State refinements and coarse graining in a full theory embedding of loop quantum cosmology

Norbert Bodendorfer, LMU Munich

based on arXiv:1607.06227

Fifth Tux Workshop on Quantum Gravity

Contents

Introduction
Description of the model
Coarse graining
Spatial derivatives
Conclusion

Model the physics of coarse observables at coarse scales

Model the physics of coarse observables at coarse scales

@States?

Model the physics of coarse observables at coarse scales

øStates?

Observables?

Model the physics of coarse observables at coarse scales

øStates?

Observables?

Model the physics of coarse observables at coarse scales

States?

Observables?

3

Hamiltonian?

Model the physics of coarse observables at coarse scales

States? Observables?

3

Hamiltonian? Parameters?

Model the physics of coarse observables at coarse scales

States? Hamiltonian? Observables? Parameters? In general very hard -> Toy models / Symmetries!

4

@2 scalar fields:

$\{b(x), v(y)\} = \delta^{(3)}(x, y)$ $\{\phi(x), P_{\phi}(y)\} = \delta^{(3)}(x, y)$

@2 scalar fields:

Hamiltonian constraint:

$\{b(x), v(y)\} = \delta^{(3)}(x, y)$ $\{\phi(x), P_{\phi}(y)\} = \delta^{(3)}(x, y)$

 $P_{\phi}^2 - b^2 v^2 \approx 0$

@2 scalar fields:

Hamiltonian constraint:

Deparametrise:

$\{b(x), v(y)\} = \delta^{(3)}(x, y)$ $\{\phi(x), P_{\phi}(y)\} = \delta^{(3)}(x, y)$

 $P_{\phi}^2 - b^2 v^2 \approx 0$

 $H_{\rm true} = P_{\phi} = \sqrt{b^2 v^2}$

@2 scalar fields:

Hamiltonian constraint:

Deparametrise:

Quantise using LQG

4

$\{b(x), v(y)\} = \delta^{(3)}(x, y)$ $\{\phi(x), P_{\phi}(y)\} = \delta^{(3)}(x, y)$

 $P_{\phi}^2 - b^2 v^2 \approx 0$

 $H_{\rm true} = P_{\phi} = \sqrt{b^2 v^2}$

Conjugates: volume / mean curvature + rest

Conjugates: volume / mean curvature + rest

Treat as scalar field -> Point holonomies

 $b \to \sin(b) = \frac{e^{ib} - e^{-ib}}{2i}$

Conjugates: volume / mean curvature + rest

 $b \to sin(b) = \frac{e^{ib} - e^{-ib}}{2i}$

Treat as scalar field -> Point holonomies

Single vertex state

6

6

Full theory operators <-> LQC operators

Full theory operators <-> LQC operators

Choose ordering of Hamiltonian as in sLQC [Ashtekar, Corichi, Singh '07]

operators n as in sLQC

Full theory operators <-> LQC operators

Choose ordering of Hamiltonian as in sLQC [Ashtekar, Corichi, Singh '07]

Ignore any spatial derivative terms (for now)

Full theory operators <-> LQC operators

Choose ordering of Hamiltonian as in sLQC [Ashtekar, Corichi, Singh '07]

Ignore any spatial derivative terms (for now) Seliminate some terms via "reduction constraints"

Full theory operators <-> LQC operators Choose ordering of Hamiltonian as in sLQC [Ashtekar, Corichi, Singh '07] Ignore any spatial derivative terms (for now) Seliminate some terms via "reduction constraints" Obtain LQC dynamics $< P_{\phi} > = \text{const}, \quad < V > = V_{\min} \cosh(\phi - \phi_{B})$

6

7

Oppnamics is ultra-local (confined to vertex) -> solved independently at each vertex

Opposition of the second se -> solved independently at each vertex

@sLQC solution for every vertex -> Independent "mini-universes"

Oppnamics is ultra-local (confined to vertex) -> solved independently at each vertex

@sLQC solution for every vertex -> Independent "mini-universes"

Take the same wave function for every vertex

Coarse graining flow

States	adjust stat $< P_{\phi} >,$ are inv
Observables	invai
Hamiltonian	invai
Parameters	invai

tes so that

variant

riant

riant

Coarse graining flow

States	adjust stat $< P_{\phi} >,$ are inv
Observables	inva
Hamiltonian	inva
Parameters	inva

Leads to invariant coarse grained dynamics for $< P_{\phi} >, < V >$ $_{8}$

tes so that

variant

triant

Standard deviations

Standard deviations

Subdivide vertex into N vertices and choose

 $\left\langle \hat{V}_{i} \right\rangle = \frac{1}{N} \left\langle \hat{V} \right\rangle \qquad \qquad \left\langle \hat{P}_{\phi,i} \right\rangle = \frac{1}{N} \left\langle \hat{P}_{\phi} \right\rangle$

Standard deviations

Subdivide vertex into N vertices and choose

Heisenberg uncertainty relation $\Delta \hat{V} \cdot \Delta \hat{P}_{\phi} \ge \frac{1}{2} \left\langle \left[\hat{V}, \hat{P}_{\phi} \right] \right\rangle = \frac{1}{2} \left\langle \hat{V} \right\rangle$ is consistent with choosing $\Delta \hat{V}_i = \frac{1}{\sqrt{N}} \Delta \hat{V} \qquad \qquad \Delta \hat{P}_{\phi,i} = \frac{1}{\sqrt{N}} \Delta \hat{P}_{\phi}$ and error propagation.

Regularize via finite difference

Regularize via finite difference

Choose the same sLQC state for each vertex

(as in GFT condensates, [Gielen, Oriti, Sindoni, Wilson-Ewing, ...])

$<\partial_a f(p,q) > = 0$

Regularize via finite difference

Choose the same sLQC state for each vertex

(as in GFT condensates, [Gielen, Oriti, Sindoni, Wilson-Ewing, ...])

Self-consistent solution in full theory

$<\partial_a f(p,q) > = 0$

Working example of coarse graining

Working example of coarse graining Oynamics invariant

Working example of coarse graining Oppnamics invariant Refinement can be repeated arbitrarily - Discrete lattice arguments?

Working example of coarse graining Oppnamics invariant Refinement can be repeated arbitrarily - Discrete lattice arguments? Lessons for full theory? - Model too simple?

- Expansion around homogeneous & isotropic?