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Coarse graining

States?

Observables?

Model the physics of coarse 
observables at coarse scales

Hamiltonian?

Parameters?

In general very hard -> Toy models / Symmetries!
3
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{b(x), v(y)} = �

(3)(x, y)

Deparametrise: 

P 2
� � b2v2 ⇡ 0

Htrue = P� =
p
b2v2

Quantise using LQG
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Single vertex computation
Full theory operators <-> LQC operators 

Choose ordering of Hamiltonian as in sLQC 
[Ashtekar, Corichi, Singh ’07]

Ignore any spatial derivative terms (for now)

Eliminate some terms via “reduction constraints”

Obtain LQC dynamics

< P� >= const, < V >= Vmin cosh(�� �B)
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Adaption to many vertices
Dynamics is ultra-local (confined to vertex)  
-> solved independently at each vertex  

sLQC solution for every vertex  
-> Independent “mini-universes” 

Take the same wave function for every vertex 
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Coarse graining flow

Leads to invariant coarse grained dynamics for                   

States
adjust states so that


are invariant
Observables invariant
Hamiltonian invariant
Parameters invariant
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Standard deviations
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Spatial derivatives

Regularize via finite difference 

Choose the same sLQC state for each vertex  
(as in GFT condensates, [Gielen, Oriti, Sindoni, Wilson-Ewing, ...] )

< \@a f(p, q) > = 0

Self-consistent solution in full theory  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Conclusion

Working example of coarse graining

Dynamics invariant 

Refinement can be repeated arbitrarily 
- Discrete lattice arguments?

Lessons for full theory?  
- Model too simple? 
- Expansion around homogeneous & isotropic?
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