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• General covariance implies that the dynamics of the theory is encoded in constraints.

• Impossible to isolate the true dynamical degrees of freedom in General Relativity.

 This leads to:

• Conceptual problems in the interpretation of a theory of quantum GR.

• Technical difficulties in imposing the quantum constraint.
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• Avoid the fundamental problem of time
• Dynamics governed by a Schrödinger equation
• Study generic phenomenology of quantum
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LOOP QUANTIZATION |     LQG V.S. AQG

In canonical loop quantization context, there are two possible options:

LQG

• Infinite number of embedded graphs
• Non-separable
• Topology and differential struc. provided

AQG

• Sub-graphs of one infinite alg. graph
• Non-separable
• Topology and differential struc. absent
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Physical Hilbert space:

Spacetime reference models

• All constraints solved classically
• Physical Hilbert sp. = Kinematical sp.

Time reference models

• Diff. const. solved in quantum theory
• Physical Hilbert sp. = Diff. inv. H. space

N.B.: For an AQG-time reference model, the kinematical Hilbert sp. is to be reduced w.r.t. the diff. constraints.
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Time reference models Spacetime reference models

Massless K.G. scalar field Non rotational dust Gaussian dust Brown-Kuchar dust
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Spacetime ref. models Time ref. models Vacuum (no ref. fields) 

LQG Unknown/Impossible Option 1 Options 1 & 2

LQG* Option 3 All options All options

AQG Options 2 & 3 Unknown Options 2 & 3
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Graph changing: Graph preserving:

Option 1

Option 2

Option 3
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Time reference models Spacetime reference models 

Massless K.G. s.f. Non rotational dust Gaussian dust Brown-Kuchar dust

LQG 

LQG*

AQG

Scalar constraint reg. Master const. pr.

LOOP QUANTIZATION | IMPLEMENTATION OF THE HAMILTONIAN
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Euclidean part op.
(Graph changing)
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Lorentzian part op.
(Graph changing)

Euclidean part op.
(Graph changing)
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Curvature op.
(Graph preserving)

Lorentzian part op.
(Graph changing)

Euclidean part op.
(Graph changing)

LOOP QUANTIZATION | IMPLEMENTATION OF THE HAMILTONIAN
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LOOP QUANTIZATION | SYMMETRIC HAMILTONIAN OPERATOR

Self-adjoint extensions

?
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LOOP QUANTIZATION | ISSUES & POSSIBLE TREATMENTS

1. Sign condition in the Hamiltonian:

• Spectral analysis leading to a reduced physical Hilbert space.
• Modify the form of the Hamiltonian:

2. Square root (e.g.                                                    ) :

• Perturbation theory
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SUMMARY |

• Unified setup;

• Spacetime reference models fit in AQG but not in standard LQG;

• Time reference models fit LQG, but not in AQG so far;

• Physical Hilbert spaces available;

• Physical Hamiltonian operators defined consistently;

• Computable framework available.
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WHAT NEXT? |

 Perturbation theory for the dynamics:

 Coupling SM matter fields:
• Quantization of the matter Hamiltonian
• Investigate matter dynamics in high QR of geometry
• Continuum limit of geometry by confronting models to standard QFT
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 Deparametrization is a powerful technical tool to circumvent the problems 
with constraints;

 LQG and AQG provide a complete and relatively clean program of quantization;
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 Possibility to investigate generic phenomenon and properties in LQG;

 Including, additionally, SM fields in those models is a promising route;
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CONCLUSIONS |

 Deparametrization is a powerful technical tool to circumvent the problems 
with constraints;

 LQG and AQG provide a complete and relatively clean program of quantization;

 Perturbative treatments of dynamics suggest computable framework;

 Possibility to investigate generic phenomenon and properties in LQG;

 Including, additionally, SM fields in those models is a promising route;

Thank you


