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Coarse graining

Model the physics of coarse
observables at coarse scales

@ States? @Hamiltonian?

@(Observables? @Parameters?

In general very hard -> Toy models / Symmetries!

3



Toy model picture



Toy model picture

a2 scalar fields: {b(z),v(y)} = 6P (z,y)
{6(z), Ps(y)} = 69 (z, y)



Toy model picture

a2 scalar fields: {b(z),v(y)} = 6P (z,y)
{6(z), Ps(y)} = 69 (z, y)

@Hamiltonian constraint: qu — b2 ~ 0



Toy model picture

a2 scalar fields: {b(z),v(y)} = 6P (z,y)
{6(z), Ps(y)} = 69 (z, y)

@Hamiltonian constraint: qu — b2 ~ 0

@ Deparametrise: Hirge =0 = V b2p2



Toy model picture

a2 scalar fields: {b(z),v(y)} = 6P (z,y)
{6(z), Ps(y)} = 69 (z, y)

@Hamiltonian constraint: qu — b2 ~ 0

@ Deparametrise: Hirge =0 = V b2p2

@ Quantise using LQG
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Embedding LQC to LQG

(spatially homogeneous and isotropic)

@Conjugates: volume / mean curvature + rest

@ Treat as scalar field
-> Point holonomies
oib _ o—ib ®

b — sin(b) = 5
0

@ Single vertex state
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Single vertex computation

aFull theory operators <-> LQC operators

@Choose ordering of Hamiltonian as in sLQC

[Ashtekar, Corichi, Singh ‘07]

@Ignore any spatial derivative terms (for now)
aEliminate some terms via "reduction constraints”
@0Obtain LQC dynamics

< Py >= const, <V >= Viin cosh(¢ — ¢B)

6



Adaption fo many vertices



Adaption fo many vertices

@Dynamics is ultra-local (confined to vertex)
-> solved independently at each vertex



Adaption fo many vertices

@Dynamics is ultra-local (confined to vertex)
-> solved independently at each vertex

@sLQC solution for every vertex
-> Independent “"mini-universes”



Adaption fo many vertices

@Dynamics is ultra-local (confined to vertex)
-> solved independently at each vertex

@sLQC solution for every vertex
-> Independent “"mini-universes”

@ Take the same wave function for every vertex
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Coarse graining flow

adjust states so that

States <oz s iV o
are invariant

Observables iInvariant
Hamiltonian iInvariant
Parameters invariant

@Leads to invariant coarse grained dynamics for
= Pgb P
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Standard deviations

@ Subdivide vertex into N vertices and choose

- L A Lig s
W =gi7) T (B =5 (B
@Heisenberg uncertainty relation

st 2 J([v.5]) =1 (9)

IS consistent with choosing

A 1 A A A
X = AN AN e~ AV &
VN VT

and error propagation.
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@Choose the same sLQC state for each vertex
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Spatial derivatives

@Regqularize via finite difference

@Choose the same sLQC state for each vertex

(as in GFT condensates, [Gielen, Oriti, Sindoni, Wilson-Ewing, ...] )
A

< O, g > — 4

@ Self-consistent solution in full theory
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Conclusion

@Working example of coarse graining
@Dynamics invariant

@Refinement can be repeated arbitrarily
- Discrete lattice arguments?

@Lessons for full theory?
- Model too simple?
- Expansion around homogeneous & isotropic?
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