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What is the semi-classical limit for all spins?

LQG boundary states 20 twisted geometries
h—0 é

spinfoam amplitudes ———— > Regge geometries ————— > GR

j — oo, Bj =const. continuum
limat

PR dynamics for twisted geometries

For large spins (large distances) and small Barbero-Immirzi parameter we
seem to get the Regge action. What do we get for small spins—short
distances—high energies?
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The semi-classical limit of covariant LQG for arbitrary values of j and 3

should give a theory of discretized gravity in terms of Ashtekar-Barbero

variables. Can we find such a classical theory without knowing the exact
quantum theory behind?

\\\ A spinfoam model assigns amplitudes A, Ay,
™ > : Ay,... to the elementary building blocks of the
//// simplicial complex.
' \‘/S In the semi-classical limit these amplitudes turn
' v into action functionals:
Se St Ag ox e, Ay x eSr, A, oc e,
i . The desired action will be of the form:
¥ 4 Sspinfoamzzese+zf5f+zv SU+
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Outline of the talk

Main message: Covariant LQG suggests a new action for simplicial gravity with
spinors as the fundamental configuration variables: The theory has a
Hamiltonian and local gauge symmetries. Generic solutions represent twisted
geometries, but the solution space contains also Regge configurations.
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Worldline action for simplicial gravity



Plebanski principle

The BF action is topological, and determines the symplectic structure of
the theory:

_ 1 1 aB
SBF[E,A]_/MTPQ(*ZQB ﬂzaﬁ) AFP[A]. (1)

Map

General relativity follows from the simplicity constraints added to the

action:
NP AT o P )
With the solutions:
sb _ +eq Aeg, 3)
+ % (ea A eg).

a, 8,7 ... areinternal Lorentz indices.

£%gisan so(1, 3)-valued two-form.

A%gisan SO(1, 3) connection, with F%5 = dA%; + A% A A", denoting its curvature.
e® is the tetrad, diagonalizing the four-dimensional metric g = n,ze® ® €.

¢p? = 87 /G, and § is the Barbero-Immirzi parameter, h = 1 = c.
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Simplicial discretization

Faust:

Das Pentagramma macht dir Pein?

Ei sage mir, du Sohn der Holle,

Wenn das dich bannt, wie kamst du denn herein?
Wie ward ein solcher Geist betrogen?

Mephistopheles:

Beschaut es recht! es ist nicht gut gezogen:
Der eine Winkel, der nach auBen zu,

Ist, wie du siehst, ein wenig offen.

Faust:

The pentagram prohibits thee?

Why, tell me now, thou Son of Hades,

If that prevents, how cam’st thou in to me?
Could such a spirit be so cheated?

Mephistopheles:

Inspect the thing: the drawing’s not completed.
The outer angle, you may see,

Is open left—the lines don't fit it.

Aus Goethes Faust.
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Construction of the action, 1/2

Discretize the action:

SBF[E,A]:/ Haﬁ/\FQB% Z / Haﬁ/FQﬁE Z Sf.
M Tf f

+ f:faces f:faces
Employ the non-Abelian Stoke's theorem:

Fy :/h*th:f h™'Dh.
f of

Define the smeared flux:

ifs :/ h™'Ih.
Tf

Contract the two formulae in a common
frame:

1 D ] apB
S 7§ bt e (1),
Sf of dt |: ¢ (1) dt h'Yi(l) of f (t)
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Construction of the action, 2/2

Introduce spinors to diagonalize both holonomies and fluxes:

oy = o~ [ 4)", = £HOTBO 00

VE(t)\/Ef(?)

We also need the area-matching constraint:

e ¢ Ap = mhwf —mhwf = By(t) = B (1),
/ “e€  Pputting the pieces together yields the face action:
A «'\ L, SEAds d
;’\ 3 j ey \5:" " = ]gf dt [WA EwA — EAE%A B CA] . (5)

9/32



Geometric interpretation of the spinors

We define the complex null tetrad

1 .

3 (2% +iy”) =m* = iwtz?, m® = irto?.
Area, and plane of the triangle:

(B+1)Ar = Bl maw®, Sap X T(ays). (6)
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Geometric interpretation of the spinors

We define the complex null tetrad

1 a PyeY @ . A_A _ . A_A
5(’1’ —|—1y):m =W T, mo =17 W .

The area-matching constraint A generates the transformations:

at sefr?, wh s et zeC. (7)
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Geometric interpretation of the spinors

We define the complex null tetrad
1 «@ LaNey (e . — — . —
5(’1’ + 1y ) =m = 1wA7rA, m = 17rAwA.
Rotations around the z-axis:

I ef%wA, wt = e%wA, @ € [0,4m). (8)
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Geometric interpretation of the spinors

We define the complex null tetrad

1 a PyeY @ . A_A _ . A_A
5(’1’ —|—1y):m =W T, mo =17 W .

Boosts into the z-direction:
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Linear simplicity constraints

Instead of discretizing the quadratic simplicity constraints
Yap A Buy X €apuvs (10)
we will use the linear simplicity constraints:

For a tetrahedron T. (dual to an edge e) there exist an internal future-oriented
four-vector n such that the fluxes through the four bounding triangles ¢
(dual to a face f: e C 0f) annihilate ng:

/ Sagn? =0. (11)
Tf

The spinorial parametrization turns the simplicity constraints into the
following complex conditions:

Vi = B+ wf,wf +ce. 20, (12a)
Wey = ntArhol 0. (12b)
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Adding the simplicity constraints

The simplicity constraints reduce the SO(1, 3) spin connection A%, to
the SU(2),, Asthekar-Barbero connection:

A% =t [%W“PAVP + ﬂA“H]. (13)

We introduce Lagrange multipliers A € R and z € C and get the
following constrained action for each face in the discretization:

StacelZ, Z|C, 2, N\ A, n] = ?{ (WADwA — radw? — ((maw® — maw™)+
af

Agoi A AA_
5(5+17TA(U —l—cc.) zZn 7TA0JA)+CC., (14)

where D = dn? + A°745, 7% is the SU(2),, covariant differential.

There is no term in the action that would determine the
t-dependence of the normal n along the edges e(t).

We now have to make a proposal.
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Four-dimensional closure constraint

Any proposal for the dynamics of the time normals must respect the
closure constraint at the vertices (four-simplices):

We define the four-momenta:
pe = gng Vol(e). (15)
At every four simplex we have the closure constraint:

> opa= Y, pa (16)

outgoing edges e incoming edges e
at v at v

The constant g is dimensionful:

A mass
9] {87?6’] volume (7
Vol(e) o< %naso‘ﬂ“”LéLiLi, witheg: L} = —748_w fl fl + ce.

In a locally flat geometry, the closure constraint follows from the vanishing of torsion:

1
T = De® =0 = 3 EQPMLD(e /\e”e") =0= E +eps = 0.
edges e
agt v
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Dynamics of the time-normals

Any proposal for the dynamics of the time-normals
- must respect the four-dimensional closure constraint, and
- be consistent with all symmetries of the action.

The following action fulfills these requirements:

Sedge[ X, p|N, Vol(e)] = / (padXo‘ - g(gflpapa + gVolQ(e))). (18)

We just need an additional boundary term at the vertices:

Svertex[yva {Xev}eavy {Uev}eav] = Z (Yva - X:v)vgv~ (19)

e:es3v

Where N is a Lagrange multiplier imposing the mass-shell condition:

1/ 1 4 :
C = 5(9 ' pap +gV012(6)) =0. (20)
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Putting the pieces together - defining the action

Adding the face, edge and vertex contributions gives us a proposal for an
action for discretized gravity in first-order variables:

Sspinfoam == Z Sface [Zf7 Zf’gf7 Zf, Af’~/43f7 naf:l+

f:faces
+ Z Sedge [Xe,pe ’Ne, Vol(e)} 4
e:edges
+ Z Svertex [YU7 {Xev}63v7 {vev}eav] . (21 )
v:vertices

Z; and Z; are the twistors Z; : 9f — T ~ C* parametrizing the SL(2, C)
holonomy-flux variables.

¢y, Ay and zy are Lagrange multipliers imposing the area-matching constraint and
simplicity constraints respectively.

Ais the SU(2),, Ashtekar-Barbero connection along the edges of the discretization.
n denotes the time normal of the elementary tetrahedra.

pe is the volume-weighted time-normal, of the tetrahedron dual to the edge e.
Vol(e) denotes the corresponding three-volume.

N is a Lagrange multiplier imposing the mass-shell condition C' = 0.
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Simplicial gravity as a theory of interacting particles?

tetrahedra
four-simplices
three-volume
tetrahedral shapes
torsion=0

particles

interaction vertices

mass

internal SU(2) DOF
conservation of four-momentum
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Immediate question

Is this a reasonable model for discretized gravity?

Every triangle
has a unique area, but the shape of a triangle depends on whether we
compute it from the metric in one adjacent four-simplex or the other.

We can restrict ourselves to Regge-like
solutions.

There is a deficit angle once we go around a
triangle.
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Regge solutions



Hamiltonian formulation

H=ACoat > (ngf+§fA‘f+szef+szef+Afo)+NC, 22)
f:0fDe

generates the t-evolution along the edges of the discretization:

d
aw? ={H,w}}. (23)
Lace
6“136
,.""‘l B {pD”Xﬁ} = (55,
[ N\ {rh,wf} = 487504,
f:“; ; {EQ7%?’} = —6ff/(5§
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Dirac anaysis and reduced Hamiltonian

H=ACGat+ > (ngf YA+ Wy 1 W +Afvf) +NC. (24)
f:0fDe
- The Hamiltonian preserves all constraints for z; = 0.
- The W, simplicity constraint is second class, all other constraints first class.
- There are no secondary constraints.
- (5 = 0 wlog.

H=AGa+ »_ MNV;+NC. (25)
f:0fDe

mass-shell: C = %(g_lp.lpo‘ + gV012>

i

first-class simplicity: V = zizmaw? + cc.

GauBconstraint: Go = — 3255 ¢, LI generates SU(2),, transformations,
with LY, = —748 7wl + cc., and su(2),, generators 7, : [Ta, 75] = €op T
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Action of the first-class simplicity constraints

The first-class simplicity constraints V=0 generates a four-screw:

Ay 1 a4 B
{\/,w}—6+iw, {Vﬂ'}— ,3—!—1

A combination of a rotation and a boost preserving the triangle’s plane:

*F Hellmann and W Kaminski, ,JHEP 1310 (2013), arXiv:1307.1679.
*V Bonzom, , Phys. Rev D. 80 (2009), arXiv:0905.1501.
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Action of the mass-shell condition

Volume flow in the shape space of all tetrahedra with fixed areas:

The simplicity constraints

Srwavlaa
oy wwfazm.oi‘ s impose that the 3,5 fluxes
=5 /}‘j,,»\ ; . define planes in internal
2, e Minkowski space.
" # e .
) Jd T A o The Gaul constraint G, tells
b 4 y" ” 3 ("‘1' i )
s 4 ” ® us that these planes close to
4 f 2 form a tetrahedron.
j 7/ g A
¥ 4 j,’ A P Vi
¢ [ 4 £ 7
\ 1 ¢ £ [ [/ i
O | f E
'i 4 $ iR Lixed FQ‘V,L
.o 4 L
X

2
(9 L pap® -i-gVol2)7 with:  Vol? o §naeaﬂ‘wL},LiLL3,

N | =

, Phys.Rev. D 86 (2012), arXiv:1208.2228. 22732

*E Bianchi and HM Haggard,


http://arxiv.org/abs/1208.2228

Restriction to stable tetrahedra

We restrict ourselves to tetrahedra that are stable under the volume
flow:

at e Cired Fr;\;‘_,.[,

The mass shell condition generates residual U(1) transformation of
the spinors in the triangles:

_ip io
at e 2 TI'A, wt et T WA, (26)

We can tune these angles in such a way that they cancel the
unwanted rotation from the simplicity constraints.

We are then left with a pure boost.
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Gauge fixing

It works as follows (for e.g. the spinors in the 1-plane):
1

We align the dyade in the 1-plane with the
(34)-edge,

and require that the Hamiltonian preserves
this additional condition.

4
H=AGs+ > MNV;+NC. (27)
f=1

This fixes the Lagrange multiplier Af in terms of N:

Vol?  Ars + Arq cos P12

N 28
sin2 1912 AI‘1 AI‘Q ( )

M) = 2 )

There are three possible choices to align the spinors to an edge. The
result (28) is independent of this ambiguity.

917 is the dihedral angle, Vol denotes the volume and Ar; is the area of the I-th triangle.
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Effective equations of motion

Our alignment brings the evolution equations into a simple form:

V 4 _ d €A

YF = dtwf + T pwf =+ (29a)
v d
o =g e :—%fn;‘, (29b)

Geometric interpretation:
I € su(2), is the Levi-Civita connection along the edges.
&7 € R measures the extrinsic curvature in the face f.
The parallel transport around the face is a pure boost:

i = [pesw (- K r)rB - -

1 _1 1
Tow
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Deficit angle and extrinsic curvature

four-simplex

vertex

Inter-tetrahedral angles:
coshZ,f = —n“"nin,e,,, with: ene’ = v, and: e, ¢’ C 9f. (31)

Deficit angle around a triangle:

Ep= Y Evf:?{ dte. (32)

v: verticesin f f

26/32



The on-shell action is the Regge action

We evaluate the on-shell action for volume-stable geometries.
The action consists of a symplectic potential plus constraints.
The constraints vanish on-shell.
The symplectic potential pod X does not contribute either, because of:
EOM
/p axe Py [x9 ) =X ] and YD xph=0  (33)
€

edges e
at v

All contributions come from the symplectic potential for the spinors.

Regge action at the fixed point of the volume flow

EOM EOM
spmfoam[ﬂ— w, p, Z f{; de‘? +cc. = 5 Z 7rAwf _f + cc. =

f:faces f:faces

Eng Z (B+1)

52 AryEf +cc. =

Z Arf 2 = SRegge [{eb}b bones] .

f:faces

8G

f faces

Solutions of the equations of motion extremize the spinfoam action,
hence they also bring the Regge action to an extremum.
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Conclusion



The simplicial edges turn into the worldlines of a system of
auxiliary particles scattering in a flat auxiliary manifold. Every tetrahedron carries a
conserved four-momentum. Its norm is not mass but volume.

Generic solutions represent twisted geometries that are the
boundary data of loop quantum gravity.

Regge configurations appear at the fixed point of the volume flow,
where the on-shell action Sgpinfoam turns into the Regge action Sgregge.
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Open issues of the model

Role of local Lorentz invariance: The addition of the p,d X term
breaks local SL(2,C) invariance down to the little group SU(2),.
What is the physical role of the X*-background geometry with flat
Minkowski metric n.4? Is there a relation to teleparallelism?

We have only shown local existence of Regge-like solutions. Open
problem: Find explicit solutions that triangulate physical (Ricci flat)
spacetime geometries.
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Relevance for loop quantum gravity

The instantaneous Hilbert
space is the Hilbert space of projected spin network functions.
Area <+ norm of the Pauli-Lubanski vector. Quantization of area <
quantization of spin in the auxiliary particle model.

Take the spinfoam action and
reformulate loop quantum gravity as a one-dimensional QFT over
the edges of the discretization. The spinfoam amplitudes turn into
the S-matrix amplitudes of an auxiliary worldline model.

*S Alexandrov and ER Livine , , Phys. Rev. D 67 (2003), arXiv:gr-qc/0209105.
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Thank you for your attention
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