Continuous spinors for discretised gravity
Second EFI winter conference on quantum gravity
Tux, Austria

Wolfgang Martin Wieland
Institute for Gravity and the Cosmos, Penn State

10 February 2014
This talk studies three-dimensional Euclidean gravity as a consistency check for the spinorial representation of loop gravity.

Motivation

- Spinors simplify the symplectic structure. Instead of $T^* SU(2)$, we can then use $\mathbb{C}^2 \times \mathbb{C}^2$.
- What about the dynamics of the theory?

Results

- The discretised Palatini action turns into a line integral over the one-skeleton.
- All fields are continuous, but have support only on the edges of the discretisation.
- The resulting path integral gives the Ponzano–Regge model.
Table of contents

1. A one-dimensional action for Euclidean gravity in three dimensions
2. Path integral quantisation

References:

A one-dimensional action for Euclidean gravity in three dimensions
Euclidean gravity in three dimensions

We are using first-order variables, the action thus becomes:

\[S_M[e, A] = \frac{\hbar}{2\ell_P} \int_M \epsilon_{ijk} e^i \wedge F^{jk}[A] = -\frac{\hbar}{\ell_P} \int_M e_i \wedge F^i[A]. \]

(1)

The equations of motion are:

torsionless condition: \[T^i = De^i = 0, \]
flatness constraint: \[F^i = dA^i + \frac{1}{2} \epsilon^{ilm} A^l \wedge A^m = 0. \]

(2b)

The torsionless condition turns the SU(2) connection \(A^i \) into the Levi-Civita connection, hence the metric \(ds^2 = e^i \otimes e_i \) is locally flat. Performing a 3+1 split \(M = \Sigma \times \mathbb{R} \) we obtain the symplectic structure:

\[\{ e^i_{\ a}(p), A^j_{\ b}(q) \} = \frac{\ell_P}{\hbar} \delta^{ij} \eta_{ab} \tilde{\delta} \Sigma(p, q). \]

(3)

Notation:

- \(i, j, k, \cdots = 1, 2, 3 \) are internal indices, \(a, b, c, \ldots \) abstract indices on \(\Sigma \).
- \(e^i \) is the triad, while \(A^i_{\ j} = e^i_{\ l} A^l \) denotes the \(so(3) \) (respectively \(su(2) \)) connection, and \(D \) is the corresponding exterior covariant derivative.
We now discretise the continuum theory such that we still have a phase space. We introduce a simplicial decomposition of M, and assign holonomies and fluxes to links $\gamma_1, \gamma_2, \ldots$ and dual bones b_1, b_2, \ldots:

\[
h^{A}_{\ B}[b] = \text{Pexp} \left(- \int_{\gamma} A \right)^{A}_{\ B} \in SU(2), \quad (4a)
\]

\[
\ell^{A}_{\ B}[b] = \int_{b \ni p} (h^{-1}_p e_p h_p)^{A}_{\ B} \in \mathfrak{su}(2). \quad (4b)
\]

The Poisson brackets of the continuum theory induce on each link the commutation relations of $T^*SU(2)$, e.g.:

\[
\{\ell_i, \ell_j\} = \ell_P \frac{\epsilon_{ij}}{\hbar} \ell_m, \quad \{\ell_i, h\} = \ell_P \frac{h}{\hbar} h\tau_i. \quad (5)
\]

Notation:
- A, B, \ldots are spinor indices, we move them by the two-dimensional ϵ-tensor.
- $\ell \equiv \ell^{A}_{\ B} = \ell^i \tau^A_{\ B i}$, where τ_i are the Pauli matrices divided by $2i$.

Holonomy flux variables
Two orthogonal spinors diagonalise the flux in the frame of the initial point:

\[
\ell[b] = \frac{\ell_P}{4i} \left(|z\rangle\langle z| - |\bar{z}\rangle\langle \bar{z}| \right), \quad \ell_{AB}[b] = \frac{\ell_P}{2i} \bar{z}_A z_B^\dagger.
\]

(6)

The holonomy maps them into the final point:

\[
h|z\rangle = |\bar{z}\rangle, \quad |\bar{z}\rangle = |\bar{z}\rangle.
\]

(7)

The two spinors have the same norm:

\[
C = \|\bar{z}\|^2 - \|z\|^2 = \langle \bar{z}|\bar{z}\rangle - \langle z|z\rangle = 0.
\]

(8)

This is the length-matching constraint.

The following scheme gives the relation between $|z\rangle$ and $|\bar{z}\rangle$:

\[
|\bar{z}\rangle = z_A = \epsilon_{BA} z^B, \quad |z\rangle = z^A = \epsilon^{AB} z_B,
\]

\[
|\bar{z}\rangle = z_A^\dagger = \delta^{A\bar{A}} \bar{z}_{\bar{A}}, \quad \langle z| = z_A^\dagger = \delta^A A \bar{z}_{\bar{A}}.
\]

(9)

Two invariant tensors move the indices up and down: ϵ_{AB} is the anti-symmetric ϵ-tensor, while $\delta^A A$ denotes the Hermitian metric.
The spinors carry a natural symplectic structure:

\[
\{z_A^\dagger, z^B\} = \frac{i}{\hbar} \delta_A^B, \quad \{\tilde{z}_A^\dagger, \tilde{z}^B\} = -\frac{i}{\hbar} \delta_A^B. \quad \text{(10)}
\]

We can now reverse the logic:

- Take the spinors \(z^A\) and \(\tilde{z}^A\) as fundamental, and use them to parametrise holonomies and fluxes.
- The symplectic structure (10) induce commutations relations for holonomies and fluxes. On the constraint hypersurface \(C = 0\), we get the usual holonomy-flux algebra.
- The spinors are not unique, the constraint \(C = 0\) generates a \(U(1)\) symmetry.
- The parametrisation becomes singular once \(\ell_i = 0\).
- Taking the symplectic quotient, we obtain \(T^*SU(2) \ni (\hbar, \ell)\) exempt of the hypersurface \(T_o\) of vanishing flux \(\ell = 0\):

\[
T^*SU(2) - T_o = (\mathbb{C}^2 \times \mathbb{C}^2) \parallel C. \quad \text{(11)}
\]
We now look at the thee-dimensional discretisation and study the dynamics of the theory.

The first step is to discretise the action as a sum over wedges:

\[
S_M[e, A] = -\frac{\hbar}{\ell_P} \int_M e_i \wedge F^i \\
\approx -\frac{\hbar}{\ell_P} \sum_{w: \text{wedges}} \int_{b_w} e_i \int_w F^i. \quad (12)
\]
The action on a wedge

- Pick a spinfoam face \(f \), and introduce the loop \(\alpha(t) \) that runs around the boundary \(\partial f \).
- Consider a family of paths (links) \(\{ \gamma_t \}_{t \in [0,1]} \) connecting \(\alpha(t) \) with the center \(c = \gamma_t(1) \) of the spinfoam face.

The covariant \(t \)-derivative of the \(h_{\gamma_t} \)-holonomy gives the curvature in the spinfoam face:

\[
\begin{align*}
 h_{\gamma_t(1)}^{-1} \frac{D}{dt} h_{\gamma_t(1)} &= \int_0^1 ds \ h_{\gamma_t(s)}^{-1} F_{\gamma_t(s)} \left(\frac{d}{ds} \gamma_t(s), \frac{d}{dt} \gamma_t(s) \right) h_{\gamma_t(s)}.
\end{align*}
\]

A wedge \(w_o \) corresponds to some \(t \)-interval \([t_o, t_o + \Delta t]\). Each wedge contributes through its wedge-action \(S_w \) to the total action:

\[
S_{w_o} \approx - \frac{2\hbar \Delta t}{\ell_P} \ell_{AB}[b_{w_o}] \left(h_{\gamma_{t_o}(1)}^{-1} \frac{D}{dt} h_{\gamma_{t_o}(1)} \right)^{AB}.
\]

Where \(\ell[b_{w_o}] \) is the flux through the bone dual to the wedge.
Continuum limit on a spinfoam face

- Next, we introduce spinors: \(z^A(t) \) belongs to the boundary, while \(w^A(t) \) sits at the center of the spinfoam face.
- The limit \(\Delta t \to 0 \) turns the sum over wedges into an integral.

We add the length-matching constraint \(C = \|w\|^2 - \|z\|^2 \), and end up with the following action:

\[
S_f[z, w, \varphi, A] = -i\hbar \int_0^1 dt \left(z_A^A \frac{D}{dt} z^A - w_A^A \dot{w}^A - i \varphi (\|z\|^2 - \|w\|^2) \right). \quad (15)
\]

A one-dimensional action for gravity in three dimensions

The total action is the sum over all faces:

\[
S_M[f_1 z, f_2 z, \ldots; f_1 w, f_2 w, \ldots; \varphi_{f_1}, \varphi_{f_2}, \ldots; A_{e_1}, A_{e_2}, \ldots] = \\
\equiv S_M[z, w, \varphi, A] = -i\hbar \sum_f \oint_{\partial f} \left(f_A^z D f_A^z z^A - f_A^w d f_A^w w^A + \\
- dt i \varphi_f (\|f_z\|^2 - \|f_w\|^2) \right). \quad (16)
\]
Equations of motion

1. Variation of the spinors:

\[\frac{D}{dt} z^A = i\varphi z^A, \quad \text{and} \quad \frac{d}{dt} w^A = i\varphi w^A. \] \hspace{1cm} (17)

The spinors are periodic in \(t \), implying:

\[\exp\left(-\int_{\partial_f} dt A(t)\right) = 1, \quad e^{i\int_{\partial_f} dt \varphi(t)} = 1. \] \hspace{1cm} (18)

This is the discretisation of the curvature constraint \(F^i = 0. \)

2. Variation of the \(\varphi \)-multiplier:

\[C = \|w(t)\|^2 - \|z(t)\|^2 = 0, \] \hspace{1cm} (19)

reducing the spinors to holonomy-flux variables.

3. Variation of the \(SU(2) \) connection:

\[G_i := \frac{\hbar}{\ell_P} \sum_{f=1}^3 \ell_i [b_f]_t = i\hbar \sum_{f=1}^3 \tau_i^{AB} f z^\dagger_A(t) f z_B(t) = 0. \] \hspace{1cm} (20)

This is the discretisation of the torsionless condition \(T^i = 0. \).
One-dimensional diffeomorphisms: The action is invariant under reparametrisations of the path.

2 $U(1)$ transformations:

\[
\begin{align*}
\tilde{\varphi}(t) &= \varphi(t) + \dot{\lambda}(t), \\
\tilde{z}^A(t) &= e^{-i\lambda(t)} z^A(t), \\
\tilde{w}^A(t) &= e^{-i\lambda(t)} w^A(t).
\end{align*}
\]

3 $SU(2)$ transformations:

\[
\begin{align*}
\tilde{A}(t) &= g^{-1}(t) \frac{d}{dt} g(t) + g^{-1}(t) A(t) g(t), \\
\tilde{z}(t) &= g^{-1}(t) z(t), \\
\tilde{w}(t) &= w(t).
\end{align*}
\]

Nota bene: There is no obvious representation of the shift symmetry.
Path integral quantisation
Bargmann quantisation of the harmonic oscillator

Representation of the canonical commutation relations \(\{ z_A^\dagger, z_B \} = \frac{i}{\hbar} \delta_B^A \) in the space of \(\mathbb{C}^2 \)-analytic functions \(f \in \mathcal{H} \):

\[
\frac{\partial}{\partial \bar{z}^A} f(z) = 0, \quad (\hat{z}^A f)(z) = z^A f(z), \quad (\hat{z}^A f)(z) = \frac{\partial}{\partial z^A} f(z). \quad (23)
\]

The inner product is:

\[
\langle f, f' \rangle = \frac{1}{\pi^2} \int_{\mathbb{C}} d^4 z e^{-\delta_{A\bar{A}} z^A \bar{z}^A} f(z) f'(z). \quad (24)
\]

There is an orthonormal basis:

\[
\langle z | j, m \rangle = \frac{1}{\sqrt{(j - m)!(j + m)!}} (z^0)^{j-m} (z^1)^{j+m}. \quad (25)
\]

With \(j = 0, \frac{1}{2}, 1, \ldots, m = -j, \ldots, j \).

- This gives the Hilbert space for a single bone.
- The constraints glue these individual Hilbert spaces together.
- The result agrees with the LQG Hilbert space on a fixed graph.

Definition of the path integral

We define the vacuum-to-vacuum amplitude $\langle \Omega | \Omega \rangle = Z_M$ for the discretised (closed) manifold M as the path integral over the continuous spinor action:

$$Z_M = \int_{\text{all spinors be periodic in } \partial f} \prod_{f: \text{faces}} \mathcal{D}[f z] \mathcal{D}[f w] \mathcal{D}[\varphi_f] \Delta^\psi_{\text{FP}}[\varphi_f] \delta(\psi[\varphi_f])$$

$$\times \prod_{e: \text{edges}} \mathcal{D}[A_e] \Delta^\Psi_{\text{FP}}[A] \delta(\Psi[A]) e^{\frac{i}{\hbar} S_M[z,w,\varphi,A]}. \quad (26)$$

Notation:

- Each face contributes to $S_M = \sum_{f: \text{faces}} S_f$ through:
 $$S_f = -i\hbar \int_{\partial f} (z_A^\dagger D_z^A - w_A^\dagger d w^A - i \varphi \ dt (||z||^2 - ||w||^2)).$$

- \mathcal{D} denotes formal Lebesgue measures, e.g. $\mathcal{D}[z] = \prod_t \frac{d^4 z(t)}{\pi^2}$.

- There is a gauge fixing for the gauge potentials φ and A:
 - $\psi[\varphi]$ and $\Psi[A]$ are the gauge fixing conditions.
 - $\Delta^\psi_{\text{FP}}[\varphi]$ and $\Delta^\Psi_{\text{FP}}[A]$ are the corresponding Faddeev–Popov determinants.
Integral over the spinors

The integral over the spinors factorises into products over faces. This defines the face amplitude:

\[
Z_f [A, \varphi] := \int \mathcal{D}[z] \mathcal{D}[w] e^{\int_{\partial f} dt \left(z_A^\dagger \frac{D}{dt} z^A - w_A^\dagger \frac{d}{dt} w^A - i \varphi(\|z\|^2 - \|w\|^2) \right)}.
\]

(27)

\[z^A(0) = z^A(1), \quad w^A(0) = w^A(1)\]

The Gaußian integral turns into the trace over Hilbert space:

\[
Z_f [A, \varphi] = \text{Tr}_{\mathcal{H} \otimes \mathcal{H}} \left[\text{Pexp} \left(- \int_{\partial f} dt \left(A^i(t) \tau^{AB} i \hat{z}_A \hat{z}_B^\dagger + i \varphi(t) (\|\hat{z}\|^2 : - : \|\hat{w}\|^2 :) \right) \right) \right].
\]

(28)

(29)

In terms of the canonical basis:

\[
Z_f [A, \varphi] = \sum_{2 j = 0}^{\infty} \sum_j \sum_{2 l = 0}^{\infty} (2l + 1) \langle j, m | \text{Pexp} \left(i \int_{\partial f} dt A^i(t) \hat{L}_i \right) | j, m \rangle \\
\times e^{-i \int_{\partial f} dt \varphi(t)(2j - 2l)}.
\]

(30)

Notation:

- Generators of angular momentum: \(\hat{L}_i = i \tau^{AB} A^i \hat{z}_A \hat{z}_B^\dagger \)
- The spinor’s norm: \(:\|\hat{z}\|^2 : = \frac{1}{2} (\hat{z}_A^\dagger \hat{z}_A + \hat{z}_A \hat{z}_A^\dagger) = z_A^\dagger \frac{\partial}{\partial z_A} + 1 \),
Integral over the $U(1)$ gauge potential

Also the φ-integration factorises into a product over spinfoam faces. We choose the gauge fixing condition:

$$
\psi[\varphi](t) = \frac{d}{dt}\varphi(t) = 0.
$$

(31)

Infinitesimal gauge transformations are $\varphi^\lambda(t) = \varphi(t) + \dot{\lambda}(t)$, and $\Delta^\psi_{FP}[\varphi]$ is the determinant of the operator:

$$
\hat{m}[\lambda] := \frac{d}{d\varepsilon}\bigg|_{\varepsilon=0} \psi[\varphi^{\varepsilon\lambda}](t) = \frac{d^2}{dt^2}\lambda(t).
$$

(32)

All eigenvalues are φ-independent, and $\Delta^\psi_{FP}[\varphi]$ just gives an irrelevant overall constant.

$$
Z_f[A] = \int \mathcal{D}[\varphi] \Delta^\psi_{FP}[\varphi] \delta(\delta\psi[\varphi]) Z_f[\varphi, A] =
$$

$$
= \sum_{2j=0}^{\infty} \sum_{m=-j}^{j} (2j + 1) \langle j,m | \text{Pexp} \left(i \int_{\partial f} dt A^i(t) L_i \right) | j,m \rangle =
$$

$$
= \delta_{SU(2)} \left(\text{Pexp} \left(- \int_{\partial f} dt A^i(t) \tau_i \right) \right).
$$

(33)
Integral over the $SU(2)$ gauge potential

The most difficult step is the integral over the gauge potential A. We choose the following gauge fixing on the edges:

$$\forall e(t) : \Psi[A](t) = \frac{d}{dt} A_e(t) = 0.$$ \hspace{1cm} (34)

- We can achieve this gauge globally, one every edge of the discretisation.
- It is only a partial gauge fixing: For a single edge we can map A_e to any other constant $\tilde{A}_e \in su(2)$.

The infinitesimal gauge transformations are $\delta_\Lambda A = \frac{D}{dt} \Lambda = \dot{\Lambda} + [A, \Lambda]$. This yields the Faddeev–Popov operator:

$$\hat{M}^{ij} \Lambda^j(t) = \delta_\Lambda \Psi[A](t) = \frac{d^2}{dt^2} \Lambda^i(t) + \epsilon_{lm} A^l \frac{d}{dt} \Lambda^m(t).$$ \hspace{1cm} (35)

We diagonalise this operator, under the condition that the gauge elements $\Lambda(t)$ are everywhere continuous. This yields the Faddeev–Popov determinant:

$$\Delta_{\text{FP}}[A] \propto \det \hat{M} \propto \prod_{e: \text{edges}} \prod_{n \in \mathbb{Z} - \{0\}} \left(1 - \frac{|A_e|}{2\pi n}\right)^2 = \prod_{e: \text{edges}} \frac{4 \sin^2 \frac{|A_e|}{2}}{|A_e|^2}. \hspace{1cm} (36)$$

The path integral over the connection turns into an ordinary integral:

\[\int \prod_{e: \text{edges}} D[A_e] \Delta_{FP}^\Psi [A] \delta(\Psi[A]) \cdots \propto \prod_{e: \text{edges}} \int_{\mathbb{R}^3} d^3 A_e \frac{4 \sin^2 \frac{|A_e|}{2}}{|A_e|^2} \cdots \] \hspace{1cm} (37)

\[\propto \prod_{e: \text{edges}} \int_{SU(2)} d\mu_{\text{Haar}}(U_e) \cdots \] \hspace{1cm} (38)

The Ponzano–Regge as a path integral in spinor space

\[Z_M = \int \prod_{f: \text{faces}} D[f_z] D[f_w] D[\varphi_f] \Delta_{FP}^\psi [\varphi_f] \delta(\psi[\varphi_f]) \]

\[\times \prod_{e: \text{edges}} D[A_e] \Delta_{FP}^\Psi [A] \delta(\Psi[A]) e^{i \hbar S_M[z,w,\varphi,A]} = \]

\[= \prod_{e: \text{edges}} \int_{SU(2)} d\mu_{\text{Haar}}(U_e) \prod_{f: \text{faces}} \delta_{SU(2)} \left(\prod_{e \in \partial f} U_e \right). \] \hspace{1cm} (39)

where \(\prod \prod \) denotes the path ordered product.
Conclusion
Summary

- There is a one-dimensional action for simplicial gravity in three dimensions.
- All fields are continuous, but have support only on the one-dimensional edges of the discretisation.
- Once we have an action, we can define a canonical path integral.
- The resulting amplitudes reproduce the Ponzano–Regge model.

Spinors are useful for the following reasons: (i) They are canonical Darboux coordinates for loop gravity. (ii) Dynamics on a fixed discretisation of spacetime simplifies. (iii) The action turns into a bilinear in the spinors, this greatly simplifies the evaluation of the path integral.
Thanks for the attention!

In progress:

See also: