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The Hamilton function is a powerful tool for studying the classical limit of quantum systems, which
remains meaningful in background-independent systems. In quantum gravity, it clarifies the physical
interpretation of the transitions amplitudes and their truncations.

I. SYSTEMS EVOLVING IN TIME

Consider a dynamical system with configuration vari-
able q 2 C, and lagrangian L(q, q̇). Given an initial con-
figuration q at time t and a final configuration q0 at time
t0, let qq,t,q0,t0 : ! C be a solution of the equations of
motion such qq,t,q0,t0(t) = q and qq,t,q0,t0(t

0) = q0. Assume
for the moment this exists and is unique. The Hamilton
function is the function on (C ⇥ )2 defined by

S(q, t, q0, t0) =

Z t0

t

dt L(qq,t,q0,t0 , q̇q,t,q0,t0), (1)

namely the value of the action on the solution of the
equation of motion determined by given initial and final
data. This function, introduced by Hamilton in 1834 [?
] codes the solution of the dynamics of the system, has
remarkable properties and is a powerful tool that remains
meaningful in background-independent physics.

Let H be the quantum hamiltonian operator of the
system and |qi the eigenstates of its q observables. The
transition amplitude

W (q, t, q0, t0) = hq0|e� i
~H(t0�t)|qi. (2)

codes all the quantum dynamics. In a path integral for-
mulation, it can be written as

W (q, t, q0, t0) =

Z q(t0)=q0

q(t)=q

D[q] e
i
~
R t0
t dtL(q,q̇). (3)

In the limit in which ~ can be considered small, this can
be evaluated by a saddle point approximation, and gives

W (q, t, q0, t0) ⇠ e
i
~S(q,t,q0,t0). (4)

That is, the classical limit of the quantum theory can be
obtained by reading out the Hamilton function from the
quantum transition amplitude:

lim
~!0

(�i~) logW (q, t, q0, t0) = S(q, t, q0, t0). (5)

The functional integral in (3) can be defined either by
perturbation theory around a gaussian integral, or as a
limit of multiple integrals. Let us focus on the second def-
inition, useful in non-perturbative theories such as lattice
QCD and quantum gravity, which are not defined by a

gaussian point. Let L(qn, qn�1, tn, tn�1) be a discretiza-
tion of the lagrangian. The multiple integral

WN (q, t, q0, t0) =

Z
dqn
µ(qn)

e
i
~
PN

n=1 aL(qn,qn�1,tn,tn�1) (6)

where µ(qn) is a suitable measure factor, tn=n(t0�t)/N ⌘
na, and the boundary data are q0 = q and qN = q0, has
two distinct limits. The continuous limit

lim
N!1

WN (q, t, q0, t0) = W (q, t, q0, t0) (7)

gives the transition amplitude. While the classical limit

lim
~!0

(�i~) logWN (q, t, q0, t0) = SN (q, t, q0, t0). (8)

gives the Hamilton function of the classical dis-
cretized system, namely the value of the actionPN

n=1 aL(qn, qn�1, tn, tn�1) on the sequence qn that ex-
tremizes this action at given boundary data. The dis-
cretization is good if the classical theory is recovered as
the continuous limit of the discretized theory, that is, if

lim
N!1

SN (q, t, q0, t0) = S(q, t, q0, t0). (9)
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LQG
transition amplitudes

WC(hl)
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Regge

Hamilton function
S�(lib )

Classical limit�����������������������!

TABLE I. Continuous and classical limits

The interest of this structure is that it remains mean-
ingful in di↵eomorphism invariant systems and o↵ers an
excellent conceptual tool for dealing with background in-
dependent physics. To see this, let’s first consider its gen-
eralization to finite dimensional parametrized systems.

II. PARAMETRIZED SYSTEMS

I start by reviewing a few well-known facts about
background independence. The system considered above

CLASSICAL VS CONTINUOUS

No critical point 

No infinite renormalization

Physical scale: Planck length
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TWIST! TWIST!

By a twisted geometry we mean: an oriented 3d simplicial complex (a triangulation) T , 

equipped with a flat metric on each 3-simplex (which makes it a flat tetrahedron)

For any two tetrahedra sharing a face the area of the face is the same 

whether it is computed from the metric on one side or the other. 

Regge geometry: impose to the length of the edges to be the same.

In a twisted geometry two adjacent triangles have the same area 

and the same normal, but the angles and the edge lengths can differ. 

The two triangles can be identified => discontinuity of the metric across the triangle
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ASSIGNING GEOMETRIES TO STATES

Loop gravity on a fixed graph describes a truncation of general relativity. 
The variables capture only a finite number of the degrees of freedom of the metric. 
There is no unique geometric interpretation associated to a single graph.
“Interpolating” geometries are not strictly needed for the physical interpretation of the 
theory, but provide useful approximations of a continuous geometry.

A twisted geometry is a specific choice of “interpolating geometry”, chosen among 
discontinuous metrics. To any graph and any holonomy-flux configuration, we can associate a 
twisted geometry: a discrete discontinuous geometry on a cellular decomposition space 
into polyhedra. 
The phase space of LQG on a graph can be visualized not only in terms of holonomies 
and fluxes, but also in terms of a simple geometrical picture of adjacent flat polyhedra.

Freidel Speziale 2010
Rovelli, Speziale 2010
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FIG. 1: A data set and various interpolating functions: poly-
nomial (cfr. mode expansion in cosmology), piecewise linear
(cfr. Regge geometries) and piecewise flat (discontinuous, cfr.
twisted geometries for generic holonomy-fluxes).

ometry completely. In fact, we are here in context of a
truncation of the full theory, where the continuous metric
is replaced by a finite set of variables. The set (U

l

, X
l

)
characterizes a geometry only partially, in the same sense
as when we partially characterize a continuous function
f(x) by means of a finite number of its values f

n

= f(x
n

).
However, in physics, when we are given a finite data

set (x
n

, f
n

), it is often convenient to choose an algo-
rithm to select a preferred interpolating function f(x),
namely a function such that f

n

= f(x
n

). The inter-
polation procedure is of course vastly under-determined,
but it is nevertheless often convenient to choose an in-
terpolating function. Several choices are common. For
instance, if we have N points x

n

(say in the interval
[0, 2⇡]), we can choose: (i) the interpolating polyno-

mial f(x) =
P

N

k=1 a
k

xk, with coe�cients a
k

deter-
mined by

P
n

a
k

xk

n

= f
n

; or (ii) the periodic function

f(x) =
P

N

k=1 e
ikx c

k

; or (iii) the piecewise linear function
that takes the value f(x) = f

n

+f
n+1(x�x

n

)/(x
n+1�x

n

)
for x 2 [x

n+1, xn

] ; or (iv) the discontinuous piecewise
constant function that takes the values

f(x) = f
n

, for n < x < n+ 1; (1)

and so on. Each of this choices has specific advantages,
and each is useful in order to visualize the data set. Can
we do something similar with the geometrical data U

l

and X
l

?
That is, can we find an algorithm that picks up a

preferred “interpolating geometry” for each set of data
(U

l

, X
l

)? Making this choice is not strictly needed for
the interpretation of the theory. LQG is a continuous
theory defined by a set of variables much larger than the
(U

l

, X
l

) of a single fixed graph. However, in the context
of a truncation we restrict our attention to a finite num-
ber of gravitational field variables, and it is interesting
to choose an algorithm that selects a preferred geometry
characterized by the data U

l

and X
l

. The algorithm is
not unique, but a good choice may serve the purpose of
providing a geometrical intuition for the restricted set of
gravitational variables U

l

and X
l

. This is the sense in
which a geometry can be associated to the set (U

l

, X
l

):
the interpolating result provides an approximation of a
continuous geometry.

Two such choices have been recently considered in the
literature. In [7, 8, 14] the idea of a mode expansion of
the geometrical degrees of freedom of a (compact) space
in hyperspherical harmonics has been put forward in the

context of loop quantum cosmology [15, 16]. Roughly
speaking, it goes as follows. Consider a three-sphere S3

with a smooth metric on it. The components of the
4d metric g(↵),↵ 2 S3 can be expanded on a basis of
Wigner’s D functions,

g(↵) =
X

j,m,n

gjmnD(j)
mn

(↵).

If we truncate the expansion to a finite order in j, we
obtain a set of 3d geometries where “short wavelength”
modes are not excited. We can compute the quantities U

l

and X
l

for a finite graph (and its dual cellular complex)
on the resulting geometries; these are then expressed as
functions of the modes amplitudes gjmn [8]. Solving for
gjmn we obtain a geometry for each set (U

l

, X
l

). Notice
that this is the analog of using the data set f

n

for fixing
the amplitudes of the first N Fourier components of f(x),
namely the analog of the example (ii) mentioned above.

Alternatively, one may capture this finite amount of
information with a discrete metric space. This is an al-
ternative interpolation procedure, analog to the examples
(iii) or (iv) above. A construction of a discrete geometry
determined by the variables (U

l

, X
l

) is discussed in [6].
The idea is to introduce a class of discrete metric spaces,
called “twisted geometries”, defined over a cellular com-
plex. The geometry is specified by the the set of variables

(N
l

, Ñ
l

, j
l

, ⇠
l

) 2 P
l

⌘ S2 ⇥ S2 ⇥ ⇥ S1 (2)

associated to each oriented face l of the complex. Each
three-cell is taken to be flat, and equipped with an (arbi-
trary) orthonormal reference system. The two quantities
N

l

and Ñ
l

are interpreted as the two (normalized) nor-
mals to the face l, in the two reference frames associated
to the two cells bounded by l. The quantity |j| is the area
of the face l and the quantity ⇠ is related to the extrin-
sic curvature of the complex at l (in a manner that we
clarify in this paper). The relation between the variables
(N

l

, Ñ
l

, j
l

, ⇠
l

) that specify a twisted geometry and the
LQG variables is given by the canonical transformation
(dropping the su�x

l

)

X = jn⌧3ñ
�1, U = ne⇠⌧3 ñ�1. (3)

Here X = Xi⌧
i

2 su(2) where ⌧
i

, i = 1, 2, 3 are the Pauli
matrices multiplied by �i/2, and n = n(N) 2 SU(2) is
defined by

N i = Ri

j

(n)zj . (4)

where ~z = (zj) = (0, 0, 1), Ri

j

(n) is the adjoint represen-
tation of SU(2) (equivalently N i⌧

i

= n⌧3n
�1), and by

(the “phase convention”)

Ri

j

(n)(~z ⇥ ~N)j = (~z ⇥ ~N)i. (5)

From the quantities above one can construct a metric,

polynomial 
(mode expansion)

data set piecewise linear 
(Regge geometries)

piecewise flat 
(twisted geometries for 
generic holonomy-fluxes)

discontinuous

http://arxiv.org/pdf/1005.2927
http://arxiv.org/pdf/1005.2927
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REALATIONS

twistor space

area matching

“open”  twisted geometry

closure

“closed”  twisted geometry

shape matching

Regge phase space

SU(2) LQG

Gauss law

gauge-inv LQG



the connection



A = �[E] + �K
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THE THEORY

E => flux  operators           define the 3d geometry

A =>  holonomy  operators       define the SU(2) connection

independent:  A not chosen to be compatible with E

Ashtekar-Barbero connection: 

“open”  twisted geometry

closure

“closed”  twisted geometry

SU(2) LQG

Gauss law

gauge-inv LQG

Text

spin connection     extrinsic curvature
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CARTAN STRUCTURE EQUATION

Text

torsionThe spin connection is determined by

2

In general, the metric is discontinuous across a triangle
⌧ . Therefore there are two distinct flat metrics induced
on the same face: one from the left tetrahedron and one
from the right tetrahedron. The twisting of the geometry
measures the di↵erence between these two metrics. Since
a 2d flat metric is determined by three numbers, and, by
definition, the two metrics define the same area, there
are two twisting parameters.

Let us setup a coordinate system (x, y, z) covering the
two tetrahedra bounding a triangle face ⌧ . It is con-
venient to choose these coordinates so that the triangle
⌧ is at z = 0. Without loss of generality, we can always
choose the coordinate system and the triad in such a way
that the triad is cartesian, namely ei = dxi, on the left
tetrahedron. Then the discontinuity of the metric implies
that the triad on the right hand side tetrahedron can be
chosen to have the constant form

e1 = e1
x

dx+ e1
y

dy, e2 = e2
x

dx+ e2
y

dy, e3 = dz, (1)

The condition that the area is the same from both sides
gives det e = 1. Therefore the matrix

e = {ei
a

} =

0

@
e1
x

e1
y

0
e2
x

e2
y

0
0 0 1

1

A (2)

is in SL(3,R), or, more specifically it is in the SL(2,R)
upper block diagonal subgroup of SL(3,R).

The geometrical interpretation of these groups is
straightforward: e is the linear transformation that sends
a cartesian triangle with the dimensions given by the left
metric into the cartesian triangle with the dimensions
given by the right. In other words, e is the linear trans-
formation that makes the two triangles of FIG. 1 match.
Since the triangle is two dimensional, this linear transfor-
mation can always be chosen in the SL(2,R) subgroup.

On a Riemannian space, once we choose a triad field ei,
then the torsionless Cartan spin connection is the unique
solution of the first Cartan structure equation

dei + ✏i
jk

!j ^ ek = 0. (3)

On a twisted geometry this definition does not make
sense, because of the discontinuity of the triad on the
triangles that makes dei ill defined. To define the con-
nection on the twisted geometry, we therefore extend this
equation “across” the triangle, where ei is a discontinu-
ous field.

For this purpose, let us “thicken” the triangle, in order
to smooth-out the discontinuity, replacing the triangle ⌧

triangulation and not just its dual graph. Also, the definition

given here refers only to the intrinsic geometry. The full defi-

nition of the twisted geometry that appears in quantum gravity

includes also the extrinsic curvature, which plays no role here.

Finally, for simplicity we restrict our attention to triangulations,

but the results presented extend to generic cellular decomposi-

tions (and therefore to polyhedra other than tetrahedra).

by a foliated 3d region ⌧ ⇥ [0,�] where z 2 [0,�]. Now,
we can interpolate the triad by e(z), such that e(0) = 1l
and e(�) = e. The (finite) holonomy of the connection
across the face, U(e), can be defined as the� ! 0 limit of
the holonomy of the spin connection of e(z), which is cal-
culated across the thickened triangle. There is a highly
nontrivial condition on the interpolating triad: the re-
sulting holonomy must transform as an holonomy under
a change of frame on either tetrahedron. That is,

U(⇤
s

e⇤�1
t

) = ⇤
s

U(e)⇤�1
t

(4)

for any ⇤
s

,⇤
t

2 SO(3). An interpolating triad that sat-
isfies this condition can be obtained starting from the
polar decomposition of e

e = eAeS (5)

where A is antisymmetric and S is symmetric, by writing

e(z) = ezAezS . (6)

This defines a continuous triad joining the two tetrahe-
dra, di↵erentiable in (0,�). We can now compute the
spin connection of the interpolating region, and take the
limit � ! 0. This defines a torsionless spin connection
on the twisted geometry.

FIG. 2: We “thicken” the tri-
angle in order to smooth-out
the discontinuity. The path �
goes from one tetrahedron to
the other through the thick-
ened region.

Let us compute this connection explicitly. From the
last equation, we have

dei = (A+ ezASe�zA)i
j

dz ^ ej . (7)

Using this in the Cartan equation (and lowering an index)
we have

(A+ ezASe�zA)
ij

dz ^ ej = �✏
ijk

!j ^ ek. (8)

One can check that the solution of this equation is given
by

!i = Bi

j

ej (9)

where

Bi

j

= �✏ikl(A+ ezASe�zA)
jk

ez
l

+
1

2
✏klmA

kl

ez
m

�i
j

, (10)

where ez
i

is a matrix element of the inverse triad.
What is relevant for us is, of course, only the holonomy

of this connection across the thickened region. Consider
a path crossing this region at constant x and y. The
holonomy of !i across the region is given by

U = P e
�
R
�
!

= P e
�
R �

0
!(@z)dz. (11)

T

What can we carry in a discrete setting, i.e. twisted geometry?

2 tets that meet along one face: opposite normals, same face area, different face shape

The metric is discontinuous across the triangle!

no Cartan equation

Γ cannot be defined let alone the Ashtekar Barbero decomposition
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CARTAN STRUCTURE EQUATION

Text

The spin connection is determined by

2

In general, the metric is discontinuous across a triangle
⌧ . Therefore there are two distinct flat metrics induced
on the same face: one from the left tetrahedron and one
from the right tetrahedron. The twisting of the geometry
measures the di↵erence between these two metrics. Since
a 2d flat metric is determined by three numbers, and, by
definition, the two metrics define the same area, there
are two twisting parameters.

Let us setup a coordinate system (x, y, z) covering the
two tetrahedra bounding a triangle face ⌧ . It is con-
venient to choose these coordinates so that the triangle
⌧ is at z = 0. Without loss of generality, we can always
choose the coordinate system and the triad in such a way
that the triad is cartesian, namely ei = dxi, on the left
tetrahedron. Then the discontinuity of the metric implies
that the triad on the right hand side tetrahedron can be
chosen to have the constant form

e1 = e1
x

dx+ e1
y

dy, e2 = e2
x

dx+ e2
y

dy, e3 = dz, (1)

The condition that the area is the same from both sides
gives det e = 1. Therefore the matrix

e = {ei
a

} =

0

@
e1
x

e1
y

0
e2
x

e2
y

0
0 0 1

1

A (2)

is in SL(3,R), or, more specifically it is in the SL(2,R)
upper block diagonal subgroup of SL(3,R).

The geometrical interpretation of these groups is
straightforward: e is the linear transformation that sends
a cartesian triangle with the dimensions given by the left
metric into the cartesian triangle with the dimensions
given by the right. In other words, e is the linear trans-
formation that makes the two triangles of FIG. 1 match.
Since the triangle is two dimensional, this linear transfor-
mation can always be chosen in the SL(2,R) subgroup.

On a Riemannian space, once we choose a triad field ei,
then the torsionless Cartan spin connection is the unique
solution of the first Cartan structure equation

dei + ✏i
jk

!j ^ ek = 0. (3)

On a twisted geometry this definition does not make
sense, because of the discontinuity of the triad on the
triangles that makes dei ill defined. To define the con-
nection on the twisted geometry, we therefore extend this
equation “across” the triangle, where ei is a discontinu-
ous field.

For this purpose, let us “thicken” the triangle, in order
to smooth-out the discontinuity, replacing the triangle ⌧

triangulation and not just its dual graph. Also, the definition

given here refers only to the intrinsic geometry. The full defi-

nition of the twisted geometry that appears in quantum gravity

includes also the extrinsic curvature, which plays no role here.

Finally, for simplicity we restrict our attention to triangulations,

but the results presented extend to generic cellular decomposi-

tions (and therefore to polyhedra other than tetrahedra).

by a foliated 3d region ⌧ ⇥ [0,�] where z 2 [0,�]. Now,
we can interpolate the triad by e(z), such that e(0) = 1l
and e(�) = e. The (finite) holonomy of the connection
across the face, U(e), can be defined as the� ! 0 limit of
the holonomy of the spin connection of e(z), which is cal-
culated across the thickened triangle. There is a highly
nontrivial condition on the interpolating triad: the re-
sulting holonomy must transform as an holonomy under
a change of frame on either tetrahedron. That is,

U(⇤
s

e⇤�1
t

) = ⇤
s

U(e)⇤�1
t

(4)

for any ⇤
s

,⇤
t

2 SO(3). An interpolating triad that sat-
isfies this condition can be obtained starting from the
polar decomposition of e

e = eAeS (5)

where A is antisymmetric and S is symmetric, by writing

e(z) = ezAezS . (6)

This defines a continuous triad joining the two tetrahe-
dra, di↵erentiable in (0,�). We can now compute the
spin connection of the interpolating region, and take the
limit � ! 0. This defines a torsionless spin connection
on the twisted geometry.

FIG. 2: We “thicken” the tri-
angle in order to smooth-out
the discontinuity. The path �
goes from one tetrahedron to
the other through the thick-
ened region.

Let us compute this connection explicitly. From the
last equation, we have

dei = (A+ ezASe�zA)i
j

dz ^ ej . (7)

Using this in the Cartan equation (and lowering an index)
we have

(A+ ezASe�zA)
ij

dz ^ ej = �✏
ijk

!j ^ ek. (8)

One can check that the solution of this equation is given
by

!i = Bi

j

ej (9)

where

Bi

j

= �✏ikl(A+ ezASe�zA)
jk

ez
l

+
1

2
✏klmA

kl

ez
m

�i
j

, (10)

where ez
i

is a matrix element of the inverse triad.
What is relevant for us is, of course, only the holonomy

of this connection across the thickened region. Consider
a path crossing this region at constant x and y. The
holonomy of !i across the region is given by

U = P e
�
R
�
!

= P e
�
R �

0
!(@z)dz. (11)

What can we carry in a discrete setting, i.e. twisted geometry?

2 tets that meet along one face: opposite normals, same face area, different face shape

The metric is discontinuous across the triangle!

no Cartan equation

Γ cannot be defined let alone the Ashtekar Barbero decomposition



interpolated connection
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AN EXPLICIT CONSTRUCTION OF Γ

Idea: 

introduce interpolating geometry

calculate connection and holonomy

removing the interpolation by taking ∆ → 0

Text z=[0,∆]
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TRIADS

left

dxi

area matching:  

linear transformation that matches shapes:

             upper block diagonal subgroup of

extend the definition of e to e(z):                      on the left
                                                                   on the right

2

In general, the metric is discontinuous across a triangle
⌧ . Therefore there are two distinct flat metrics induced
on the same face: one from the left tetrahedron and one
from the right tetrahedron. The twisting of the geometry
measures the di↵erence between these two metrics. Since
a 2d flat metric is determined by three numbers, and, by
definition, the two metrics define the same area, there
are two twisting parameters.

Let us setup a coordinate system (x, y, z) covering the
two tetrahedra bounding a triangle face ⌧ . It is con-
venient to choose these coordinates so that the triangle
⌧ is at z = 0. Without loss of generality, we can always
choose the coordinate system and the triad in such a way
that the triad is cartesian, namely ei = dxi, on the left
tetrahedron. Then the discontinuity of the metric implies
that the triad on the right hand side tetrahedron can be
chosen to have the constant form

e1 = e1
x

dx+ e1
y

dy, e2 = e2
x

dx+ e2
y

dy, e3 = dz, (1)

The condition that the area is the same from both sides
gives det e = 1. Therefore the matrix

e = {ei
a

} =

0

@
e1
x

e1
y

0
e2
x

e2
y

0
0 0 1

1

A (2)

is in SL(3,R), or, more specifically it is in the SL(2,R)
upper block diagonal subgroup of SL(3,R).

The geometrical interpretation of these groups is
straightforward: e is the linear transformation that sends
a cartesian triangle with the dimensions given by the left
metric into the cartesian triangle with the dimensions
given by the right. In other words, e is the linear trans-
formation that makes the two triangles of FIG. 1 match.
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across the face, U(e), can be defined as the� ! 0 limit of
the holonomy of the spin connection of e(z), which is cal-
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where A is antisymmetric and S is symmetric, by writing
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dra, di↵erentiable in (0,�). We can now compute the
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⌧ is at z = 0. Without loss of generality, we can always
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In general, the metric is discontinuous across a triangle
⌧ . Therefore there are two distinct flat metrics induced
on the same face: one from the left tetrahedron and one
from the right tetrahedron. The twisting of the geometry
measures the di↵erence between these two metrics. Since
a 2d flat metric is determined by three numbers, and, by
definition, the two metrics define the same area, there
are two twisting parameters.

Let us setup a coordinate system (x, y, z) covering the
two tetrahedra bounding a triangle face ⌧ . It is con-
venient to choose these coordinates so that the triangle
⌧ is at z = 0. Without loss of generality, we can always
choose the coordinate system and the triad in such a way
that the triad is cartesian, namely ei = dxi, on the left
tetrahedron. Then the discontinuity of the metric implies
that the triad on the right hand side tetrahedron can be
chosen to have the constant form
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straightforward: e is the linear transformation that sends
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metric into the cartesian triangle with the dimensions
given by the right. In other words, e is the linear trans-
formation that makes the two triangles of FIG. 1 match.
Since the triangle is two dimensional, this linear transfor-
mation can always be chosen in the SL(2,R) subgroup.

On a Riemannian space, once we choose a triad field ei,
then the torsionless Cartan spin connection is the unique
solution of the first Cartan structure equation

dei + ✏i
jk

!j ^ ek = 0. (3)

On a twisted geometry this definition does not make
sense, because of the discontinuity of the triad on the
triangles that makes dei ill defined. To define the con-
nection on the twisted geometry, we therefore extend this
equation “across” the triangle, where ei is a discontinu-
ous field.

For this purpose, let us “thicken” the triangle, in order
to smooth-out the discontinuity, replacing the triangle ⌧
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across the face, U(e), can be defined as the� ! 0 limit of
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In general, the metric is discontinuous across a triangle
⌧ . Therefore there are two distinct flat metrics induced
on the same face: one from the left tetrahedron and one
from the right tetrahedron. The twisting of the geometry
measures the di↵erence between these two metrics. Since
a 2d flat metric is determined by three numbers, and, by
definition, the two metrics define the same area, there
are two twisting parameters.

Let us setup a coordinate system (x, y, z) covering the
two tetrahedra bounding a triangle face ⌧ . It is con-
venient to choose these coordinates so that the triangle
⌧ is at z = 0. Without loss of generality, we can always
choose the coordinate system and the triad in such a way
that the triad is cartesian, namely ei = dxi, on the left
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chosen to have the constant form
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straightforward: e is the linear transformation that sends
a cartesian triangle with the dimensions given by the left
metric into the cartesian triangle with the dimensions
given by the right. In other words, e is the linear trans-
formation that makes the two triangles of FIG. 1 match.
Since the triangle is two dimensional, this linear transfor-
mation can always be chosen in the SL(2,R) subgroup.

On a Riemannian space, once we choose a triad field ei,
then the torsionless Cartan spin connection is the unique
solution of the first Cartan structure equation
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On a twisted geometry this definition does not make
sense, because of the discontinuity of the triad on the
triangles that makes dei ill defined. To define the con-
nection on the twisted geometry, we therefore extend this
equation “across” the triangle, where ei is a discontinu-
ous field.

For this purpose, let us “thicken” the triangle, in order
to smooth-out the discontinuity, replacing the triangle ⌧
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This defines a continuous triad joining the two tetrahe-
dra, di↵erentiable in (0,�). We can now compute the
spin connection of the interpolating region, and take the
limit � ! 0. This defines a torsionless spin connection
on the twisted geometry.
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⌧ . Therefore there are two distinct flat metrics induced
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from the right tetrahedron. The twisting of the geometry
measures the di↵erence between these two metrics. Since
a 2d flat metric is determined by three numbers, and, by
definition, the two metrics define the same area, there
are two twisting parameters.

Let us setup a coordinate system (x, y, z) covering the
two tetrahedra bounding a triangle face ⌧ . It is con-
venient to choose these coordinates so that the triangle
⌧ is at z = 0. Without loss of generality, we can always
choose the coordinate system and the triad in such a way
that the triad is cartesian, namely ei = dxi, on the left
tetrahedron. Then the discontinuity of the metric implies
that the triad on the right hand side tetrahedron can be
chosen to have the constant form
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is in SL(3,R), or, more specifically it is in the SL(2,R)
upper block diagonal subgroup of SL(3,R).

The geometrical interpretation of these groups is
straightforward: e is the linear transformation that sends
a cartesian triangle with the dimensions given by the left
metric into the cartesian triangle with the dimensions
given by the right. In other words, e is the linear trans-
formation that makes the two triangles of FIG. 1 match.
Since the triangle is two dimensional, this linear transfor-
mation can always be chosen in the SL(2,R) subgroup.

On a Riemannian space, once we choose a triad field ei,
then the torsionless Cartan spin connection is the unique
solution of the first Cartan structure equation

dei + ✏i
jk

!j ^ ek = 0. (3)

On a twisted geometry this definition does not make
sense, because of the discontinuity of the triad on the
triangles that makes dei ill defined. To define the con-
nection on the twisted geometry, we therefore extend this
equation “across” the triangle, where ei is a discontinu-
ous field.

For this purpose, let us “thicken” the triangle, in order
to smooth-out the discontinuity, replacing the triangle ⌧
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we can interpolate the triad by e(z), such that e(0) = 1l
and e(�) = e. The (finite) holonomy of the connection
across the face, U(e), can be defined as the� ! 0 limit of
the holonomy of the spin connection of e(z), which is cal-
culated across the thickened triangle. There is a highly
nontrivial condition on the interpolating triad: the re-
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polar decomposition of e

e = eAeS (5)

where A is antisymmetric and S is symmetric, by writing

e(z) = ezAezS . (6)

This defines a continuous triad joining the two tetrahe-
dra, di↵erentiable in (0,�). We can now compute the
spin connection of the interpolating region, and take the
limit � ! 0. This defines a torsionless spin connection
on the twisted geometry.
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Let us compute this connection explicitly. From the
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In general, the metric is discontinuous across a triangle
⌧ . Therefore there are two distinct flat metrics induced
on the same face: one from the left tetrahedron and one
from the right tetrahedron. The twisting of the geometry
measures the di↵erence between these two metrics. Since
a 2d flat metric is determined by three numbers, and, by
definition, the two metrics define the same area, there
are two twisting parameters.

Let us setup a coordinate system (x, y, z) covering the
two tetrahedra bounding a triangle face ⌧ . It is con-
venient to choose these coordinates so that the triangle
⌧ is at z = 0. Without loss of generality, we can always
choose the coordinate system and the triad in such a way
that the triad is cartesian, namely ei = dxi, on the left
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The geometrical interpretation of these groups is
straightforward: e is the linear transformation that sends
a cartesian triangle with the dimensions given by the left
metric into the cartesian triangle with the dimensions
given by the right. In other words, e is the linear trans-
formation that makes the two triangles of FIG. 1 match.
Since the triangle is two dimensional, this linear transfor-
mation can always be chosen in the SL(2,R) subgroup.

On a Riemannian space, once we choose a triad field ei,
then the torsionless Cartan spin connection is the unique
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On a twisted geometry this definition does not make
sense, because of the discontinuity of the triad on the
triangles that makes dei ill defined. To define the con-
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This defines a continuous triad joining the two tetrahe-
dra, di↵erentiable in (0,�). We can now compute the
spin connection of the interpolating region, and take the
limit � ! 0. This defines a torsionless spin connection
on the twisted geometry.
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⌧ . Therefore there are two distinct flat metrics induced
on the same face: one from the left tetrahedron and one
from the right tetrahedron. The twisting of the geometry
measures the di↵erence between these two metrics. Since
a 2d flat metric is determined by three numbers, and, by
definition, the two metrics define the same area, there
are two twisting parameters.

Let us setup a coordinate system (x, y, z) covering the
two tetrahedra bounding a triangle face ⌧ . It is con-
venient to choose these coordinates so that the triangle
⌧ is at z = 0. Without loss of generality, we can always
choose the coordinate system and the triad in such a way
that the triad is cartesian, namely ei = dxi, on the left
tetrahedron. Then the discontinuity of the metric implies
that the triad on the right hand side tetrahedron can be
chosen to have the constant form

e1 = e1
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dy, e2 = e2
x

dx+ e2
y
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The condition that the area is the same from both sides
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e = {ei
a

} =

0

@
e1
x

e1
y

0
e2
x

e2
y

0
0 0 1

1

A (2)

is in SL(3,R), or, more specifically it is in the SL(2,R)
upper block diagonal subgroup of SL(3,R).

The geometrical interpretation of these groups is
straightforward: e is the linear transformation that sends
a cartesian triangle with the dimensions given by the left
metric into the cartesian triangle with the dimensions
given by the right. In other words, e is the linear trans-
formation that makes the two triangles of FIG. 1 match.
Since the triangle is two dimensional, this linear transfor-
mation can always be chosen in the SL(2,R) subgroup.

On a Riemannian space, once we choose a triad field ei,
then the torsionless Cartan spin connection is the unique
solution of the first Cartan structure equation

dei + ✏i
jk

!j ^ ek = 0. (3)

On a twisted geometry this definition does not make
sense, because of the discontinuity of the triad on the
triangles that makes dei ill defined. To define the con-
nection on the twisted geometry, we therefore extend this
equation “across” the triangle, where ei is a discontinu-
ous field.

For this purpose, let us “thicken” the triangle, in order
to smooth-out the discontinuity, replacing the triangle ⌧

triangulation and not just its dual graph. Also, the definition

given here refers only to the intrinsic geometry. The full defi-

nition of the twisted geometry that appears in quantum gravity

includes also the extrinsic curvature, which plays no role here.

Finally, for simplicity we restrict our attention to triangulations,

but the results presented extend to generic cellular decomposi-

tions (and therefore to polyhedra other than tetrahedra).

by a foliated 3d region ⌧ ⇥ [0,�] where z 2 [0,�]. Now,
we can interpolate the triad by e(z), such that e(0) = 1l
and e(�) = e. The (finite) holonomy of the connection
across the face, U(e), can be defined as the� ! 0 limit of
the holonomy of the spin connection of e(z), which is cal-
culated across the thickened triangle. There is a highly
nontrivial condition on the interpolating triad: the re-
sulting holonomy must transform as an holonomy under
a change of frame on either tetrahedron. That is,
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2 SO(3). An interpolating triad that sat-
isfies this condition can be obtained starting from the
polar decomposition of e

e = eAeS (5)

where A is antisymmetric and S is symmetric, by writing

e(z) = ezAezS . (6)

This defines a continuous triad joining the two tetrahe-
dra, di↵erentiable in (0,�). We can now compute the
spin connection of the interpolating region, and take the
limit � ! 0. This defines a torsionless spin connection
on the twisted geometry.
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metric into the cartesian triangle with the dimensions
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mation can always be chosen in the SL(2,R) subgroup.
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In general, the metric is discontinuous across a triangle
⌧ . Therefore there are two distinct flat metrics induced
on the same face: one from the left tetrahedron and one
from the right tetrahedron. The twisting of the geometry
measures the di↵erence between these two metrics. Since
a 2d flat metric is determined by three numbers, and, by
definition, the two metrics define the same area, there
are two twisting parameters.

Let us setup a coordinate system (x, y, z) covering the
two tetrahedra bounding a triangle face ⌧ . It is con-
venient to choose these coordinates so that the triangle
⌧ is at z = 0. Without loss of generality, we can always
choose the coordinate system and the triad in such a way
that the triad is cartesian, namely ei = dxi, on the left
tetrahedron. Then the discontinuity of the metric implies
that the triad on the right hand side tetrahedron can be
chosen to have the constant form
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is in SL(3,R), or, more specifically it is in the SL(2,R)
upper block diagonal subgroup of SL(3,R).

The geometrical interpretation of these groups is
straightforward: e is the linear transformation that sends
a cartesian triangle with the dimensions given by the left
metric into the cartesian triangle with the dimensions
given by the right. In other words, e is the linear trans-
formation that makes the two triangles of FIG. 1 match.
Since the triangle is two dimensional, this linear transfor-
mation can always be chosen in the SL(2,R) subgroup.

On a Riemannian space, once we choose a triad field ei,
then the torsionless Cartan spin connection is the unique
solution of the first Cartan structure equation

dei + ✏i
jk

!j ^ ek = 0. (3)

On a twisted geometry this definition does not make
sense, because of the discontinuity of the triad on the
triangles that makes dei ill defined. To define the con-
nection on the twisted geometry, we therefore extend this
equation “across” the triangle, where ei is a discontinu-
ous field.

For this purpose, let us “thicken” the triangle, in order
to smooth-out the discontinuity, replacing the triangle ⌧

triangulation and not just its dual graph. Also, the definition

given here refers only to the intrinsic geometry. The full defi-

nition of the twisted geometry that appears in quantum gravity

includes also the extrinsic curvature, which plays no role here.

Finally, for simplicity we restrict our attention to triangulations,

but the results presented extend to generic cellular decomposi-

tions (and therefore to polyhedra other than tetrahedra).
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we can interpolate the triad by e(z), such that e(0) = 1l
and e(�) = e. The (finite) holonomy of the connection
across the face, U(e), can be defined as the� ! 0 limit of
the holonomy of the spin connection of e(z), which is cal-
culated across the thickened triangle. There is a highly
nontrivial condition on the interpolating triad: the re-
sulting holonomy must transform as an holonomy under
a change of frame on either tetrahedron. That is,
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2 SO(3). An interpolating triad that sat-
isfies this condition can be obtained starting from the
polar decomposition of e

e = eAeS (5)

where A is antisymmetric and S is symmetric, by writing

e(z) = ezAezS . (6)

This defines a continuous triad joining the two tetrahe-
dra, di↵erentiable in (0,�). We can now compute the
spin connection of the interpolating region, and take the
limit � ! 0. This defines a torsionless spin connection
on the twisted geometry.

FIG. 2: We “thicken” the tri-
angle in order to smooth-out
the discontinuity. The path �
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the other through the thick-
ened region.

Let us compute this connection explicitly. From the
last equation, we have

dei = (A+ ezASe�zA)i
j

dz ^ ej . (7)

Using this in the Cartan equation (and lowering an index)
we have
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In general, the metric is discontinuous across a triangle
⌧ . Therefore there are two distinct flat metrics induced
on the same face: one from the left tetrahedron and one
from the right tetrahedron. The twisting of the geometry
measures the di↵erence between these two metrics. Since
a 2d flat metric is determined by three numbers, and, by
definition, the two metrics define the same area, there
are two twisting parameters.

Let us setup a coordinate system (x, y, z) covering the
two tetrahedra bounding a triangle face ⌧ . It is con-
venient to choose these coordinates so that the triangle
⌧ is at z = 0. Without loss of generality, we can always
choose the coordinate system and the triad in such a way
that the triad is cartesian, namely ei = dxi, on the left
tetrahedron. Then the discontinuity of the metric implies
that the triad on the right hand side tetrahedron can be
chosen to have the constant form
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is in SL(3,R), or, more specifically it is in the SL(2,R)
upper block diagonal subgroup of SL(3,R).

The geometrical interpretation of these groups is
straightforward: e is the linear transformation that sends
a cartesian triangle with the dimensions given by the left
metric into the cartesian triangle with the dimensions
given by the right. In other words, e is the linear trans-
formation that makes the two triangles of FIG. 1 match.
Since the triangle is two dimensional, this linear transfor-
mation can always be chosen in the SL(2,R) subgroup.

On a Riemannian space, once we choose a triad field ei,
then the torsionless Cartan spin connection is the unique
solution of the first Cartan structure equation

dei + ✏i
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On a twisted geometry this definition does not make
sense, because of the discontinuity of the triad on the
triangles that makes dei ill defined. To define the con-
nection on the twisted geometry, we therefore extend this
equation “across” the triangle, where ei is a discontinu-
ous field.

For this purpose, let us “thicken” the triangle, in order
to smooth-out the discontinuity, replacing the triangle ⌧

triangulation and not just its dual graph. Also, the definition

given here refers only to the intrinsic geometry. The full defi-
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includes also the extrinsic curvature, which plays no role here.
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across the face, U(e), can be defined as the� ! 0 limit of
the holonomy of the spin connection of e(z), which is cal-
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dra, di↵erentiable in (0,�). We can now compute the
spin connection of the interpolating region, and take the
limit � ! 0. This defines a torsionless spin connection
on the twisted geometry.
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definition, the two metrics define the same area, there
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formation that makes the two triangles of FIG. 1 match.
Since the triangle is two dimensional, this linear transfor-
mation can always be chosen in the SL(2,R) subgroup.

On a Riemannian space, once we choose a triad field ei,
then the torsionless Cartan spin connection is the unique
solution of the first Cartan structure equation

dei + ✏i
jk

!j ^ ek = 0. (3)

On a twisted geometry this definition does not make
sense, because of the discontinuity of the triad on the
triangles that makes dei ill defined. To define the con-
nection on the twisted geometry, we therefore extend this
equation “across” the triangle, where ei is a discontinu-
ous field.

For this purpose, let us “thicken” the triangle, in order
to smooth-out the discontinuity, replacing the triangle ⌧

triangulation and not just its dual graph. Also, the definition

given here refers only to the intrinsic geometry. The full defi-

nition of the twisted geometry that appears in quantum gravity

includes also the extrinsic curvature, which plays no role here.

Finally, for simplicity we restrict our attention to triangulations,

but the results presented extend to generic cellular decomposi-

tions (and therefore to polyhedra other than tetrahedra).

by a foliated 3d region ⌧ ⇥ [0,�] where z 2 [0,�]. Now,
we can interpolate the triad by e(z), such that e(0) = 1l
and e(�) = e. The (finite) holonomy of the connection
across the face, U(e), can be defined as the� ! 0 limit of
the holonomy of the spin connection of e(z), which is cal-
culated across the thickened triangle. There is a highly
nontrivial condition on the interpolating triad: the re-
sulting holonomy must transform as an holonomy under
a change of frame on either tetrahedron. That is,

U(⇤
s

e⇤�1
t

) = ⇤
s

U(e)⇤�1
t

(4)

for any ⇤
s

,⇤
t

2 SO(3). An interpolating triad that sat-
isfies this condition can be obtained starting from the
polar decomposition of e

e = eAeS (5)

where A is antisymmetric and S is symmetric, by writing

e(z) = ezAezS . (6)

This defines a continuous triad joining the two tetrahe-
dra, di↵erentiable in (0,�). We can now compute the
spin connection of the interpolating region, and take the
limit � ! 0. This defines a torsionless spin connection
on the twisted geometry.

FIG. 2: We “thicken” the tri-
angle in order to smooth-out
the discontinuity. The path �
goes from one tetrahedron to
the other through the thick-
ened region.

Let us compute this connection explicitly. From the
last equation, we have

dei = (A+ ezASe�zA)i
j

dz ^ ej . (7)

Using this in the Cartan equation (and lowering an index)
we have

(A+ ezASe�zA)
ij

dz ^ ej = �✏
ijk

!j ^ ek. (8)

One can check that the solution of this equation is given
by

!i = Bi

j

ej (9)

where
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= �✏ikl(A+ ezASe�zA)
jk

ez
l

+
1

2
✏klmA

kl

ez
m

�i
j

, (10)

where ez
i

is a matrix element of the inverse triad.
What is relevant for us is, of course, only the holonomy

of this connection across the thickened region. Consider
a path crossing this region at constant x and y. The
holonomy of !i across the region is given by

U = P e
�
R
�
!

= P e
�
R �

0
!(@z)dz. (11)
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Observe now that since e(z) 2 SL(2,R) ⇢ SL(3,R) it
follows that (A+ ezASe�zA) is upper block diagonal and
so is B, and therefore !

z

is determined just by the second
term in (10). Explicitly,

!k(@
z

) =
1

2
✏kijA

ij

(12)

So that

U = expA (13)

that is, the holonomy is precisely the orthogonal matrix
in the polar decomposition of e. For the explicit form of
the polar decomposition, we have then

U(e) = e(eTe)�1/2 (14)

where eT is the transpose of e. Since U(e) is indepen-
dent from the size of the interpolating region, taking the
limit � ! 0 is immediate. The resulting distributional
torsionless spin connection is concentrated on the face
⌧ : (�1,�2) 7! xa(�) and is given by

� = �Ad⌧ (15)

where the distributional one-form of the triangle is de-
fined by
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It is easy to verify that (4) is satisfied.

III. CONNECTION AS A FUNCTION OF THE
NORMALS

In this section we compute the connection U in terms
of the normals to the faces of the tetrahedra, which are
the basic variables defining the twisted geometry in loop
gravity. Let e be a triad in the right tetrahedron and ẽ
the one in the left tetrahedron, in the same coordinate
system. The interpolating map is given by the SL(2,R)
block diagonal matrix

s = eẽ�1 (17)

and the holonomy is U(s). Consider a tetrahedron de-
fined by the triple of vectors v

a

2 R3, a = 1, 2, 3. The
normals to the faces defined by two of these vectors, nor-
malized to the area of the face, is given by

n1 =
1

2
v2 ⇥ v3, (18)

and so on cyclically. These equations can be inverted,
giving the vectors as functions of the normals:

v1 =
2

3V
n2 ⇥ n3, (19)

where V is the volume of the tetrahedron, given by

V =
1

3!
(v1 ⇥ v2) · v3 =

r
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9
(n1 ⇥ n2) · n3. (20)

Say we are interested in the face f defined by the vec-
tors v1 and v2, or equivalently by the normal n3. It is
convenient2 to use the linear but non-orthogonal coordi-
nates adapted to the face, determined by the triple u

a

=
(v1,v2, n̂3), where n̂3 = n3/|n3|. That is, we use coordi-
nates xa = (x, y, z) defined by x = xv1 + y v2 + z n̂3. It
is immediate to see that in these coordinates the metric
of the tetrahedron is given by

g =

0
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v1 ·v2 |v2|2 0

0 0 1

1
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Notice that |v1|2|v2|2 � (v1 · v2)2 = (2A)2 (so that
det g = 4A2). Without loss of generality, we can orient
the cartesian frame (in both the left and right tetrahedra)
so that

v1 = (a, 0, 0) (22)

v2 = (b, c, 0) (23)

n̂3 = (0, 0, 1) (24)

where

a = |v1|, b =
v1 ·v2

|v1|
, (25)

c =
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Now, observe that a triad for this metric is precisely

ei = vi1dx+ vi2dy + n̂i

3dz, (27)

that is,
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0 0 1

1
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The left triad ẽ is given by by the same expression for the
left tetrahedron, which we indicate here by tilded quan-
tities. Therefore the SL(3,R) matrix s that transforms
the left triangle into the right one is

s = {ei
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(ẽ�1)a
j

} =
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a/ã 0 0

(bc̃� cb̃)/ãc̃ c/c̃ 0
0 0 1

1

A (29)

The orthogonal part of the polar decomposition of this
matrix is, with some algebra, a rotation in the xy plane
with angle determined by

cos(✓) = (cã+ ac̃)/
p
D, sin(✓) = (bc̃� cb̃)/

p
D,

D = c̃2(a2 + b2) + c2(ã2 + b̃2) + 2cc̃(aã� bb̃).
(30)
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A matrix M                   can be always written as 
M=PU =UP=eAeS         polar decomposition:
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In general, the metric is discontinuous across a triangle
⌧ . Therefore there are two distinct flat metrics induced
on the same face: one from the left tetrahedron and one
from the right tetrahedron. The twisting of the geometry
measures the di↵erence between these two metrics. Since
a 2d flat metric is determined by three numbers, and, by
definition, the two metrics define the same area, there
are two twisting parameters.

Let us setup a coordinate system (x, y, z) covering the
two tetrahedra bounding a triangle face ⌧ . It is con-
venient to choose these coordinates so that the triangle
⌧ is at z = 0. Without loss of generality, we can always
choose the coordinate system and the triad in such a way
that the triad is cartesian, namely ei = dxi, on the left
tetrahedron. Then the discontinuity of the metric implies
that the triad on the right hand side tetrahedron can be
chosen to have the constant form
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is in SL(3,R), or, more specifically it is in the SL(2,R)
upper block diagonal subgroup of SL(3,R).

The geometrical interpretation of these groups is
straightforward: e is the linear transformation that sends
a cartesian triangle with the dimensions given by the left
metric into the cartesian triangle with the dimensions
given by the right. In other words, e is the linear trans-
formation that makes the two triangles of FIG. 1 match.
Since the triangle is two dimensional, this linear transfor-
mation can always be chosen in the SL(2,R) subgroup.

On a Riemannian space, once we choose a triad field ei,
then the torsionless Cartan spin connection is the unique
solution of the first Cartan structure equation

dei + ✏i
jk

!j ^ ek = 0. (3)

On a twisted geometry this definition does not make
sense, because of the discontinuity of the triad on the
triangles that makes dei ill defined. To define the con-
nection on the twisted geometry, we therefore extend this
equation “across” the triangle, where ei is a discontinu-
ous field.

For this purpose, let us “thicken” the triangle, in order
to smooth-out the discontinuity, replacing the triangle ⌧

triangulation and not just its dual graph. Also, the definition

given here refers only to the intrinsic geometry. The full defi-

nition of the twisted geometry that appears in quantum gravity

includes also the extrinsic curvature, which plays no role here.

Finally, for simplicity we restrict our attention to triangulations,

but the results presented extend to generic cellular decomposi-

tions (and therefore to polyhedra other than tetrahedra).

by a foliated 3d region ⌧ ⇥ [0,�] where z 2 [0,�]. Now,
we can interpolate the triad by e(z), such that e(0) = 1l
and e(�) = e. The (finite) holonomy of the connection
across the face, U(e), can be defined as the� ! 0 limit of
the holonomy of the spin connection of e(z), which is cal-
culated across the thickened triangle. There is a highly
nontrivial condition on the interpolating triad: the re-
sulting holonomy must transform as an holonomy under
a change of frame on either tetrahedron. That is,
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2 SO(3). An interpolating triad that sat-
isfies this condition can be obtained starting from the
polar decomposition of e

e = eAeS (5)

where A is antisymmetric and S is symmetric, by writing

e(z) = ezAezS . (6)

This defines a continuous triad joining the two tetrahe-
dra, di↵erentiable in (0,�). We can now compute the
spin connection of the interpolating region, and take the
limit � ! 0. This defines a torsionless spin connection
on the twisted geometry.

FIG. 2: We “thicken” the tri-
angle in order to smooth-out
the discontinuity. The path �
goes from one tetrahedron to
the other through the thick-
ened region.

Let us compute this connection explicitly. From the
last equation, we have

dei = (A+ ezASe�zA)i
j

dz ^ ej . (7)

Using this in the Cartan equation (and lowering an index)
we have

(A+ ezASe�zA)
ij

dz ^ ej = �✏
ijk

!j ^ ek. (8)

One can check that the solution of this equation is given
by

!i = Bi
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+
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where ez
i

is a matrix element of the inverse triad.
What is relevant for us is, of course, only the holonomy

of this connection across the thickened region. Consider
a path crossing this region at constant x and y. The
holonomy of !i across the region is given by
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Observe now that since e(z) 2 SL(2,R) ⇢ SL(3,R) it
follows that (A+ ezASe�zA) is upper block diagonal and
so is B, and therefore !
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is determined just by the second
term in (10). Explicitly,

!k(@
z

) =
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So that

U = expA (13)

that is, the holonomy is precisely the orthogonal matrix
in the polar decomposition of e. For the explicit form of
the polar decomposition, we have then

U(e) = e(eTe)�1/2 (14)

where eT is the transpose of e. Since U(e) is indepen-
dent from the size of the interpolating region, taking the
limit � ! 0 is immediate. The resulting distributional
torsionless spin connection is concentrated on the face
⌧ : (�1,�2) 7! xa(�) and is given by

� = �Ad⌧ (15)

where the distributional one-form of the triangle is de-
fined by
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It is easy to verify that (4) is satisfied.

III. CONNECTION AS A FUNCTION OF THE
NORMALS

In this section we compute the connection U in terms
of the normals to the faces of the tetrahedra, which are
the basic variables defining the twisted geometry in loop
gravity. Let e be a triad in the right tetrahedron and ẽ
the one in the left tetrahedron, in the same coordinate
system. The interpolating map is given by the SL(2,R)
block diagonal matrix

s = eẽ�1 (17)

and the holonomy is U(s). Consider a tetrahedron de-
fined by the triple of vectors v

a

2 R3, a = 1, 2, 3. The
normals to the faces defined by two of these vectors, nor-
malized to the area of the face, is given by

n1 =
1

2
v2 ⇥ v3, (18)

and so on cyclically. These equations can be inverted,
giving the vectors as functions of the normals:

v1 =
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3V
n2 ⇥ n3, (19)

where V is the volume of the tetrahedron, given by

V =
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Say we are interested in the face f defined by the vec-
tors v1 and v2, or equivalently by the normal n3. It is
convenient2 to use the linear but non-orthogonal coordi-
nates adapted to the face, determined by the triple u

a

=
(v1,v2, n̂3), where n̂3 = n3/|n3|. That is, we use coordi-
nates xa = (x, y, z) defined by x = xv1 + y v2 + z n̂3. It
is immediate to see that in these coordinates the metric
of the tetrahedron is given by

g =
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Notice that |v1|2|v2|2 � (v1 · v2)2 = (2A)2 (so that
det g = 4A2). Without loss of generality, we can orient
the cartesian frame (in both the left and right tetrahedra)
so that

v1 = (a, 0, 0) (22)

v2 = (b, c, 0) (23)

n̂3 = (0, 0, 1) (24)

where

a = |v1|, b =
v1 ·v2
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, (25)

c =
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Now, observe that a triad for this metric is precisely

ei = vi1dx+ vi2dy + n̂i

3dz, (27)

that is,

e = {ei
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} =
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a 0 0
b c 0
0 0 1
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The left triad ẽ is given by by the same expression for the
left tetrahedron, which we indicate here by tilded quan-
tities. Therefore the SL(3,R) matrix s that transforms
the left triangle into the right one is

s = {ei
a

(ẽ�1)a
j

} =

0

@
a/ã 0 0

(bc̃� cb̃)/ãc̃ c/c̃ 0
0 0 1

1

A (29)

The orthogonal part of the polar decomposition of this
matrix is, with some algebra, a rotation in the xy plane
with angle determined by

cos(✓) = (cã+ ac̃)/
p
D, sin(✓) = (bc̃� cb̃)/

p
D,

D = c̃2(a2 + b2) + c2(ã2 + b̃2) + 2cc̃(aã� bb̃).
(30)
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2 SL(3,R)



It is convenient to lower an index and antisymmetrize:  ωij = εijk ωk

The solution of the Cartan equation is:

                       where

The holonomy across ∆ is given by

Notice that B is upper block diagonal:

The holonomy is just the rotation part of the polar decomposition:

Distributional torsionless spin connection:

 where

Francesca Vidottoa new twist on spin connections

THE INTERPOLATED CONNECTION

2

In general, the metric is discontinuous across a triangle
⌧ . Therefore there are two distinct flat metrics induced
on the same face: one from the left tetrahedron and one
from the right tetrahedron. The twisting of the geometry
measures the di↵erence between these two metrics. Since
a 2d flat metric is determined by three numbers, and, by
definition, the two metrics define the same area, there
are two twisting parameters.

Let us setup a coordinate system (x, y, z) covering the
two tetrahedra bounding a triangle face ⌧ . It is con-
venient to choose these coordinates so that the triangle
⌧ is at z = 0. Without loss of generality, we can always
choose the coordinate system and the triad in such a way
that the triad is cartesian, namely ei = dxi, on the left
tetrahedron. Then the discontinuity of the metric implies
that the triad on the right hand side tetrahedron can be
chosen to have the constant form

e1 = e1
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dx+ e1
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dy, e2 = e2
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dx+ e2
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dy, e3 = dz, (1)

The condition that the area is the same from both sides
gives det e = 1. Therefore the matrix
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is in SL(3,R), or, more specifically it is in the SL(2,R)
upper block diagonal subgroup of SL(3,R).

The geometrical interpretation of these groups is
straightforward: e is the linear transformation that sends
a cartesian triangle with the dimensions given by the left
metric into the cartesian triangle with the dimensions
given by the right. In other words, e is the linear trans-
formation that makes the two triangles of FIG. 1 match.
Since the triangle is two dimensional, this linear transfor-
mation can always be chosen in the SL(2,R) subgroup.

On a Riemannian space, once we choose a triad field ei,
then the torsionless Cartan spin connection is the unique
solution of the first Cartan structure equation

dei + ✏i
jk

!j ^ ek = 0. (3)

On a twisted geometry this definition does not make
sense, because of the discontinuity of the triad on the
triangles that makes dei ill defined. To define the con-
nection on the twisted geometry, we therefore extend this
equation “across” the triangle, where ei is a discontinu-
ous field.

For this purpose, let us “thicken” the triangle, in order
to smooth-out the discontinuity, replacing the triangle ⌧

triangulation and not just its dual graph. Also, the definition

given here refers only to the intrinsic geometry. The full defi-

nition of the twisted geometry that appears in quantum gravity

includes also the extrinsic curvature, which plays no role here.

Finally, for simplicity we restrict our attention to triangulations,

but the results presented extend to generic cellular decomposi-

tions (and therefore to polyhedra other than tetrahedra).

by a foliated 3d region ⌧ ⇥ [0,�] where z 2 [0,�]. Now,
we can interpolate the triad by e(z), such that e(0) = 1l
and e(�) = e. The (finite) holonomy of the connection
across the face, U(e), can be defined as the� ! 0 limit of
the holonomy of the spin connection of e(z), which is cal-
culated across the thickened triangle. There is a highly
nontrivial condition on the interpolating triad: the re-
sulting holonomy must transform as an holonomy under
a change of frame on either tetrahedron. That is,
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2 SO(3). An interpolating triad that sat-
isfies this condition can be obtained starting from the
polar decomposition of e

e = eAeS (5)

where A is antisymmetric and S is symmetric, by writing

e(z) = ezAezS . (6)

This defines a continuous triad joining the two tetrahe-
dra, di↵erentiable in (0,�). We can now compute the
spin connection of the interpolating region, and take the
limit � ! 0. This defines a torsionless spin connection
on the twisted geometry.

FIG. 2: We “thicken” the tri-
angle in order to smooth-out
the discontinuity. The path �
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Let us compute this connection explicitly. From the
last equation, we have

dei = (A+ ezASe�zA)i
j

dz ^ ej . (7)

Using this in the Cartan equation (and lowering an index)
we have

(A+ ezASe�zA)
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One can check that the solution of this equation is given
by
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where ez
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is a matrix element of the inverse triad.
What is relevant for us is, of course, only the holonomy

of this connection across the thickened region. Consider
a path crossing this region at constant x and y. The
holonomy of !i across the region is given by
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In general, the metric is discontinuous across a triangle
⌧ . Therefore there are two distinct flat metrics induced
on the same face: one from the left tetrahedron and one
from the right tetrahedron. The twisting of the geometry
measures the di↵erence between these two metrics. Since
a 2d flat metric is determined by three numbers, and, by
definition, the two metrics define the same area, there
are two twisting parameters.

Let us setup a coordinate system (x, y, z) covering the
two tetrahedra bounding a triangle face ⌧ . It is con-
venient to choose these coordinates so that the triangle
⌧ is at z = 0. Without loss of generality, we can always
choose the coordinate system and the triad in such a way
that the triad is cartesian, namely ei = dxi, on the left
tetrahedron. Then the discontinuity of the metric implies
that the triad on the right hand side tetrahedron can be
chosen to have the constant form
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is in SL(3,R), or, more specifically it is in the SL(2,R)
upper block diagonal subgroup of SL(3,R).

The geometrical interpretation of these groups is
straightforward: e is the linear transformation that sends
a cartesian triangle with the dimensions given by the left
metric into the cartesian triangle with the dimensions
given by the right. In other words, e is the linear trans-
formation that makes the two triangles of FIG. 1 match.
Since the triangle is two dimensional, this linear transfor-
mation can always be chosen in the SL(2,R) subgroup.

On a Riemannian space, once we choose a triad field ei,
then the torsionless Cartan spin connection is the unique
solution of the first Cartan structure equation

dei + ✏i
jk

!j ^ ek = 0. (3)

On a twisted geometry this definition does not make
sense, because of the discontinuity of the triad on the
triangles that makes dei ill defined. To define the con-
nection on the twisted geometry, we therefore extend this
equation “across” the triangle, where ei is a discontinu-
ous field.

For this purpose, let us “thicken” the triangle, in order
to smooth-out the discontinuity, replacing the triangle ⌧

triangulation and not just its dual graph. Also, the definition

given here refers only to the intrinsic geometry. The full defi-

nition of the twisted geometry that appears in quantum gravity

includes also the extrinsic curvature, which plays no role here.

Finally, for simplicity we restrict our attention to triangulations,

but the results presented extend to generic cellular decomposi-

tions (and therefore to polyhedra other than tetrahedra).
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across the face, U(e), can be defined as the� ! 0 limit of
the holonomy of the spin connection of e(z), which is cal-
culated across the thickened triangle. There is a highly
nontrivial condition on the interpolating triad: the re-
sulting holonomy must transform as an holonomy under
a change of frame on either tetrahedron. That is,
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2 SO(3). An interpolating triad that sat-
isfies this condition can be obtained starting from the
polar decomposition of e

e = eAeS (5)

where A is antisymmetric and S is symmetric, by writing

e(z) = ezAezS . (6)

This defines a continuous triad joining the two tetrahe-
dra, di↵erentiable in (0,�). We can now compute the
spin connection of the interpolating region, and take the
limit � ! 0. This defines a torsionless spin connection
on the twisted geometry.

FIG. 2: We “thicken” the tri-
angle in order to smooth-out
the discontinuity. The path �
goes from one tetrahedron to
the other through the thick-
ened region.
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What is relevant for us is, of course, only the holonomy
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Observe now that since e(z) 2 SL(2,R) ⇢ SL(3,R) it
follows that (A+ ezASe�zA) is upper block diagonal and
so is B, and therefore !
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is determined just by the second
term in (10). Explicitly,
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) =
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✏kijA

ij

(12)

So that

U = expA (13)

that is, the holonomy is precisely the orthogonal matrix
in the polar decomposition of e. For the explicit form of
the polar decomposition, we have then

U(e) = e(eTe)�1/2 (14)

where eT is the transpose of e. Since U(e) is indepen-
dent from the size of the interpolating region, taking the
limit � ! 0 is immediate. The resulting distributional
torsionless spin connection is concentrated on the face
⌧ : (�1,�2) 7! xa(�) and is given by

� = �Ad⌧ (15)

where the distributional one-form of the triangle is de-
fined by
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It is easy to verify that (4) is satisfied.

III. CONNECTION AS A FUNCTION OF THE
NORMALS

In this section we compute the connection U in terms
of the normals to the faces of the tetrahedra, which are
the basic variables defining the twisted geometry in loop
gravity. Let e be a triad in the right tetrahedron and ẽ
the one in the left tetrahedron, in the same coordinate
system. The interpolating map is given by the SL(2,R)
block diagonal matrix

s = eẽ�1 (17)

and the holonomy is U(s). Consider a tetrahedron de-
fined by the triple of vectors v

a

2 R3, a = 1, 2, 3. The
normals to the faces defined by two of these vectors, nor-
malized to the area of the face, is given by

n1 =
1

2
v2 ⇥ v3, (18)

and so on cyclically. These equations can be inverted,
giving the vectors as functions of the normals:
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where V is the volume of the tetrahedron, given by
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Say we are interested in the face f defined by the vec-
tors v1 and v2, or equivalently by the normal n3. It is
convenient2 to use the linear but non-orthogonal coordi-
nates adapted to the face, determined by the triple u

a

=
(v1,v2, n̂3), where n̂3 = n3/|n3|. That is, we use coordi-
nates xa = (x, y, z) defined by x = xv1 + y v2 + z n̂3. It
is immediate to see that in these coordinates the metric
of the tetrahedron is given by

g =
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Notice that |v1|2|v2|2 � (v1 · v2)2 = (2A)2 (so that
det g = 4A2). Without loss of generality, we can orient
the cartesian frame (in both the left and right tetrahedra)
so that

v1 = (a, 0, 0) (22)

v2 = (b, c, 0) (23)

n̂3 = (0, 0, 1) (24)

where

a = |v1|, b =
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c =
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Now, observe that a triad for this metric is precisely
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that is,
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The left triad ẽ is given by by the same expression for the
left tetrahedron, which we indicate here by tilded quan-
tities. Therefore the SL(3,R) matrix s that transforms
the left triangle into the right one is
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The orthogonal part of the polar decomposition of this
matrix is, with some algebra, a rotation in the xy plane
with angle determined by

cos(✓) = (cã+ ac̃)/
p
D, sin(✓) = (bc̃� cb̃)/

p
D,

D = c̃2(a2 + b2) + c2(ã2 + b̃2) + 2cc̃(aã� bb̃).
(30)
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the one in the left tetrahedron, in the same coordinate
system. The interpolating map is given by the SL(2,R)
block diagonal matrix
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U(e) = e(eTe)�1/2 (14)

where eT is the transpose of e. Since U(e) is indepen-
dent from the size of the interpolating region, taking the
limit � ! 0 is immediate. The resulting distributional
torsionless spin connection is concentrated on the face
⌧ : (�1,�2) 7! xa(�) and is given by

� = �Ad⌧ (15)

where the distributional one-form of the triangle is de-
fined by

d⌧
a

(x) ⌘
Z

⌧

d2�
@xb

@�1

@xc

@�2
✏
abc

�(x� x(�)). (16)

It is easy to verify that (4) is satisfied.

III. CONNECTION AS A FUNCTION OF THE
NORMALS

In this section we compute the connection U in terms
of the normals to the faces of the tetrahedra, which are
the basic variables defining the twisted geometry in loop
gravity. Let e be a triad in the right tetrahedron and ẽ
the one in the left tetrahedron, in the same coordinate
system. The interpolating map is given by the SL(2,R)
block diagonal matrix

s = eẽ�1 (17)

and the holonomy is U(s). Consider a tetrahedron de-
fined by the triple of vectors v
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2 R3, a = 1, 2, 3. The
normals to the faces defined by two of these vectors, nor-
malized to the area of the face, is given by
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Say we are interested in the face f defined by the vec-
tors v1 and v2, or equivalently by the normal n3. It is
convenient2 to use the linear but non-orthogonal coordi-
nates adapted to the face, determined by the triple u

a

=
(v1,v2, n̂3), where n̂3 = n3/|n3|. That is, we use coordi-
nates xa = (x, y, z) defined by x = xv1 + y v2 + z n̂3. It
is immediate to see that in these coordinates the metric
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g =
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Notice that |v1|2|v2|2 � (v1 · v2)2 = (2A)2 (so that
det g = 4A2). Without loss of generality, we can orient
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so that
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v2 = (b, c, 0) (23)
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where
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c =
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the one in the left tetrahedron, in the same coordinate
system. The interpolating map is given by the SL(2,R)
block diagonal matrix
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(ẽ�1)a
j

} =

0

@
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The holonomy U is a rotation in the plane of the face
by this angle, where a, b, c, ã, b̃ and c̃ are given explicitly
above in terms of the normals. Finally, the torsionless
spin connection is

� = ✓ e(n̂3) d⌧. (31)

This gives the torsionless connection explicitly in terms
of the normals n

i

, which are the independent variables
in the loop-gravity twisted-geometry framework.

IV. CURVATURE

Let U
l

be the holonomy of the connection � around a
circle that surrounds a bone l, namely the product of the
U ’s for each tetrahedron meeting at the bone l. Recall
that the Regge deficit angle �

l

of a bone l is defined as
�
l

= 2⇡ �
P

i

✓
i

where ✓
i

are the dihedral angles at l of
the (d�1)-simplices in the link of l. The following holds:

Proposition: If the twisted geometry is Regge, then U
l

is a rotation around the axis ei(l), by an angle equal to
the Regge deficit angle.

To show this, note that the holonomy U
l

can always
be decomposed into a product of contributions from each
tetrahedron meeting at l. In turn, the tetrahedral con-
tributions can be further decomposed into a product of
two pieces: the holonomy coming from crossing the ini-
tial triangle ⌧

i

upon entering the tetrahedron, U
⌧i , and

the holonomy arising from changing frames within the
tetrahedron �

i

in order to adapt to the triangle through
which the path leaves the tetrahedron, U

�i , thus,

U
l

= U
�nU⌧n�1 · · ·U�1U⌧1 . (32)

When the geometry is Regge the triangles all have match-
ing shapes and each of the contributions U

⌧i are the iden-
tity. Meanwhile, the changes of frame within each tetra-
hedron bring the initial triangle’s inward normal into the
final triangle’s outward normal and this is just a rota-
tion about the bone by the dihedral angle, ✓

i

. Thus the
transport around the loop, U

l

, amounts to rotating the
orginal frame by �

l

just as in Regge calculus.
Put more simply, the point is that for a Regge geom-

etry the spin connection defined here simply agrees with
the spin connection which is defined directly by the fact
that there is a flat metric without discontinuities around
the bone. This characterization of a Regge geometry is
explicit when that geometry is viewed as arising by re-
moving the (d � 2)-skeleton of a triangulation from a
d-dimensional manifold M [12].

The proposition shows that in the Regge case the con-
nection defined agrees with the standard torsionless Car-
tan connection. It is the discrete analog of the relation
between the curvature of !(e) and the Riemann curva-
ture: if the connection satisfies the Cartan equation, then
its curvature F ij = d!ij +!i

k

^!kj is related to the Rie-
mann tensor of the Riemannian manifold defined by the

metric g
ab

= e
ai

ei
b

by

F ij [!(e)] =
1

2
ei
c

ejd Rc

dab

[g(e)] dxa ^ dxb. (33)

In the general twisted case, the curvature may not be of
the characteristic Regge form

R
abcd

⇠ e�✏abel
e

✏
cdf

lf . (34)

where ~l is the bone on which the curvature is concen-
trated. In fact, investigating the general form of the
curvature tensor arising from the connection presented
here may give insights into the type of generalization that
twisted geometries provide. For example, it may be pos-
sible to characterize what Petrov classes are possible in
a twisted geometry and to see if they are more general
than the single class that Regge geometry captures.

V. CLOSING CONSIDERATIONS

We have defined a connection � in the context of
twisted geometry. This is determined by the normals to
the triangles of the tetrahedra. It reduces to the standard
spin-connection in the Regge case, where its curvature
gives the Regge deficit angle.
The result reinforces the twisted geometry construc-

tion, and its interpretation as a classical limit of a trun-
cation of quantum gravity.
The construction should also contribute to dispelling

two possible sources of confusion. The first is the idea
that the twisting might code torsion. It does not, since a
torsionless connection can be defined in the presence of
twisting. The key point is that twisting is a purely metric
notion: it refers to discontinuities in the metric, and it is
determined by the property of the metric space defined
by the discrete geometry. Torsion, on the other hand, is
not a purely metric notion: a metric does not define tor-
sion. It is only the existence of a connection independent

from the metric that can determine a torsion. There-
fore twisting cannot define torsion. The idea of relating
twisting and torsion, although intuitively attractive, is
misled.
The second confusion is the idea that twisting needs

to be suppressed in order to recover the classical limit of
general relativity. A twisted geometry is a generalization
of a Regge geometry. It is a discretization of a metric
space that is distinct and no less honorable than Regge
geometry.
The conditions under which a twisted geometry re-

duces to the Regge case have been studied [13, 14]. At-
tempts to relate these to the vanishing of the torsion of
the four-dimensional spin connection, and therefore to
the simplicity constraints of general relativity have been
explored [14, 15]. But twisting appears in the classi-
cal limit of the standard time-gauge Hamiltonian theory,
where there are no residual simplicity constraints to deal
with. Therefore there is no reason for the simplicity con-
straints to suppress twisting. Of course, one can assume

3

Observe now that since e(z) 2 SL(2,R) ⇢ SL(3,R) it
follows that (A+ ezASe�zA) is upper block diagonal and
so is B, and therefore !

z

is determined just by the second
term in (10). Explicitly,

!k(@
z

) =
1

2
✏kijA

ij

(12)

So that

U = expA (13)

that is, the holonomy is precisely the orthogonal matrix
in the polar decomposition of e. For the explicit form of
the polar decomposition, we have then

U(e) = e(eTe)�1/2 (14)

where eT is the transpose of e. Since U(e) is indepen-
dent from the size of the interpolating region, taking the
limit � ! 0 is immediate. The resulting distributional
torsionless spin connection is concentrated on the face
⌧ : (�1,�2) 7! xa(�) and is given by

� = �Ad⌧ (15)

where the distributional one-form of the triangle is de-
fined by

d⌧
a

(x) ⌘
Z

⌧

d2�
@xb

@�1

@xc

@�2
✏
abc

�(x� x(�)). (16)

It is easy to verify that (4) is satisfied.

III. CONNECTION AS A FUNCTION OF THE
NORMALS

In this section we compute the connection U in terms
of the normals to the faces of the tetrahedra, which are
the basic variables defining the twisted geometry in loop
gravity. Let e be a triad in the right tetrahedron and ẽ
the one in the left tetrahedron, in the same coordinate
system. The interpolating map is given by the SL(2,R)
block diagonal matrix

s = eẽ�1 (17)

and the holonomy is U(s). Consider a tetrahedron de-
fined by the triple of vectors v

a

2 R3, a = 1, 2, 3. The
normals to the faces defined by two of these vectors, nor-
malized to the area of the face, is given by

n1 =
1

2
v2 ⇥ v3, (18)

and so on cyclically. These equations can be inverted,
giving the vectors as functions of the normals:

v1 =
2

3V
n2 ⇥ n3, (19)

where V is the volume of the tetrahedron, given by

V =
1

3!
(v1 ⇥ v2) · v3 =

r
2

9
(n1 ⇥ n2) · n3. (20)

Say we are interested in the face f defined by the vec-
tors v1 and v2, or equivalently by the normal n3. It is
convenient2 to use the linear but non-orthogonal coordi-
nates adapted to the face, determined by the triple u

a

=
(v1,v2, n̂3), where n̂3 = n3/|n3|. That is, we use coordi-
nates xa = (x, y, z) defined by x = xv1 + y v2 + z n̂3. It
is immediate to see that in these coordinates the metric
of the tetrahedron is given by

g =

0

@
|v1|2 v1 ·v2 0
v1 ·v2 |v2|2 0

0 0 1

1

A ⌘

0

@
a b 0
c d 0
0 0 1

1

A . (21)

Notice that |v1|2|v2|2 � (v1 · v2)2 = (2A)2 (so that
det g = 4A2). Without loss of generality, we can orient
the cartesian frame (in both the left and right tetrahedra)
so that

v1 = (a, 0, 0) (22)

v2 = (b, c, 0) (23)

n̂3 = (0, 0, 1) (24)

where

a = |v1|, b =
v1 ·v2

|v1|
, (25)

c =

p
|v1|2|v2|2 � (v1 ·v2)2

|v1|
. (26)

Now, observe that a triad for this metric is precisely

ei = vi1dx+ vi2dy + n̂i

3dz, (27)

that is,

e = {ei
a

} =

0

@
a 0 0
b c 0
0 0 1

1

A . (28)

The left triad ẽ is given by by the same expression for the
left tetrahedron, which we indicate here by tilded quan-
tities. Therefore the SL(3,R) matrix s that transforms
the left triangle into the right one is

s = {ei
a

(ẽ�1)a
j

} =

0

@
a/ã 0 0

(bc̃� cb̃)/ãc̃ c/c̃ 0
0 0 1

1

A (29)

The orthogonal part of the polar decomposition of this
matrix is, with some algebra, a rotation in the xy plane
with angle determined by

cos(✓) = (cã+ ac̃)/
p
D, sin(✓) = (bc̃� cb̃)/

p
D,

D = c̃2(a2 + b2) + c2(ã2 + b̃2) + 2cc̃(aã� bb̃).
(30)

2
Notwithstanding the dimension mismatch.

Metric:

Spin connection:

2

In general, the metric is discontinuous across a triangle
⌧ . Therefore there are two distinct flat metrics induced
on the same face: one from the left tetrahedron and one
from the right tetrahedron. The twisting of the geometry
measures the di↵erence between these two metrics. Since
a 2d flat metric is determined by three numbers, and, by
definition, the two metrics define the same area, there
are two twisting parameters.

Let us setup a coordinate system (x, y, z) covering the
two tetrahedra bounding a triangle face ⌧ . It is con-
venient to choose these coordinates so that the triangle
⌧ is at z = 0. Without loss of generality, we can always
choose the coordinate system and the triad in such a way
that the triad is cartesian, namely ei = dxi, on the left
tetrahedron. Then the discontinuity of the metric implies
that the triad on the right hand side tetrahedron can be
chosen to have the constant form

e1 = e1
x

dx+ e1
y

dy, e2 = e2
x

dx+ e2
y

dy, e3 = dz, (1)

The condition that the area is the same from both sides
gives det e = 1. Therefore the matrix

e = {ei
a

} =

0

@
e1
x

e1
y

0
e2
x

e2
y

0
0 0 1

1

A (2)

is in SL(3,R), or, more specifically it is in the SL(2,R)
upper block diagonal subgroup of SL(3,R).

The geometrical interpretation of these groups is
straightforward: e is the linear transformation that sends
a cartesian triangle with the dimensions given by the left
metric into the cartesian triangle with the dimensions
given by the right. In other words, e is the linear trans-
formation that makes the two triangles of FIG. 1 match.
Since the triangle is two dimensional, this linear transfor-
mation can always be chosen in the SL(2,R) subgroup.

On a Riemannian space, once we choose a triad field ei,
then the torsionless Cartan spin connection is the unique
solution of the first Cartan structure equation

dei + ✏i
jk

!j ^ ek = 0. (3)

On a twisted geometry this definition does not make
sense, because of the discontinuity of the triad on the
triangles that makes dei ill defined. To define the con-
nection on the twisted geometry, we therefore extend this
equation “across” the triangle, where ei is a discontinu-
ous field.

For this purpose, let us “thicken” the triangle, in order
to smooth-out the discontinuity, replacing the triangle ⌧

triangulation and not just its dual graph. Also, the definition

given here refers only to the intrinsic geometry. The full defi-

nition of the twisted geometry that appears in quantum gravity

includes also the extrinsic curvature, which plays no role here.

Finally, for simplicity we restrict our attention to triangulations,

but the results presented extend to generic cellular decomposi-

tions (and therefore to polyhedra other than tetrahedra).

by a foliated 3d region ⌧ ⇥ [0,�] where z 2 [0,�]. Now,
we can interpolate the triad by e(z), such that e(0) = 1l
and e(�) = e. The (finite) holonomy of the connection
across the face, U(e), can be defined as the� ! 0 limit of
the holonomy of the spin connection of e(z), which is cal-
culated across the thickened triangle. There is a highly
nontrivial condition on the interpolating triad: the re-
sulting holonomy must transform as an holonomy under
a change of frame on either tetrahedron. That is,

U(⇤
s

e⇤�1
t

) = ⇤
s

U(e)⇤�1
t

(4)

for any ⇤
s

,⇤
t

2 SO(3). An interpolating triad that sat-
isfies this condition can be obtained starting from the
polar decomposition of e

e = eAeS (5)

where A is antisymmetric and S is symmetric, by writing

e(z) = ezAezS . (6)

This defines a continuous triad joining the two tetrahe-
dra, di↵erentiable in (0,�). We can now compute the
spin connection of the interpolating region, and take the
limit � ! 0. This defines a torsionless spin connection
on the twisted geometry.

FIG. 2: We “thicken” the tri-
angle in order to smooth-out
the discontinuity. The path �
goes from one tetrahedron to
the other through the thick-
ened region.

Let us compute this connection explicitly. From the
last equation, we have

dei = (A+ ezASe�zA)i
j

dz ^ ej . (7)

Using this in the Cartan equation (and lowering an index)
we have

(A+ ezASe�zA)
ij

dz ^ ej = �✏
ijk

!j ^ ek. (8)

One can check that the solution of this equation is given
by

!i = Bi

j

ej (9)

where

Bi

j

= �✏ikl(A+ ezASe�zA)
jk

ez
l

+
1

2
✏klmA

kl

ez
m

�i
j

, (10)

where ez
i

is a matrix element of the inverse triad.
What is relevant for us is, of course, only the holonomy

of this connection across the thickened region. Consider
a path crossing this region at constant x and y. The
holonomy of !i across the region is given by

U = P e
�
R
�
!

= P e
�
R �

0
!(@z)dz. (11)
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Proposition: 

The spin connection reduces nicely to the Regge one, if shape matching is imposed.

  

  

In general, the curvature in twisted geometry is not of the Regge form

It may be possible to characterize what Petrov classes are possible in a twisted geometry
and to see if they are more general than the single class that Regge geometry captures.
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The holonomy U is a rotation in the plane of the face
by this angle, where a, b, c, ã, b̃ and c̃ are given explicitly
above in terms of the normals. Finally, the torsionless
spin connection is

� = ✓ e(n̂3) d⌧. (31)

This gives the torsionless connection explicitly in terms
of the normals n

i

, which are the independent variables
in the loop-gravity twisted-geometry framework.

IV. CURVATURE

Let U
l

be the holonomy of the connection � around a
circle that surrounds a bone l, namely the product of the
U ’s for each tetrahedron meeting at the bone l. Recall
that the Regge deficit angle �

l

of a bone l is defined as
�
l

= 2⇡ �
P

i

✓
i

where ✓
i

are the dihedral angles at l of
the (d�1)-simplices in the link of l. The following holds:

Proposition: If the twisted geometry is Regge, then U
l

is a rotation around the axis ei(l), by an angle equal to
the Regge deficit angle.

To show this, note that the holonomy U
l

can always
be decomposed into a product of contributions from each
tetrahedron meeting at l. In turn, the tetrahedral con-
tributions can be further decomposed into a product of
two pieces: the holonomy coming from crossing the ini-
tial triangle ⌧

i

upon entering the tetrahedron, U
⌧i , and

the holonomy arising from changing frames within the
tetrahedron �

i

in order to adapt to the triangle through
which the path leaves the tetrahedron, U

�i , thus,

U
l

= U
�nU⌧n�1 · · ·U�1U⌧1 . (32)

When the geometry is Regge the triangles all have match-
ing shapes and each of the contributions U

⌧i are the iden-
tity. Meanwhile, the changes of frame within each tetra-
hedron bring the initial triangle’s inward normal into the
final triangle’s outward normal and this is just a rota-
tion about the bone by the dihedral angle, ✓

i

. Thus the
transport around the loop, U

l

, amounts to rotating the
orginal frame by �

l

just as in Regge calculus.
Put more simply, the point is that for a Regge geom-

etry the spin connection defined here simply agrees with
the spin connection which is defined directly by the fact
that there is a flat metric without discontinuities around
the bone. This characterization of a Regge geometry is
explicit when that geometry is viewed as arising by re-
moving the (d � 2)-skeleton of a triangulation from a
d-dimensional manifold M [12].

The proposition shows that in the Regge case the con-
nection defined agrees with the standard torsionless Car-
tan connection. It is the discrete analog of the relation
between the curvature of !(e) and the Riemann curva-
ture: if the connection satisfies the Cartan equation, then
its curvature F ij = d!ij +!i

k

^!kj is related to the Rie-
mann tensor of the Riemannian manifold defined by the

metric g
ab

= e
ai

ei
b

by

F ij [!(e)] =
1

2
ei
c

ejd Rc

dab

[g(e)] dxa ^ dxb. (33)

In the general twisted case, the curvature may not be of
the characteristic Regge form

R
abcd

⇠ e�✏abel
e

✏
cdf

lf . (34)

where ~l is the bone on which the curvature is concen-
trated. In fact, investigating the general form of the
curvature tensor arising from the connection presented
here may give insights into the type of generalization that
twisted geometries provide. For example, it may be pos-
sible to characterize what Petrov classes are possible in
a twisted geometry and to see if they are more general
than the single class that Regge geometry captures.

V. CLOSING CONSIDERATIONS

We have defined a connection � in the context of
twisted geometry. This is determined by the normals to
the triangles of the tetrahedra. It reduces to the standard
spin-connection in the Regge case, where its curvature
gives the Regge deficit angle.
The result reinforces the twisted geometry construc-

tion, and its interpretation as a classical limit of a trun-
cation of quantum gravity.
The construction should also contribute to dispelling

two possible sources of confusion. The first is the idea
that the twisting might code torsion. It does not, since a
torsionless connection can be defined in the presence of
twisting. The key point is that twisting is a purely metric
notion: it refers to discontinuities in the metric, and it is
determined by the property of the metric space defined
by the discrete geometry. Torsion, on the other hand, is
not a purely metric notion: a metric does not define tor-
sion. It is only the existence of a connection independent

from the metric that can determine a torsion. There-
fore twisting cannot define torsion. The idea of relating
twisting and torsion, although intuitively attractive, is
misled.
The second confusion is the idea that twisting needs

to be suppressed in order to recover the classical limit of
general relativity. A twisted geometry is a generalization
of a Regge geometry. It is a discretization of a metric
space that is distinct and no less honorable than Regge
geometry.
The conditions under which a twisted geometry re-

duces to the Regge case have been studied [13, 14]. At-
tempts to relate these to the vanishing of the torsion of
the four-dimensional spin connection, and therefore to
the simplicity constraints of general relativity have been
explored [14, 15]. But twisting appears in the classi-
cal limit of the standard time-gauge Hamiltonian theory,
where there are no residual simplicity constraints to deal
with. Therefore there is no reason for the simplicity con-
straints to suppress twisting. Of course, one can assume

If the twisted geometry is Regge, then the holonomy of Γ on a path around a bone, 
is a rotation around the the bone by an angle equal to the Regge deficit angle.
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The holonomy U is a rotation in the plane of the face
by this angle, where a, b, c, ã, b̃ and c̃ are given explicitly
above in terms of the normals. Finally, the torsionless
spin connection is

� = ✓ e(n̂3) d⌧. (31)

This gives the torsionless connection explicitly in terms
of the normals n

i

, which are the independent variables
in the loop-gravity twisted-geometry framework.

IV. CURVATURE

Let U
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be the holonomy of the connection � around a
circle that surrounds a bone l, namely the product of the
U ’s for each tetrahedron meeting at the bone l. Recall
that the Regge deficit angle �
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of a bone l is defined as
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where ✓
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are the dihedral angles at l of
the (d�1)-simplices in the link of l. The following holds:

Proposition: If the twisted geometry is Regge, then U
l

is a rotation around the axis ei(l), by an angle equal to
the Regge deficit angle.

To show this, note that the holonomy U
l

can always
be decomposed into a product of contributions from each
tetrahedron meeting at l. In turn, the tetrahedral con-
tributions can be further decomposed into a product of
two pieces: the holonomy coming from crossing the ini-
tial triangle ⌧

i

upon entering the tetrahedron, U
⌧i , and

the holonomy arising from changing frames within the
tetrahedron �

i

in order to adapt to the triangle through
which the path leaves the tetrahedron, U

�i , thus,

U
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= U
�nU⌧n�1 · · ·U�1U⌧1 . (32)

When the geometry is Regge the triangles all have match-
ing shapes and each of the contributions U

⌧i are the iden-
tity. Meanwhile, the changes of frame within each tetra-
hedron bring the initial triangle’s inward normal into the
final triangle’s outward normal and this is just a rota-
tion about the bone by the dihedral angle, ✓

i

. Thus the
transport around the loop, U

l

, amounts to rotating the
orginal frame by �

l

just as in Regge calculus.
Put more simply, the point is that for a Regge geom-

etry the spin connection defined here simply agrees with
the spin connection which is defined directly by the fact
that there is a flat metric without discontinuities around
the bone. This characterization of a Regge geometry is
explicit when that geometry is viewed as arising by re-
moving the (d � 2)-skeleton of a triangulation from a
d-dimensional manifold M [12].

The proposition shows that in the Regge case the con-
nection defined agrees with the standard torsionless Car-
tan connection. It is the discrete analog of the relation
between the curvature of !(e) and the Riemann curva-
ture: if the connection satisfies the Cartan equation, then
its curvature F ij = d!ij +!i
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^!kj is related to the Rie-
mann tensor of the Riemannian manifold defined by the
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= e
ai

ei
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by

F ij [!(e)] =
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In the general twisted case, the curvature may not be of
the characteristic Regge form
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where ~l is the bone on which the curvature is concen-
trated. In fact, investigating the general form of the
curvature tensor arising from the connection presented
here may give insights into the type of generalization that
twisted geometries provide. For example, it may be pos-
sible to characterize what Petrov classes are possible in
a twisted geometry and to see if they are more general
than the single class that Regge geometry captures.

V. CLOSING CONSIDERATIONS

We have defined a connection � in the context of
twisted geometry. This is determined by the normals to
the triangles of the tetrahedra. It reduces to the standard
spin-connection in the Regge case, where its curvature
gives the Regge deficit angle.
The result reinforces the twisted geometry construc-

tion, and its interpretation as a classical limit of a trun-
cation of quantum gravity.
The construction should also contribute to dispelling

two possible sources of confusion. The first is the idea
that the twisting might code torsion. It does not, since a
torsionless connection can be defined in the presence of
twisting. The key point is that twisting is a purely metric
notion: it refers to discontinuities in the metric, and it is
determined by the property of the metric space defined
by the discrete geometry. Torsion, on the other hand, is
not a purely metric notion: a metric does not define tor-
sion. It is only the existence of a connection independent

from the metric that can determine a torsion. There-
fore twisting cannot define torsion. The idea of relating
twisting and torsion, although intuitively attractive, is
misled.
The second confusion is the idea that twisting needs

to be suppressed in order to recover the classical limit of
general relativity. A twisted geometry is a generalization
of a Regge geometry. It is a discretization of a metric
space that is distinct and no less honorable than Regge
geometry.
The conditions under which a twisted geometry re-

duces to the Regge case have been studied [13, 14]. At-
tempts to relate these to the vanishing of the torsion of
the four-dimensional spin connection, and therefore to
the simplicity constraints of general relativity have been
explored [14, 15]. But twisting appears in the classi-
cal limit of the standard time-gauge Hamiltonian theory,
where there are no residual simplicity constraints to deal
with. Therefore there is no reason for the simplicity con-
straints to suppress twisting. Of course, one can assume
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of the normals n
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the Regge deficit angle.

To show this, note that the holonomy U
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can always
be decomposed into a product of contributions from each
tetrahedron meeting at l. In turn, the tetrahedral con-
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where ~l is the bone on which the curvature is concen-
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curvature tensor arising from the connection presented
here may give insights into the type of generalization that
twisted geometries provide. For example, it may be pos-
sible to characterize what Petrov classes are possible in
a twisted geometry and to see if they are more general
than the single class that Regge geometry captures.
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twisted geometry. This is determined by the normals to
the triangles of the tetrahedra. It reduces to the standard
spin-connection in the Regge case, where its curvature
gives the Regge deficit angle.
The result reinforces the twisted geometry construc-

tion, and its interpretation as a classical limit of a trun-
cation of quantum gravity.
The construction should also contribute to dispelling

two possible sources of confusion. The first is the idea
that the twisting might code torsion. It does not, since a
torsionless connection can be defined in the presence of
twisting. The key point is that twisting is a purely metric
notion: it refers to discontinuities in the metric, and it is
determined by the property of the metric space defined
by the discrete geometry. Torsion, on the other hand, is
not a purely metric notion: a metric does not define tor-
sion. It is only the existence of a connection independent

from the metric that can determine a torsion. There-
fore twisting cannot define torsion. The idea of relating
twisting and torsion, although intuitively attractive, is
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The second confusion is the idea that twisting needs

to be suppressed in order to recover the classical limit of
general relativity. A twisted geometry is a generalization
of a Regge geometry. It is a discretization of a metric
space that is distinct and no less honorable than Regge
geometry.
The conditions under which a twisted geometry re-

duces to the Regge case have been studied [13, 14]. At-
tempts to relate these to the vanishing of the torsion of
the four-dimensional spin connection, and therefore to
the simplicity constraints of general relativity have been
explored [14, 15]. But twisting appears in the classi-
cal limit of the standard time-gauge Hamiltonian theory,
where there are no residual simplicity constraints to deal
with. Therefore there is no reason for the simplicity con-
straints to suppress twisting. Of course, one can assume
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Proposition: If the twisted geometry is Regge, then U
l

is a rotation around the axis ei(l), by an angle equal to
the Regge deficit angle.

To show this, note that the holonomy U
l

can always
be decomposed into a product of contributions from each
tetrahedron meeting at l. In turn, the tetrahedral con-
tributions can be further decomposed into a product of
two pieces: the holonomy coming from crossing the ini-
tial triangle ⌧

i

upon entering the tetrahedron, U
⌧i , and

the holonomy arising from changing frames within the
tetrahedron �
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in order to adapt to the triangle through
which the path leaves the tetrahedron, U

�i , thus,

U
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�nU⌧n�1 · · ·U�1U⌧1 . (32)

When the geometry is Regge the triangles all have match-
ing shapes and each of the contributions U

⌧i are the iden-
tity. Meanwhile, the changes of frame within each tetra-
hedron bring the initial triangle’s inward normal into the
final triangle’s outward normal and this is just a rota-
tion about the bone by the dihedral angle, ✓

i

. Thus the
transport around the loop, U

l

, amounts to rotating the
orginal frame by �

l

just as in Regge calculus.
Put more simply, the point is that for a Regge geom-

etry the spin connection defined here simply agrees with
the spin connection which is defined directly by the fact
that there is a flat metric without discontinuities around
the bone. This characterization of a Regge geometry is
explicit when that geometry is viewed as arising by re-
moving the (d � 2)-skeleton of a triangulation from a
d-dimensional manifold M [12].

The proposition shows that in the Regge case the con-
nection defined agrees with the standard torsionless Car-
tan connection. It is the discrete analog of the relation
between the curvature of !(e) and the Riemann curva-
ture: if the connection satisfies the Cartan equation, then
its curvature F ij = d!ij +!i
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^!kj is related to the Rie-
mann tensor of the Riemannian manifold defined by the

metric g
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[g(e)] dxa ^ dxb. (33)

In the general twisted case, the curvature may not be of
the characteristic Regge form
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where ~l is the bone on which the curvature is concen-
trated. In fact, investigating the general form of the
curvature tensor arising from the connection presented
here may give insights into the type of generalization that
twisted geometries provide. For example, it may be pos-
sible to characterize what Petrov classes are possible in
a twisted geometry and to see if they are more general
than the single class that Regge geometry captures.

V. CLOSING CONSIDERATIONS

We have defined a connection � in the context of
twisted geometry. This is determined by the normals to
the triangles of the tetrahedra. It reduces to the standard
spin-connection in the Regge case, where its curvature
gives the Regge deficit angle.
The result reinforces the twisted geometry construc-

tion, and its interpretation as a classical limit of a trun-
cation of quantum gravity.
The construction should also contribute to dispelling

two possible sources of confusion. The first is the idea
that the twisting might code torsion. It does not, since a
torsionless connection can be defined in the presence of
twisting. The key point is that twisting is a purely metric
notion: it refers to discontinuities in the metric, and it is
determined by the property of the metric space defined
by the discrete geometry. Torsion, on the other hand, is
not a purely metric notion: a metric does not define tor-
sion. It is only the existence of a connection independent

from the metric that can determine a torsion. There-
fore twisting cannot define torsion. The idea of relating
twisting and torsion, although intuitively attractive, is
misled.
The second confusion is the idea that twisting needs

to be suppressed in order to recover the classical limit of
general relativity. A twisted geometry is a generalization
of a Regge geometry. It is a discretization of a metric
space that is distinct and no less honorable than Regge
geometry.
The conditions under which a twisted geometry re-

duces to the Regge case have been studied [13, 14]. At-
tempts to relate these to the vanishing of the torsion of
the four-dimensional spin connection, and therefore to
the simplicity constraints of general relativity have been
explored [14, 15]. But twisting appears in the classi-
cal limit of the standard time-gauge Hamiltonian theory,
where there are no residual simplicity constraints to deal
with. Therefore there is no reason for the simplicity con-
straints to suppress twisting. Of course, one can assume
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The holonomy U is a rotation in the plane of the face
by this angle, where a, b, c, ã, b̃ and c̃ are given explicitly
above in terms of the normals. Finally, the torsionless
spin connection is
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This gives the torsionless connection explicitly in terms
of the normals n
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, which are the independent variables
in the loop-gravity twisted-geometry framework.
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where ~l is the bone on which the curvature is concen-
trated. In fact, investigating the general form of the
curvature tensor arising from the connection presented
here may give insights into the type of generalization that
twisted geometries provide. For example, it may be pos-
sible to characterize what Petrov classes are possible in
a twisted geometry and to see if they are more general
than the single class that Regge geometry captures.
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to be suppressed in order to recover the classical limit of
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of a Regge geometry. It is a discretization of a metric
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geometry.
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tempts to relate these to the vanishing of the torsion of
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Two confusions: 

Twisting does not encode torsion. 

We can define a torsionless connection in a twisted geometry. 

The twisting is purely metrical!

No need to suppress twisting :-)  
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