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Introduction

This talk studies three-dimensional Euclidean gravity as a consitency check forthe spinorial representation of loop gravity.
Motivation

Spinors simplify the symplectic structure. Instead of T ∗SU(2), we can
then use C2 × C2

.

What about the dynamics of the theory?

Results

The discretised Palatini action turns into a line integral over the

one-skeleton.

All fields are continuous, but have support only on the edges of the

discretisation.

The resulting path intgeral gives the Ponzano–Regge model.
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A one-dimensional action for Euclidean gravity in three

dimensions



Euclidean gravity in three dimensions

We are using first-order variables, the action thus becomes:

SM [e,A] =
~

2`P

∫
M

εijke
i ∧ F jk[A] = − ~

`P

∫
M

ei ∧ F i[A]. (1)

The equations of motion are:

torsionless condition: T i = Dei = 0, (2a)

flatness constraint: F i = dAi +
1

2
εilmA

l ∧Am = 0. (2b)

The torsionless condition turns the SU(2) connection Ai into the
Levi-Civita connection, hence the metric ds2 = ei ⊗ ei is locally flat.
Performing a 3+1 splitM = Σ× R we obtain the symplectic structure:{

eia(p), Ajb(q)
}

=
`P
~
δijη˜abδ̃Σ(p, q). (3)

Notation:

i, j, k, · · · = 1, 2, 3 are internal indices, a, b, c, . . . abstract indices on Σ.

ei is the triad, while Aij = εiljA
l
denotes the so(3) (respectively su(2)) connection,

andD is the corresponding exterior covariant derivative.
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Holonomy flux variables

We now discretise the continuum theory such that we still have a phase

space. We introduce a simplicial decomposition ofM , and assign
holonmies and fluxes to links γ1, γ2, . . . and dual bones b1, b2, . . . :

hAB [b] = Pexp
(
−
∫
γ

A
)A

B
∈ SU(2), (4a)

`AB [b] =

∫
b3p

(
h−1
p ephp

)A
B
∈ su(2). (4b)

The Poisson brackets of the continuum theory induce on each link the

commutation relations of T ∗SU(2), e.g.:{
`i, `j

}
=
`P
~
εij

m`m,
{
`i, h

}
=
`P
~
hτi. (5)

Notation:

A,B, . . . are spinor indices, we move them by the two-dimensional ε-tensor.

` ≡ `AB = `iτABi, where τi are the Pauli matrices divided by 2i.
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Spinors for loop gravity

Two orthogonal spinors diagonalise the flux in the frame of the initial

point:

`[b] =
`P
4i

(
|z〉〈z| − |z][z|

)
. `AB [b] =

`P
2i
z(Az

†
B). (6)

The holonomy maps them into the final point:

h|z〉 = |z˜〉, |z˜] = |z˜]. (7)

The two spinors have the same norm:

C = ‖z˜‖2 − ‖z‖2 = 〈z˜|z˜〉 − 〈z|z〉 = 0. (8)

This is the length–matching constraint.

The following scheme gives the relation between |z〉 and |z]:

[z| = zA = εBAz
B ,

|z] = zA† = δAĀz̄Ā,

|z〉 = zA = εABzB ,

〈z| = z†A = δAĀz̄
Ā.

(9)

Two invarinat tensors move the indices up and down: εAB is the
anti-symmetric ε-tensor, while δAĀ denotes the Hermitian metric.
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Symplectic reduction

The spinors carry a natural symplectic structure:{
z†A, z

B} =
i

~
δBA ,

{
z˜†A, z˜B} = − i

~
δBA . (10)

We can now reverse the logic:

Take the spinors zA and z˜A as fundamental, and use them toparametrise holonomies and fluxes.

The symplectic structure (10) induce commutations relations for

holomies and fluxes. On the constraint hypersurface C = 0, we get
the usual holonomy-flux algebra.

The spinors are not unique, the constraint C = 0 generates a U(1)
symmetry.

The parametrisation becomes singular once `i = 0.

Taking the symplectic quotient, we obtain T ∗SU(2) 3 (h, `) exempt of
the hypersuface To of vanishing flux ` = 0:

T ∗SU(2)− To =
(
C2 × C2

)
//C . (11)
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The discretised action

We now look at the thee-dimensional discretisation and study the

dynamics of the theory.

The first step is to discretise the action

as a sum over wedges:

SM [e,A] = − ~
`P

∫
M

ei ∧ F i

≈ − ~
`P

∑
w:wedges

∫
bw

ei

∫
w

F i. (12)
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The action on a wedge

Pick a spinfoam face f , and introduce the
loop α(t) that runs around the boundary
∂f .

Consider a family of paths (links) {γt}t∈[0,1]

connecting α(t) with the center c = γt(1) of
the spinfoam face.

The covariant t-derivative of the hγt -holonomy gives the curvature in the
spinfoam face:

h−1
γt(1)

D

dt
hγt(1) =

∫ 1

0

ds h−1
γt(s)

Fγt(s)

( d

ds
γt(s),

d

dt
γt(s)

)
hγt(s). (13)

A wedge wo corresponds to some t-interval [to, to + ∆t]. Each wedge
contributes through its wedge-action Sw to the total action:

Swo ≈ −
2~∆t

`P
`AB [bwo ]

(
h−1
γto (1)

D

dt
hγto (1)

)AB
. (14)

Where `[bwo ] is the flux through the bone dual to the wedge.
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Continuum limit on a spinfoam face

Next, we introduce spinors: zA(t) belongs to the boundary, while
wA(t) sits at the center of the spinfoam face.

The limit ∆t→ 0 turns the sum over wedges into an intgeral.

We add the length-matching constraint C = ‖w‖2 − ‖z‖2, and end up with
the following action:

Sf [z, w, ϕ,A] = −i~
∫ 1

0

dt
(
z†A
D

dt
zA − w†Aẇ

A − iϕ
(
‖z‖2 − ‖w‖2

))
. (15)

A one-dimensional action for gravity in three dimensions

The total action is the sum over all faces:

SM [f1z, f2z, . . . ; f1w, f2w, . . . ;ϕf1 , ϕf2 , . . . ;Ae1 , Ae2 , . . . ] =

≡ SM [z, w, ϕ,A] = −i~
∑
f

∮
∂f

(
fz†AD

fzA − fw†AdfwA+

− dt iϕf
(
‖fz‖2 − ‖fw‖2

))
. (16)
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Equations of motion

1 Variation of the spinors:

D

dt
zA = iϕzA, and

d

dt
wA = iϕwA. (17)

The spinors are periodic in t, implying:

exp
(
−
∫
∂f

dtA(t)
)

= 1, ei
∫
∂f dtϕ(t) = 1. (18)

This is the discretisation of the curvature constraint F i = 0.
2 Variation of the ϕ-multiplier:

C = ‖w(t)‖2 − ‖z(t)‖2 = 0, (19)

reducing the spinors to holonomy-flux variables.
3 Variation of the SU(2) connection:

Gi :=
~
`P

3∑
f=1

`i[bf ]t = i~
3∑

f=1

τABi
fz†A(t)fzB(t) = 0. (20)

This is the discretisation of the torsionless condition T i = 0.
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Gauge symmetries

1 One-dimensional diffeomorphisms: The action is invariant under

reparametrisations of the path.

2 U(1) transformations:

ϕ̃(t) = ϕ(t) + λ̇(t), (21a)

z̃A(t) = e−iλ(t)zA(t), (21b)

w̃A(t) = e−iλ(t)wA(t). (21c)

3 SU(2) transformations:

Ã(t) = g−1(t)
d

dt
g(t) + g−1(t)A(t)g(t), (22a)

z̃(t) = g−1(t)z(t), (22b)

w̃(t) = w(t). (22c)

Nota bene: There is no obvious representation of the shift symmetry.
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Path intgeral quantisation



Bargmann quantisation of the harmonic oscialltor

Representation of the canonical commutation relations
{
z†A, z

B
}

= i
~δ
B
A

in the space of C2
-analytic functions f ∈ H:

∂

∂z̄Ā
f(z) = 0,

(
ẑAf

)
(z) = zAf(z),

(
ẑ†Af

)
(z) =

∂

∂zA
f(z). (23)

The inner product is:〈
f, f ′

〉
=

1

π2

∫ 2

C
d4ze−δAĀz

Az̄Āf(z)f ′(z). (24)

There is an orthonormal basis:

〈z|j,m〉 =
1√

(j −m)!(j +m)!

(
z0)j−m(z1)j+m. (25)

With j = 0, 1
2
, 1, . . . ,m = −j, . . . , j.

This gives the Hilbertspace for a single bone.

The constraints glue these individual Hilbert spaces together.

The result agrees with the LQG Hilbert space on a fixed graph.
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Definition of the path integral

We define the vacuum-to-vacuum amplitude 〈Ω|Ω〉 = ZM for the
discretised (closed) manifoldM as the path integral over the continuous

spinor action:

ZM =

∫
all spinors be
periodic in ∂f

∏
f :faces

D[fz]D[fw]D[ϕf ]∆ψ
FP[ϕf ]δ

(
ψ[ϕf ]

)

×
∏

e:edges

D[Ae]∆
Ψ
FP[A]δ

(
Ψ[A]

)
e

i
~SM [z,w,ϕ,A]. (26)

Notation:

Each face contributes to SM =
∑
f:faces Sf through:

Sf = −i~
∫
∂f

(
z†ADz

A − w†
AdwA − iϕ dt(‖z‖2 − ‖w‖2)

)
.

D denotes formal Lebesgue measures, e.g. D[z] =
∏
t
d4z(t)

π2 .

There is a gauge fixing for the gauge potentials ϕ and A:

- ψ[ϕ] andΨ[A] are the gauge fixing conditions.

-∆ψ
FP[ϕ] and∆Ψ

FP[A] are the corresponding Faddeev–Popov determinants.
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Integral over the spinors

The integral over the spinors factorises into products over faces. This

defines the face amplitude:

Zf [A,ϕ] :=

∫
zA(0)=zA(1), wA(0)=wA(1)

D[z]D[w]e
∫
∂f dt

(
z
†
A
D
dt
zA−w†

A
d
dt
wA−iϕ(‖z‖2−‖w‖2)

)
. (27)

The Gaußian integral turns into the trace over Hilbert space:

Zf [A,ϕ] = TrH⊗H
[
Pexp

(
−
∫
∂f

dt
(
Ai(t)τABiẑAẑ

†
B+ (28)

+ iϕ(t) (:‖ẑ‖2:− :‖ŵ‖2:)
))]

. (29)

In terms of the canonical basis:

Zf [A,ϕ] =
∞∑

2j=0

j∑
m=−j

∞∑
2l=0

(2l + 1)
〈
j,m

∣∣Pexp
(

i

∫
∂f

dtAi(t)L̂i
)∣∣j,m〉

× e−i
∫
∂f dtϕ(t)(2j−2l). (30)

Notation:

Generators of angular momentum: L̂i = iτABiẑAẑ
†
B

The spinor’s norm: :‖ẑ‖2: = 1
2

(
ẑAẑ†A + ẑ†Aẑ

A
)

= zA ∂

∂zA
+ 1,
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Integral over the U(1) gauge potential

Also the ϕ-integration factorises into a product over spinfoam faces. We
choose the gauge fixing condition:

ψ[ϕ](t) =
d

dt
ϕ(t) = 0. (31)

Infinitesimal gauge transformations are ϕλ(t) = ϕ(t) + λ̇(t), and ∆ψ
FP[ϕ] is

the determinant of the operator:

m̂[λ] :=
d

dε

∣∣∣
ε=0

ψ[ϕελ](t) =
d2

dt2
λ(t). (32)

All eigenvalues are ϕ-independent, and ∆ψ
FP[ϕ] just gives an irrelevant

overall constant.

Zf [A] =

∫
D[ϕ]∆ψ

FP[ϕ]δ
(
δψ[ϕ]

)
Zf [ϕ,A] =

=

∞∑
2j=0

j∑
m=−j

(2j + 1)
〈
j,m

∣∣Pexp
(

i

∫
∂f

dtAi(t)Li
)∣∣j,m〉 =

= δSU(2)

(
Pexp

(
−
∫
∂f

dtAi(t)τi
))
. (33)
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Integral over the SU(2) gauge potential

The most difficult step is the integral over the gauge potential A.
We choose the following gauge fixing on the edges:

∀e(t) : Ψ[A](t) =
d

dt
Ae(t) = 0. (34)

We can achieve this gauge globally, one every edge of the

discretisation.

It is only a partial gauge fixing: For a single edge we can map Ae to
any other constant Ãe ∈ su(2).

The infinitesimal gauge transformations are δΛA = D
dt

Λ = Λ̇ + [A,Λ]. This
yields the Faddeev–Popov operator:

M̂ i
jΛ

j(t) = δλΨ[A](t) =
d2

dt2
Λi(t) + εilmA

l d

dt
Λm(t). (35)

We diagonalise this operator, under the condition that the gauge

elements Λ(t) are everywhere continuous. This yields the Faddeev–Popov
determinant:

∆Ψ
FP[A] ∝ det M̂ ∝

∏
e:edges

∏
n∈Z−{0}

(
1− |Ae|

2πn

)2

=
∏

e:edges

4 sin2 |Ae|
2

|Ae|2
. (36)

*E. Bianchi, Loop Quantum Gravity à la Aharonov-Bohm, Gen. Relativ. Gravit. 46, (2014), arXiv:0907.4388
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Final result

The path integral over the connection turns into an ordinary integral:∫ ∏
e:edges

D[Ae]∆
Ψ
FP[A]δ

(
Ψ[A]

)
· · · ∝

∏
e:edges

∫
R3

d3Ae
4 sin2 |Ae|

2

|Ae|2
. . . (37)

∝
∏

e:edges

∫
SU(2)

dµHaar(Ue) . . . (38)

The Ponzano–Regge as a path integral in spinor space

ZM =

∫ ∏
f :faces

D[fz]D[fw]D[ϕf ]∆ψ
FP[ϕf ]δ

(
ψ[ϕf ]

)
×
∏

e:edges

D[Ae]∆
Ψ
FP[A]δ

(
Ψ[A]

)
e

i
~SM [z,w,ϕ,A] =

=
∏

e:edges

∫
SU(2)

dµHaar(Ue)
∏

f :faces

δSU(2)

(
P
∏

e∈∂f

Ue
)
. (39)

where P
∏
denotes the path ordered product.
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Conclusion



Summary

There is a one-dimensional action for simplicial

gravity in three dimensions.

All fields are continuous, but have support only on

the one-dimensional edges of the discretisation.

Once we have an action, we can define a

canonical path intgeral.

The resulting amplitudes reproduce the

Ponzano–Regge model.

Spinors are useful for the following reasons: (i) They are canonical Darbouxcoordinates for loop gravity. (ii) Dynamics on a fixed discretisation ofspacetime simplifies. (iii) The action turns into a bilinear in the spinors, thisgreatly simplifies the evaluation of the path integral.
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