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Black hole topology

Hawking 1972: 3 + 1–dimensional space–time+suitable energy
conditions+asymptotic flatness (AF). Spatial cross-section of the
event horizon is a topological 2–sphere.

Uniqueness of Kerr.

Not true in D + 1 dimensions if D > 3. Emparan–Reall 2001: AF
Black Ring in 4 + 1 dimensions. Horizon topology S2 × S1.

Galloway–Schoen 2006: Horizon cross–section admits a metric of
positive scalar curvature. D = 4 : S3 (or quotient), S2 × S1,
connected sums.
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Near Horizon Limit

D + 1–dimensional manifold M , Lorentzian metric g, Maxwell
potential A, stationary Killing vector U .

Moncrief–Isenberg 1983: In the neighbourhood of the Killing horizon
g(U,U) = 0 ∃ Gaussian coordinates (u, r, yi) s. t. U = ∂/∂u and

The horizon is a surface r = 0.
yi, i = 1, . . . , D − 1 are coordinates on a Riemannian cross–section Σ.

g = 2du
(
dr + rh− 1

2r
2∆du

)
+ γ, A = rΦdu+B, where

γ = γij(r, y)dyidyj , h = hi(r, y)dyi, B = Bi(r, y)dyi,

∆ = ∆(r, y), Φ = Φ(r, y) are all real–analytic in r.

Near–horizon limit (NHL) Reall 2003, Lewandowski–Pawlowski 2003

u→ u/ε, r → rε, limit ε→ 0

(γ, h,B,∆,Φ). Riemannian metric, one–forms, functions on Σ.
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Results

In NHL, the field equations on (M, g,A) reduce to elliptic equations
on Σ. This talk:

Theorem 1: Einstein–Maxwell–Chern–Simons equations (minimal
supergravity in five dimensions) on M −→ Einstein–Weyl equations
on Σ.

Theorem 2: Compact (Σ, [γ]): squashed S3, product metric on
S2 × S1, or flat torus.

Reconstruct (M, g,A) from its NHL? Too though. But
Theorem 3: The moduli space of transverse infinitesimal deformations
of a compact near–horizon geometry is finite–dimensional.

All theorems assume supersymmetry.

Unexpected spin-off: conformal invariance and integrability (via
twistor transform) on Σ.
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Minimal supergravity in 5 dimensions

R Ricci scalar of g. Maxwell field H = dA

S =

∫
M
R volM −

3

2
H ∧ ∗5H −H ∧H ∧A.

Field equations

dH = 0, d ∗5 H +H ∧H = 0,

Rαβ −
3

2
HαγHβ

γ +
1

4
gαβH

2 = 0.

NHL: Riemannian (Σ, γ), one–forms (h,B), functions (∆,Φ).

Supersymmetric near horizon

h+ ∗3dB = 0, ∆ = Φ2.

Field equations:

∗3(dΦ + hΦ) = dh, (Maxwell)

d ∗3 h = 0, (Einstein ur)

Rij +∇(ihj) + hihj =
(1

2
Φ2 + hkhk

)
γij (Einstein ij)
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3D Einstein–Weyl geometry

A Weyl structure (Σ, [γ], D)

Riemannian conformal structure [γ] = {e2Ωγ,Ω : Σ→ R}.
Torision–free connection D on TΣ.
Compatibility Diγjk = 2hiγjk for some h ∈ Λ1(Σ).

Einstein–Weyl equations Cartan 1943: Symmetrised Ricci tensor of D
is proportional to γ ∈ [γ].

Conformal invariance: γ → e2Ωγ, h→ h+ dΩ.
If Diγjk = 0, then (Σ, g) is Einstein (constant curvature).
In general (real analytic): 4 arbitrary functions of 2 variables.
Integrablity by twistor transform Hitchin, 1982, and dispersionless Lax
pairs MD–Mason–Tod, 2001.
Example (Berger sphere)

γ = (σ1)2 + (σ2)2 + a2(σ3)2, h = a
√

(1− a2)σ3

where dσ1 + σ2 ∧ σ3 = 0, etc.
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Hyper–CR Einstein Weyl–Geometry

An Einstein–Weyl space is Hyper–CR iff there exists Φ : Σ→ R s. t.

∗3(dΦ + hΦ) = dh, W =
3

2
Φ2,

where W is the Ricci scalar of D.

Conformal weights: W ∈ Γ(E(−2)),Φ ∈ Γ(E(−1)).

Gauduchon–Tod 1999: Berger sphere, product metric on S2 × S1 and
flat torus are all compact examples.

Integrable system MD-Tod 2001: There exist local coordinates
z : Σ→ C, v : Σ→ R and a function F : Σ→ R such that

γ = dzdz̄ +
1

16
(Fdv − i(Fzdz − Fz̄dz̄) + dFv)

2, h = . . . ,

where F = F (z, z̄, v) satisfies

Fzz̄(F + Fvv)− (Fz + iFvz)(Fz̄ − iFvz̄) = 4.
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z : Σ→ C, v : Σ→ R and a function F : Σ→ R such that

γ = dzdz̄ +
1

16
(Fdv − i(Fzdz − Fz̄dz̄) + dFv)

2, h = . . . ,

where F = F (z, z̄, v) satisfies

Fzz̄(F + Fvv)− (Fz + iFvz)(Fz̄ − iFvz̄) = 4.
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Main Theorem

Let (γ, h) be a hyper–CR Einstein–Weyl structure on Σ and let
Ω : Σ→ R+ satisfy d ∗3

(
deΩ

)
+ d ∗3

(
eΩh

)
= 0. Then

g = e2Ω(2du(dr + rh− 1

3
r2Wdu) + γ + 6rdudΩ)

A =

√
2

3
eΩr
√
Wdu+ α (?)

is a solution to the 5D Einstein–Maxwell–Chern–Simons supergravity. Here
α ∈ Λ1(Σ) is such that dα = −eΩ ∗3 (h+ dΩ).

All near–horizon geometries for 5D SUSY back holes/rings/strings are
locally of the form (?).

If Σ is compact then γ is a metric on the Berger sphere, a product
metric on S1 × S2 or a flat metric on T 3.
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Extension to the bulk

Taylor expand the near-horizon data in r

∆ = ∆0(y) + rδ∆(y) +O(r2),

h = h0(y) + rδh(y) +O(r2),

γ = γ0(y) + rδγ(y) +O(r2).

Gauge freedom δγij → δγij +∇i∇jf − h(i∇j)f , etc.

Theorem: The moduli space of supersymmetric transverse
deformations of supersymmetric near horizon solutions with compact
spatial sections, corresponding to the moduli (δ∆, δh, δγ), modulo
the gauge transformations is finite dimensional.

Idea of proof: Find a global gauge s.t. ∇2δγij = Cij (RHS linear in
δγ,∇δγ)). Use ellipticity.

Maciej Dunajski, Einstein-Weyl and Near Horizons Tux, February 2017 9 / 10



Extension to the bulk

Taylor expand the near-horizon data in r

∆ = ∆0(y) + rδ∆(y) +O(r2),

h = h0(y) + rδh(y) +O(r2),

γ = γ0(y) + rδγ(y) +O(r2).

Gauge freedom δγij → δγij +∇i∇jf − h(i∇j)f , etc.

Theorem: The moduli space of supersymmetric transverse
deformations of supersymmetric near horizon solutions with compact
spatial sections, corresponding to the moduli (δ∆, δh, δγ), modulo
the gauge transformations is finite dimensional.

Idea of proof: Find a global gauge s.t. ∇2δγij = Cij (RHS linear in
δγ,∇δγ)). Use ellipticity.

Maciej Dunajski, Einstein-Weyl and Near Horizons Tux, February 2017 9 / 10



Extension to the bulk

Taylor expand the near-horizon data in r

∆ = ∆0(y) + rδ∆(y) +O(r2),

h = h0(y) + rδh(y) +O(r2),

γ = γ0(y) + rδγ(y) +O(r2).

Gauge freedom δγij → δγij +∇i∇jf − h(i∇j)f , etc.

Theorem: The moduli space of supersymmetric transverse
deformations of supersymmetric near horizon solutions with compact
spatial sections, corresponding to the moduli (δ∆, δh, δγ), modulo
the gauge transformations is finite dimensional.

Idea of proof: Find a global gauge s.t. ∇2δγij = Cij (RHS linear in
δγ,∇δγ)). Use ellipticity.

Maciej Dunajski, Einstein-Weyl and Near Horizons Tux, February 2017 9 / 10



Extension to the bulk

Taylor expand the near-horizon data in r

∆ = ∆0(y) + rδ∆(y) +O(r2),

h = h0(y) + rδh(y) +O(r2),

γ = γ0(y) + rδγ(y) +O(r2).

Gauge freedom δγij → δγij +∇i∇jf − h(i∇j)f , etc.

Theorem: The moduli space of supersymmetric transverse
deformations of supersymmetric near horizon solutions with compact
spatial sections, corresponding to the moduli (δ∆, δh, δγ), modulo
the gauge transformations is finite dimensional.

Idea of proof: Find a global gauge s.t. ∇2δγij = Cij (RHS linear in
δγ,∇δγ)). Use ellipticity.

Maciej Dunajski, Einstein-Weyl and Near Horizons Tux, February 2017 9 / 10



Summary and Outlook

Supersymmetric near horizon geometry of (4 + 1)–dimensional
minimal supergravity.

Integrable Einstein–Weyl geometry on spatial cross–sections.
Finite–dimensional moduli space of transverse deformatons.

Near horizon geometry of (3 + 1) vacuum Einstein equations.

Spatial cross section (Σ, γ) is Einstein: Rij = Rγij/2
One–form h ∈ Λ1(Σ) satisfies

∇(ihj) + hihj =
1

2
Rγij . (∗)

This can be solved explicitly if γ is axi–symmetric (Kerr).
Conjecture. Let γ be a Riemannian metric on Σ = S2, such that (∗)
holds. Then there exists a Killing vector on (Σ, γ).
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