Deparametrized models in LQG perspectives & prospects

MEHDI ASSANIOUSSI

FACULTY OF PHYSICS, UNIVERSITY OF WARSAW

FOURTH TUX WORKSHOP ON QUANTUM GRAVITY

2016

PLAN OF THE TALK |

I. Motivation

II. General setup

III. Examples

IV. Loop quantization

V. What next?

VI. Conclusions

- General covariance implies that the dynamics of the theory is encoded in constraints.
- Impossible to isolate the true dynamical degrees of freedom in General Relativity.

> This leads to:

- Conceptual problems in the interpretation of a theory of quantum GR.
- Technical difficulties in imposing the quantum constraint.

Solving constraints

Physical HamiltonianSpace diffeomorphisms

Phase
space
Physical d.o.f
Observables

GENERAL SETUP |

[K. Giesel, T. Thiemann, CQG 32 (2015) 135015]

$$S = \int d^4x \quad L_G + L_R + L_M$$

GENERAL SETUP |

[K. Giesel, T. Thiemann, CQG 32 (2015) 135015]

$$S = \int d^4x \quad L_G + L_R + L_M$$

$$L_R = -\frac{1}{2}\sqrt{|g|} \left[g^{\mu\nu} \left(\rho(\nabla_\mu T)(\nabla_\nu T) + A(\rho)(\omega_j \nabla_\mu S^j)(\omega_k \nabla_\nu S^k) + 2B(\rho)(\nabla_\mu T)(\omega_l \nabla_\nu S^l) \right) + \Lambda(\rho) \right]$$

GENERAL SETUP |

[K. Giesel, T. Thiemann, CQG 32 (2015) 135015]

$$S = \int d^4x \quad L_G + L_R + L_M$$

Arbitrary functions

[L. Smolin 89'], [C. Rovelli, L. Smolin 93'], [M. Domagala, K. Giesel, W. Kaminski, J. Lewandowski 10']

[L. Smolin 89'], [C. Rovelli, L. Smolin 93'], [M. Domagala, K. Giesel, W. Kaminski, J. Lewandowski 10']

Constraints:

$$C_{a} = C_{a}^{\text{gr}} + P T_{,a}$$

$$C_{a} = C^{\text{gr}} + \frac{1}{2\sqrt{\det(q)}} \left(P^{2} + E_{l}^{a} E_{l}^{b} T_{,a} T_{,b}\right)$$

[L. Smolin 89'], [C. Rovelli, L. Smolin 93'], [M. Domagala, K. Giesel, W. Kaminski, J. Lewandowski 10']

[L. Smolin 89'], [C. Rovelli, L. Smolin 93'], [M. Domagala, K. Giesel, W. Kaminski, J. Lewandowski 10']

Constraints:

$$C'_a = C_a^{\rm gr}$$
$$C' = P - h$$

[L. Smolin 89'], [C. Rovelli, L. Smolin 93'], [M. Domagala, K. Giesel, W. Kaminski, J. Lewandowski 10']

Constraints:

$$C'_a = C_a^{\rm gr}$$
$$C' = P - h$$

We obtain:

$$t = T$$
$$h := \sqrt{-2\sqrt{\det(q)}C^{\mathrm{gr}}}$$

BROWN-KUCHAR DUST MODEL

[J.D. Brown, K.V. Kuchar 95']

EXAMPLES |BROWN-KUCHAR DUST MODEL

[J.D. Brown, K.V. Kuchar 95']

Constraints:

$$C_{a} = C_{a}^{\text{gr}} + C_{a}^{\text{D}}$$

$$C_{a} = C_{a}^{\text{gr}} + \frac{P^{2}}{2\rho\sqrt{\det(q)}} + \frac{\rho\sqrt{\det(q)}}{2P^{2}} \left(q^{ab}C_{a}^{\text{D}}C_{b}^{\text{D}} + P^{2}\right)$$

+ second class constraints

with $C_a^{\mathrm{D}} := P T_{,a} + P_j S_{,a}^j$

EXAMPLES | BROWN-KUCHAR DUST MODEL

[J.D. Brown, K.V. Kuchar 95']

Constraints:

$$C'_{j} = P_{j} + \delta^{a}_{j} C^{\text{gr}}_{a}$$
$$C' = P - \operatorname{sgn}(P) \sqrt{C^{\text{gr} 2} - q^{ab} C^{\text{gr}}_{a} C^{\text{gr}}_{b}}$$

EXAMPLES | BROWN-KUCHAR DUST MODEL

[J.D. Brown, K.V. Kuchar 95']

Constraints:

$$C'_{j} = P_{j} + \delta^{a}_{j} C^{\text{gr}}_{a}$$
$$C' = P - \operatorname{sgn}(P) \sqrt{C^{\text{gr} 2} - q^{ab} C^{\text{gr}}_{a} C^{\text{gr}}_{b}}$$

We obtain:

$$t = T , \ x^{j} = S^{j}$$
$$h := \sqrt{C^{\text{gr } 2} - q^{ab} C_{a}^{\text{gr}} C_{b}^{\text{gr}}}$$

NON-ROTATIONAL DUST

[V. Husain, T. Pawlowski 11'], [K. Giesel, T. Thiemann 12'], [J. Swiezewski 13']

EXAMPLES |

NON-ROTATIONAL DUST

[V. Husain, T. Pawlowski 11'], [K. Giesel, T. Thiemann 12'], [J. Swiezewski 13']

Constraints:

$$C_{a} = C_{a}^{\text{gr}} + P T_{,a}$$

$$C = C^{\text{gr}} + \frac{P^{2}}{2\rho\sqrt{\det(q)}} + \frac{\rho\sqrt{\det(q)}}{2} \left(q^{ab}T_{,a}T_{,b} + 1\right)$$

$$\Delta = -\frac{P^{2}}{\rho^{2}\sqrt{\det(q)}} + \sqrt{\det(q)} \left(q^{ab}T_{,a}T_{,b} + 1\right)$$

NON-ROTATIONAL DUST

[V. Husain, T. Pawlowski 11'], [K. Giesel, T. Thiemann 12'], [J. Swiezewski 13']

Constraints:

$$C'_a = C_a^{\rm gr}$$
$$C' = C^{\rm gr} + P$$

NON-ROTATIONAL DUST

[V. Husain, T. Pawlowski 11'], [K. Giesel, T. Thiemann 12'], [J. Swiezewski 13']

Constraints:

$$C'_a = C_a^{\rm gr}$$
$$C' = C^{\rm gr} + P$$

We obtain:

$$t = T$$
$$h := -C^{g}$$

GAUSSIAN DUST MODEL

[K.V. Kuchar, C.G. Torre 91']

7

EXAMPLES |

GAUSSIAN DUST MODEL

[K.V. Kuchar, C.G. Torre 91']

Constraints:

$$C_{a} = C_{a}^{\text{gr}} + P T_{,a} + P_{j}S_{,a}^{j}$$

$$C_{a} = C^{\text{gr}} + \left(P\sqrt{q^{ab}T_{,a}T_{,b}} + 1 + \frac{q^{ab}T_{,a}P_{j}S_{,b}^{j}}{\sqrt{q^{ab}T_{,a}T_{,b}} + 1}\right)$$

+ second class constraints

[K.V. Kuchar, C.G. Torre 91']

7

Constraints:

$$C'_{j} = P_{j} + \delta^{a}_{j} C^{\mathrm{gr}}_{a}$$
$$C' = P + C^{\mathrm{gr}}$$

GAUSSIAN DUST MODEL

[K.V. Kuchar, C.G. Torre 91']

Constraints:

$$C'_{j} = P_{j} + \delta^{a}_{j} C^{gr}_{a}$$
$$C' = P + C^{gr}$$

We obtain:

$$t = T \ , \ x^j = S^j$$
$$h := -C^{\text{gr}}$$

LOOP QUANTIZATION | LQG V.S. AQG

LOOP QUANTIZATION | LQG V.S. AQG

In canonical loop quantization context, there are two possible options:

LQG

- Infinite number of embedded graphs
- Non-separable
- Topology and differential struc. provided

AQG

- Sub-graphs of one infinite alg. graph
- Non-separable
- Topology and differential struc. absent

LOOP QUANTIZATION | PHYSICAL HILBERT SPACE

LOOP QUANTIZATION | PHYSICAL HILBERT SPACE

Physical Hilbert space:

Spacetime reference models

- All constraints solved classically
- Physical Hilbert sp. = Kinematical sp.

Time reference models

- Diff. const. solved in quantum theory
- Physical Hilbert sp. = Diff. inv. H. space

LOOP QUANTIZATION | PHYSICAL HILBERT SPACE

Physical Hilbert space:

Spacetime reference models

- All constraints solved classically
- Physical Hilbert sp. = Kinematical sp.

Time reference models

- Diff. const. solved in quantum theory
- Physical Hilbert sp. = Diff. inv. H. space

N.B.: For an AQG-time reference model, the kinematical Hilbert sp. is to be reduced w.r.t. the diff. constraints.

Time refere	nce models	Spacetime reference models		
Massless K.G. scalar field	Non rotational dust	Gaussian dust	Brown-Kuchar dust	
$\begin{aligned} C_a^{\rm gr} &= 0 \\ h &:= \sqrt{-2\sqrt{\det(q)}C^{\rm gr}} \end{aligned}$	$C_a^{ m gr} = 0$ $h := -C^{ m gr}$	$h := -C^{\operatorname{gr}}$	$h := \sqrt{C^{\text{gr } 2} - q^{ab} C_a^{\text{gr}} C_b^{\text{gr}}}$	

11

Graph preserving:

11

	Spacetime ref. models	Time ref. models	Vacuum (no ref. fields)
LQG	Unknown/Impossible	Option 1	Options 1 & 2
LQG*	Option 3	All options	All options
AQG	Options 2 & 3	Unknown	Options 2 & 3

	Time reference models		Spacetime reference models	
	Massless K.G. s.f.	Non rotational dust	Gaussian dust	Brown-Kuchar dust
LQG	0	0	0	0
LQG*	0	0	0	0
AQG	0	0	0	0
	Scalar constraint reg.			Master const. pr.

$$C^{\rm gr} = \frac{1}{2k} \int_{\Sigma} d^3x \left(\frac{\epsilon_{ijk} F^k_{ab} E^a_i E^b_j}{\sqrt{|\det E|}} + 2\left(s - \beta^2\right) \frac{K^i_{[a} K^j_{b]} E^a_i E^b_j}{\sqrt{|\det E|}} \right)$$
$$= \frac{1}{2k\beta^2} \int_{\Sigma} d^3x \left(s \frac{\epsilon_{ijk} F^k_{ab} E^a_i E^b_j}{\sqrt{|\det E|}} + \left(s - \beta^2\right) \sqrt{|\det E|} R \right)$$

$$C^{\rm gr} = \frac{1}{2k} \int_{\Sigma} d^3x \left(\frac{\epsilon_{ijk} F^k_{ab} E^a_i E^b_j}{\sqrt{|\det E|}} + 2\left(s - \beta^2\right) \frac{K^i_{[a} K^j_{b]} E^a_i E^b_j}{\sqrt{|\det E|}} \right)$$
$$= \frac{1}{2k\beta^2} \int_{\Sigma} d^3x \left(s \frac{\epsilon_{ijk} F^k_{ab} E^a_i E^b_j}{\sqrt{|\det E|}} + \left(s - \beta^2\right) \sqrt{|\det E|} R \right)$$
Euclidean part op. (Graph changing)

13

$$\hat{C}^{\text{Sym}} := \text{Sym}(\hat{C}^E, \hat{C}^{E\dagger}, \hat{C}^L, \hat{C}^{L\dagger})$$

$$\hat{C}^{\text{Sym}} := \text{Sym}(\hat{C}^E, \hat{C}^{E\dagger}, \hat{C}^L, \hat{C}^{L\dagger})$$

- $C \rightarrow \frac{1}{2}(\hat{C} + \hat{C}^{\dagger})$
- $C^2 \to \hat{C}\hat{C}^{\dagger}$ or $\hat{C}^{\dagger}\hat{C}$
- $q^{ab}C_a^{\rm gr}C_b^{\rm gr} \to \hat{D}_j\hat{D}_j^{\dagger} \text{ or } \hat{D}_j^{\dagger}\hat{D}_j$
- . . .

$$\hat{C}^{\text{Sym}} := \text{Sym}(\hat{C}^E, \hat{C}^{E\dagger}, \hat{C}^L, \hat{C}^{L\dagger})$$

• $C \rightarrow \frac{1}{2}(\hat{C} + \hat{C}^{\dagger})$

igodot

. . .

- $C^2 \to \hat{C}\hat{C}^{\dagger}$ or $\hat{C}^{\dagger}\hat{C}$
- $q^{ab}C_a^{\rm gr}C_b^{\rm gr} \to \hat{D}_j\hat{D}_j^{\dagger} \text{ or } \hat{D}_j^{\dagger}\hat{D}_j$

? - Self-adjoint extensions

- Spectral analysis leading to a reduced physical Hilbert space.
- Modify the form of the Hamiltonian:

- Spectral analysis leading to a reduced physical Hilbert space.
- Modify the form of the Hamiltonian:

$$h = Q(C, C_a) = Q(C, C_a)_{|P}, \ h \ge 0$$
$$h = \frac{1}{2} \left(Q(C, C_a) + |Q(C, C_a)| \right)$$

- Spectral analysis leading to a reduced physical Hilbert space.
- Modify the form of the Hamiltonian:

$$h = Q(C, C_a) = Q(C, C_a)_{|\mathbf{P}|}, \ h \ge 0$$
$$h = \frac{1}{2} \left(Q(C, C_a) + |Q(C, C_a)| \right)$$

2. Square root (e.g.
$$h := \sqrt{-2\sqrt{\det(q)}C^{\mathrm{gr}}}$$
) :

1. Sign condition in the Hamiltonian:

- Spectral analysis leading to a reduced physical Hilbert space.
- Modify the form of the Hamiltonian:

$$h = Q(C, C_a) = Q(C, C_a)_{|\mathbf{P}|}, \ h \ge 0$$
$$h = \frac{1}{2} \left(Q(C, C_a) + |Q(C, C_a)| \right)$$

2. Square root (e.g.
$$h:=\sqrt{-2\sqrt{\det(q)}C^{\mathrm{gr}}}$$
) :

• Perturbation theory

SUMMARY |

- Unified setup;
- Spacetime reference models fit in AQG but not in standard LQG;
- Time reference models fit LQG, but not in AQG so far;
- Physical Hilbert spaces available;
- Physical Hamiltonian operators defined consistently;
- Computable framework available.

- Test quantum dynamics:
 - Compute evolution on coherent/symmetric state
 - Semi-classical dynamics

- Test quantum dynamics:
 - Compute evolution on coherent/symmetric state
 - Semi-classical dynamics

• Locality:

- Test quantum dynamics:
 - Compute evolution on coherent/symmetric state
 - Semi-classical dynamics

• Locality:

- Test quantum dynamics:
 - Compute evolution on coherent/symmetric state
 - Semi-classical dynamics

Locality:

- Test quantum dynamics:
 - Compute evolution on coherent/symmetric state
 - Semi-classical dynamics

Locality:

 $\operatorname{Ker}(\hat{C^{\dagger}}\hat{C}) = \operatorname{Ker}(\hat{C})$

$$\hat{C} = \frac{1}{2k\beta^2} \left(\hat{C}^E - (1+\beta^2) \,\hat{R} \right) = -\frac{1+\beta^2}{2k\beta^2} \left(\hat{R} - \frac{1}{1+\beta^2} \hat{C}^E \right)$$

$$\hat{C} = \frac{1}{2k\beta^2} \left(\hat{C}^E - (1+\beta^2) \hat{R} \right) = -\frac{1+\beta^2}{2k\beta^2} \left(\hat{R} - \frac{1}{1+\beta^2} \hat{C}^E \right)$$
$$\hat{C}_0 := \hat{R} \qquad , \qquad \delta \hat{C} := -\frac{1}{1+\beta^2} \hat{C}^E$$
$$\hat{C} = \hat{C}_0 + \delta \hat{C} \qquad , \qquad \beta \gg 1$$

$$\hat{C} = \frac{1}{2k\beta^2} \left(\hat{C}^E - (1+\beta^2) \hat{R} \right) = -\frac{1+\beta^2}{2k\beta^2} \left(\hat{R} - \frac{1}{1+\beta^2} \hat{C}^E \right)$$
$$\hat{C}_0 := \hat{R} \qquad , \qquad \delta \hat{C} := -\frac{1}{1+\beta^2} \hat{C}^E$$
$$\hat{C} = \hat{C}_0 + \delta \hat{C} \qquad , \qquad \beta \gg 1$$

- Coupling SM matter fields:
 - Quantization of the matter Hamiltonian
 - Investigate matter dynamics in high QR of geometry
 - Continuum limit of geometry by confronting models to standard QFT

CONCLUSIONS |

- Deparametrization is a powerful technical tool to circumvent the problems with constraints;
- LQG and AQG provide a complete and relatively clean program of quantization;
- Perturbative treatments of dynamics suggest computable framework;
- Possibility to investigate generic phenomenon and properties in LQG;
- Including, additionally, SM fields in those models is a promising route;

CONCLUSIONS |

- Deparametrization is a powerful technical tool to circumvent the problems with constraints;
- LQG and AQG provide a complete and relatively clean program of quantization;
- Perturbative treatments of dynamics suggest computable framework;
- Possibility to investigate generic phenomenon and properties in LQG;
- Including, additionally, SM fields in those models is a promising route;

Thank you