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BLACK HOLE TOPOLOGY

e Hawking 1972: 3 4 1-dimensional space—time+suitable energy
conditions+asymptotic flatness (AF). Spatial cross-section of the
event horizon is a topological 2—sphere.
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e Not true in D + 1 dimensions if D > 3. Emparan—Reall 2001: AF
Black Ring in 4 4 1 dimensions. Horizon topology S? x S!.
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BLACK HOLE TOPOLOGY

e Hawking 1972: 3 4 1-dimensional space—time+suitable energy
conditions+asymptotic flatness (AF). Spatial cross-section of the
event horizon is a topological 2—sphere.

@ Uniqueness of Kerr.

e Not true in D + 1 dimensions if D > 3. Emparan—Reall 2001: AF
Black Ring in 4 4 1 dimensions. Horizon topology S? x S!.

o Galloway—Schoen 2006: Horizon cross—section admits a metric of
positive scalar curvature. D =4 : S3 (or quotient), S% x S*,
connected sums.
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NEAR HORIZON LiMIT

@ D + 1-dimensional manifold M, Lorentzian metric g, Maxwell
potential A, stationary Killing vector U.
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@ D + 1-dimensional manifold M, Lorentzian metric g, Maxwell

potential A, stationary Killing vector U.
e Moncrief-Isenberg 1983: In the neighbourhood of the Killing horizon
g(U,U) =0 3 Gaussian coordinates (u,r,y") s. t. U =0/0u and

e The horizon is a surface r = 0.
e y',i=1,...,D — 1 are coordinates on a Riemannian cross—section .

0 g= 2du(dr +rh — %rzAdu) +v, A=rd&du+ B, where

Y= Yy (7“, y)dyldyj, h = hi(ra y)dyza B = Bi(ra y)dyl,
A = Ary), ®=d(r,y) are all real-analytic in 7.
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Y= Yy (7“, y)dyldyj, h = hi(ra y)dyza B = Bi(ra y)dyl,
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NEAR HORIZON LiMIT

@ D + 1-dimensional manifold M, Lorentzian metric g, Maxwell

potential A, stationary Killing vector U.
e Moncrief-Isenberg 1983: In the neighbourhood of the Killing horizon
g(U,U) =0 3 Gaussian coordinates (u,r,y") s. t. U =0/0u and

e The horizon is a surface r = 0.
e y',i=1,...,D — 1 are coordinates on a Riemannian cross—section X..

0 g= 2du(dr +rh — %rzAdu) +v, A=rd&du+ B, where
Y= Yy (7", y)dyldyj, h = hi(ra y)dyza B = Bi(ra y)dyl,
A = Ary), ®=d(r,y) are all real-analytic in 7.
o Near—horizon limit (NHL) Reall 2003, Lewandowski—Pawlowski 2003
u—ule, r—re, limite—0

e (v,h,B,A,®). Riemannian metric, one-forms, functions on X.

EINSTEIN-WEYL AND NEAR HORIZONS Tux, FEBRUARY 2017

MACIE] DUNAJSKI,



RESULTS

@ In NHL, the field equations on (M, g, A) reduce to elliptic equations
on 2. This talk:
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@ Theorem 1: Einstein—-Maxwell-Chern-Simons equations (minimal
supergravity in five dimensions) on M — Einstein—-Weyl equations
on 3.
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RESULTS

@ In NHL, the field equations on (M, g, A) reduce to elliptic equations
on Y. This talk:

@ Theorem 1: Einstein—-Maxwell-Chern-Simons equations (minimal
supergravity in five dimensions) on M — Einstein—-Weyl equations
on X.

o Theorem 2: Compact (X, [y]): squashed S3, product metric on
S2 x S1, or flat torus.

e Reconstruct (M, g, A) from its NHL? Too though. But
Theorem 3: The moduli space of transverse infinitesimal deformations
of a compact near—horizon geometry is finite—dimensional.

o All theorems assume supersymmetry.

@ Unexpected spin-off: conformal invariance and integrability (via
twistor transform) on .
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MINIMAL SUPERGRAVITY IN 5 DIMENSIONS

@ R Ricci scalar of g. Maxwell field H = dA
S:/ RVO|M—gH/\*5H—H/\H/\A.
M
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MINIMAL SUPERGRAVITY IN 5 DIMENSIONS

@ R Ricci scalar of g. Maxwell field H = dA
S:/ RVO|M—§H/\*5H—H/\H/\A.
M 2
o Field equations
dH =0, dxsH+HANH =0,

3 1
Raﬁ - iHa’yH/B’y + ZgagH2 = 0.
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MINIMAL SUPERGRAVITY IN 5 DIMENSIONS

@ R Ricci scalar of g. Maxwell field H = dA
S:/ RVO|M—§H/\*5H—H/\H/\A.
M 2

o Field equations

dH =0, d+xsH+ HANH =0,

3 1

Ras — EHO,YH/B’Y + ZgagH2 =0.

e NHL: Riemannian (X, ), one-forms (h, B), functions (A, ®).
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MINIMAL SUPERGRAVITY IN 5 DIMENSIONS

@ R Ricci scalar of g. Maxwell field H = dA
S:/ RVO|M—3H/\*5H—H/\H/\A.
M

o Field equations
dH =0, dxsH+HANH=0,

3 1
Raﬁ - iHa’yH/B’y + ZgagH2 = 0.
e NHL: Riemannian (X, ), one-forms (h, B), functions (A, ®).

e Supersymmetric near horizon

h+ x3dB =0, A = 2.
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MINIMAL SUPERGRAVITY IN 5 DIMENSIONS

@ R Ricci scalar of g. Maxwell field H = dA
S:/ RVO|M—3H/\*5H—H/\H/\A.
M

o Field equations
dH =0, dxsH+HANH=0,

Ras — gHMHBV + igagH2 =0.
e NHL: Riemannian (X, ), one-forms (h, B), functions (A, ®).
e Supersymmetric near horizon
h+%3dB =0, A=%2
e Field equations:
*3(d® + h®) = dh, (Maxwell)
d*3h =0, (Einstein ur)

1
Rij + V(i) + hih; = (§q>2 n hkhk)%j (Einstein i5)
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3D EINSTEIN-WEYL GEOMETRY

o A Weyl structure (X, [7], D)
o Riemannian conformal structure [y] = {*}y,Q : ¥ — R}.
e Torision—free connection D on TX.
o Compatibility D;~;, = 2h;; for some h € A1(X).
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3D EINSTEIN-WEYL GEOMETRY

o A Weyl structure (X, [7], D)
o Riemannian conformal structure [y] = {*}y,Q : ¥ — R}.
o Torision—free connection D on T'3.
o Compatibility D;~;, = 2h;; for some h € A1(X).
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3D EINSTEIN-WEYL GEOMETRY

o A Weyl structure (X, [7], D)
o Riemannian conformal structure [y] = {*}y,Q : ¥ — R}.
e Torision—free connection D on TX.
o Compatibility D;~;, = 2h;; for some h € A1(X).
o Einstein—-Weyl equations Cartan 1943: Symmetrised Ricci tensor of D
is proportional to 7 € [7].
Conformal invariance: v — e*%y,  h — h + dS).
o If Dyyjr =0, then (X, g) is Einstein (constant curvature).
o In general (real analytic): 4 arbitrary functions of 2 variables.
o Integrablity by twistor transform Hitchin, 1982, and dispersionless Lax
pairs MD—Mason—Tod, 2001.
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3D EINSTEIN-WEYL GEOMETRY

o A Weyl structure (X, [7], D)
o Riemannian conformal structure [y] = {*}y,Q : ¥ — R}.
e Torision—free connection D on TX.
o Compatibility D;~;, = 2h;; for some h € A1(X).
o Einstein—-Weyl equations Cartan 1943: Symmetrised Ricci tensor of D
is proportional to 7 € [7].
o Conformal invariance: v — €*%y, h — h+ d.
o If Dyyjr =0, then (X, g) is Einstein (constant curvature).
o In general (real analytic): 4 arbitrary functions of 2 variables.
o Integrablity by twistor transform Hitchin, 1982, and dispersionless Lax
pairs MD—Mason—Tod, 2001.
o Example (Berger sphere)

v =(01)*+ (02)* + a*(03)%, h=a\/(1—d®)o3

where doq + 09 A o3 = 0, etc.
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HYPER-CR EINSTEIN WEYL-GEOMETRY

@ An Einstein—Weyl space is Hyper—CR iff there exists ® : ¥ — R s. t.

3

#3(d® + h®d) = dh, W = 5@2,

where W is the Ricci scalar of D.
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@ An Einstein—Weyl space is Hyper—CR iff there exists ® : ¥ — R s. t.

#3(d® + h®d) = dh, W = ;@2,
where W is the Ricci scalar of D.

o Conformal weights: W € I'(€(—2)),® € T'(E(—1)).
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HYPER-CR EINSTEIN WEYL-GEOMETRY

@ An Einstein—Weyl space is Hyper—CR iff there exists ® : ¥ — R s. t.

#3(d® + h®d) = dh, W = ;@2,
where W is the Ricci scalar of D.

o Conformal weights: W € I'(€(—2)),® € T'(E(—1)).

o Gauduchon—Tod 1999: Berger sphere, product metric on S? x S! and

flat torus are all compact examples.
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HYPER-CR EINSTEIN WEYL-GEOMETRY

@ An Einstein—Weyl space is Hyper—CR iff there exists ® : ¥ — R s. t.

#3(d® + h®d) = dh, W = ;@2,
where W is the Ricci scalar of D.
o Conformal weights: W € I'(€(—2)),® € T'(E(—1)).

o Gauduchon—Tod 1999: Berger sphere, product metric on S? x S! and
flat torus are all compact examples.

@ Integrable system MD-Tod 2001: There exist local coordinates
z: X —C,v:¥X — R and a function F' : ¥ — R such that

1
v =dzdz + 1—6(de —i(F,dz — Fzdz) + dF,)?, h=...
where F' = F(z, z,v) satisfies

FzE(F+Fvv) - (FZ +isz)(F5 - iFUg) =4
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MAIN THEOREM

Let (v, h) be a hyper—CR Einstein—Weyl structure on ¥ and let
Q: % — R satisfy d x3 (deQ) +d *3 (th) =0. Then

1
g = X (2du(dr +rh — §r2Wdu) + v + 6rdudQ)
2
A = \/;egr\/ Wdu+a (%)

is a solution to the 5D Einstein—Maxwell-Chern-Simons supergravity. Here
a € AY(X) is such that da = —e% *3 (h + dQ).

@ All near—horizon geometries for 5D SUSY back holes/rings/strings are
locally of the form (x).

e If 3 is compact then + is a metric on the Berger sphere, a product
metric on S x S2 or a flat metric on T3.
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EXTENSION TO THE BULK

@ Taylor expand the near-horizon data in r
A = Aoy) +roA(y) +O(r?),
h = holy) +rdh(y) +O(r?),
v o= () +réy(y) +O(r?).
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o Gauge freedom 0v;; — 67i5 + ViV,f — h;Vj f, etc.
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h = holy) +rdh(y) +O(r?),

v o= () +réy(y) +O(r?).

o Gauge freedom 0v;; — 67i5 + ViV,f — h;Vj f, etc.

@ Theorem: The moduli space of supersymmetric transverse
deformations of supersymmetric near horizon solutions with compact

spatial sections, corresponding to the moduli (§A, dh, ), modulo
the gauge transformations is finite dimensional.
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EXTENSION TO THE BULK

@ Taylor expand the near-horizon data in r

A = Aoy) +roA(y) +O(r?),

h = holy) +rdh(y) +O(r?),

v o= () +réy(y) +O(r?).

o Gauge freedom 0v;; — 67i5 + ViV,f — h;Vj f, etc.

@ Theorem: The moduli space of supersymmetric transverse
deformations of supersymmetric near horizon solutions with compact

spatial sections, corresponding to the moduli (§A, dh, ), modulo
the gauge transformations is finite dimensional.

@ ldea of proof: Find a global gauge s.t. Vzéyij = C;j (RHS linear in
07, Vé7)). Use ellipticity.
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SUMMARY AND OUTLOOK

@ Supersymmetric near horizon geometry of (4 4+ 1)—dimensional
minimal supergravity.
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@ Supersymmetric near horizon geometry of (4 4+ 1)—dimensional
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e Integrable Einstein—Weyl geometry on spatial cross—sections.
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@ Supersymmetric near horizon geometry of (4 4+ 1)—dimensional
minimal supergravity.
e Integrable Einstein—Weyl geometry on spatial cross—sections.
o Finite—dimensional moduli space of transverse deformatons.

o Near horizon geometry of (3 + 1) vacuum Einstein equations.
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minimal supergravity.
e Integrable Einstein—Weyl geometry on spatial cross—sections.
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o Near horizon geometry of (3 + 1) vacuum Einstein equations.

o Spatial cross section (X, ) is Einstein: R;; = Rry;;/2
o One—form h € A1(Y) satisfies

1
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@ Supersymmetric near horizon geometry of (4 4+ 1)—dimensional
minimal supergravity.
e Integrable Einstein—Weyl geometry on spatial cross—sections.
o Finite—dimensional moduli space of transverse deformatons.
e Near horizon geometry of (3 4+ 1) vacuum Einstein equations.
o Spatial cross section (X, ) is Einstein: R;; = Rry;;/2

o One—form h € A1(Y) satisfies
1

o This can be solved explicitly if 7 is axi-symmetric (Kerr).
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SUMMARY AND OUTLOOK

@ Supersymmetric near horizon geometry of (4 4+ 1)—dimensional
minimal supergravity.
e Integrable Einstein—Weyl geometry on spatial cross—sections.
o Finite—dimensional moduli space of transverse deformatons.
e Near horizon geometry of (3 4+ 1) vacuum Einstein equations.
o Spatial cross section (X, ) is Einstein: R;; = Rry;;/2
o One—form h € A1(Y) satisfies

1
Vih) + hihj = SRyig. (%)

o This can be solved explicitly if 7 is axi-symmetric (Kerr).
o Conjecture. Let v be a Riemannian metric on ¥ = S2, such that (%)
holds. Then there exists a Killing vector on (X, 7).
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