , θ)

where in each case the field is evaluated at a point σ such that (ya(σ)) = (r , θ) in
coordinates adapted to q.

• The above observables are Diffσ0 -invariant.
• By construction

Qrr (r , θ) = 1 QrA(r , θ) = 0

• Denote the interesting observables by F (r , θ) where

F runs through {QAB ,PAB ,Φα,Π
α}

Jędrzej Świeżewski, University of Warsaw



Variations of the observables

Given a point γ̌ = (q̌, p̌, φ̌α, π̌α) ∈ Γ perform the following decomposition at a point
γ = (q, p, φα, πα) ∈ Γ

F (r , θ)|γ = f (r , θ)|γ + GF (r,θ)

∣∣
γ

where the point at which f is evaluated is the one for which coordinates adapted to
q̌ (and not q!) give the values (r , θ).

Consider γ = (q̌ + εδq, p̌ + εδp, φ̌α + εδφα, π̌α + εδπα). The variations

d
dε

∣∣∣∣
ε=0

f (r , θ)|γ

are found imidiately. The variations

d
dε

∣∣∣∣
ε=0

GF (r,θ)

∣∣
γ

require more care.
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Variations of GF (r ,θ)

• Notice that
GF (r,θ)

∣∣
γ

= 0

when the coordinates adapted to q and q̌ coincide (in a neighbourhood of the
geodesic line connecting σ0 and σ such that (ya(σ)) = (r , θ)). It implies also that

qrr = 1 qrA = 0, when expressed in the coordinates adapted to q̌

hence the only nonvanishing variations of GF (r,θ) are those w.r.t. qrA and qrr .

• Moreover, the observables we defined are Diffσ0 -invariant, so

{F (r , θ), C(~N)} = 0

for ~N generating Diffσ0 . Hence

{GF (r,θ),C(~N)} = −{f (r , θ), C(~N)}

Combining the former two points we find that
ˆ

d3σ
δGF (r,θ)

δqab(σ)
L~N q̌ab(σ) = −L~N f (r , θ)

Jędrzej Świeżewski, University of Warsaw



Variations of GF (r ,θ)

• Notice that
GF (r,θ)

∣∣
γ

= 0

when the coordinates adapted to q and q̌ coincide (in a neighbourhood of the
geodesic line connecting σ0 and σ such that (ya(σ)) = (r , θ)). It implies also that

qrr = 1 qrA = 0, when expressed in the coordinates adapted to q̌

hence the only nonvanishing variations of GF (r,θ) are those w.r.t. qrA and qrr .

• Moreover, the observables we defined are Diffσ0 -invariant, so

{F (r , θ), C(~N)} = 0

for ~N generating Diffσ0 . Hence

{GF (r,θ),C(~N)} = −{f (r , θ), C(~N)}

Combining the former two points we find that
ˆ

d3σ
δGF (r,θ)

δqab(σ)
L~N q̌ab(σ) = −L~N f (r , θ)

Jędrzej Świeżewski, University of Warsaw



Variations of GF (r ,θ)

• Notice that
GF (r,θ)

∣∣
γ

= 0

when the coordinates adapted to q and q̌ coincide (in a neighbourhood of the
geodesic line connecting σ0 and σ such that (ya(σ)) = (r , θ)). It implies also that

qrr = 1 qrA = 0, when expressed in the coordinates adapted to q̌

hence the only nonvanishing variations of GF (r,θ) are those w.r.t. qrA and qrr .

• Moreover, the observables we defined are Diffσ0 -invariant, so

{F (r , θ), C(~N)} = 0

for ~N generating Diffσ0 . Hence

{GF (r,θ),C(~N)} = −{f (r , θ), C(~N)}

Combining the former two points we find that
ˆ

d3σ
δGF (r,θ)

δqab(σ)
L~N q̌ab(σ) = −L~N f (r , θ)

Jędrzej Świeżewski, University of Warsaw



Variations of GF (r ,θ)

• Notice that
GF (r,θ)

∣∣
γ

= 0

when the coordinates adapted to q and q̌ coincide (in a neighbourhood of the
geodesic line connecting σ0 and σ such that (ya(σ)) = (r , θ)). It implies also that

qrr = 1 qrA = 0, when expressed in the coordinates adapted to q̌

hence the only nonvanishing variations of GF (r,θ) are those w.r.t. qrA and qrr .

• Moreover, the observables we defined are Diffσ0 -invariant, so

{F (r , θ), C(~N)} = 0

for ~N generating Diffσ0 . Hence

{GF (r,θ),C(~N)} = −{f (r , θ), C(~N)}

Combining the former two points we find that
ˆ

d3σ
δGF (r,θ)

δqab(σ)
δqab(σ) = ?

Jędrzej Świeżewski, University of Warsaw



Variations of GF (r ,θ) - part 2

It turns out that every variation δq can be cast into the form

δq = L~N q̌ + δq̃ (∗)

for some ~N generating Diffσ0 , where δq̃ is such that δq̃rr = 0 = δq̃rA.

Hence to determine the action of the distribution
δGF (r,θ)

δq on a general test function it

is enough to find the ~N.

From (∗) one finds that

Nr
,r =

1
2
δqrr NA

,r = q̌AB(δqrB − Nr
,B)

with initial conditions at r = 0 given by the requirement of belonging to Diffσ0 .

~N =

[
1
2

ˆ r

0
dr ′δqrr (r ′, θ)

]
∂r +

+

[ˆ r

0
dr ′q̌AB(r ′, θ)

(
δqrB(r ′, θ)−

1
2

ˆ r ′

0
dr ′′∂Bδqrr (r ′′, θ)

)]
∂A+

+

[
1
2
δqIJ(σ0)zJ

(
δIK −

z I zK

r2

)]
∂K
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Poisson brackets

{F (r , θ), F ′(r ′, θ′)} = {f (r , θ) + GF (r,θ), f ′(r ′, θ′) + GF ′(r ′,θ′)}

= {f (r , θ), f ′(r ′, θ′)}

They are canonical!

The Poisson brackets of Pra(r , θ)’s can be found similarly. They turn out to be
expressible in terms of the observables F (r , θ).
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Summary and final remarks

• Reduced phase space for GR:
The vanishing-of-the-vector-constraint condition (qab∇cPbc = 0) can be
integrated radialy to give an expression of Pra in terms of the observables F (r , θ).
Hence we (almost) solved the vector constraint.

• How do the diffeomorphisms not belonging to Diffσ0 act on F (r , θ)?
The action of a general diffeomorphism on F ’s can be understood using formulas
derived above. It turns out that a general generator can be decomposed into a
field preserving F ’s (the part belonging to Diffσ0 ) and a part which preserves the
"radial form of the metric". This additional part can be parametrised by 6
numbers:
- 3 coming from the value of the field at σ0 (the translational part)
- 3 coming from the (necessarily antisymmetric) value of the first derivative of
the field at σ0 (the rotational part)
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Thank you for your attention!

based on:

Duch, Kamiński, Lewandowski, Świeżewski
Observables for General Relativity related to geometry - to appear soon
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Bonus slide
Justification of δq = L~N q̌ + δq̃

Let
ψε : σ(q̌; r , θ) 7→ σ(q̌ + εδq; r , θ)

notice that

δq =
d
dε

∣∣∣∣
ε=0

ψ∗ε (q̌ + εδq)−
d
dε

∣∣∣∣
ε=0

ψ∗ε (q̌) = δq̃ + L~N q̌

where
• δq̃ra = 0 when expressed in coordinates adapted to q̌

• ~N = − d
dε

∣∣∣
ε=0

ψ∗ε
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