Einstein-Weyl Spaces and Near Horizon Geometry

Maciej Dunajski

Department of Applied Mathematics and Theoretical Physics
University of Cambridge

Black hole topology

- **Hawking 1972**: $3 + 1$-dimensional space–time + suitable energy conditions + asymptotic flatness (AF). Spatial cross-section of the event horizon is a topological 2–sphere.
Hawking 1972: 3 + 1–dimensional space–time + suitable energy conditions + asymptotic flatness (AF). Spatial cross-section of the event horizon is a topological 2–sphere.

Uniqueness of Kerr.
Black hole topology

- **Hawking 1972**: 3 + 1-dimensional space-time + suitable energy conditions + asymptotic flatness (AF). Spatial cross-section of the event horizon is a topological 2-sphere.

- Uniqueness of Kerr.

- Not true in $D + 1$ dimensions if $D > 3$. **Emparan–Reall 2001**: AF Black Ring in 4 + 1 dimensions. Horizon topology $S^2 \times S^1$.

Maciej Dunajski, Einstein-Weyl and Near Horizons, Tux, February 2017
Hawking 1972: 3 + 1–dimensional space–time + suitable energy conditions + asymptotic flatness (AF). Spatial cross-section of the event horizon is a topological 2–sphere.

Uniqueness of Kerr.

Not true in $D + 1$ dimensions if $D > 3$. Emparan–Reall 2001: AF Black Ring in 4 + 1 dimensions. Horizon topology $S^2 \times S^1$.

Galloway–Schoen 2006: Horizon cross–section admits a metric of positive scalar curvature. $D = 4$: S^3 (or quotient), $S^2 \times S^1$, connected sums.
$D + 1$–dimensional manifold M, Lorentzian metric g, Maxwell potential A, stationary Killing vector U.

Moncrief–Isenberg 1983: In the neighbourhood of the Killing horizon $g(U,U) = 0 \exists$ Gaussian coordinates (u,r,y^i) s. t. $U = \partial/\partial u$ and

The horizon is a surface $r = 0$. $y^i, i = 1, \ldots, D - 1$ are coordinates on a Riemannian cross–section Σ.

$g = 2 du (dr + rh - \frac{1}{2}r^2 \Delta du) + \gamma$, $A = r \Phi du + B$, where $\gamma = \gamma_{ij}(r,y^i) dy^i dy^j, h = h^i(r,y^i) dy^i, B = B^i(r,y^i) dy^i, \Delta = \Delta(r,y^i), \Phi = \Phi(r,y^i)$ are all real–analytic in r.

Near–horizon limit (NHL) Reall 2003, Lewandowski–Pawlowski 2003 $u \to u/\epsilon, r \to r\epsilon$, limit $\epsilon \to 0$ ($\gamma, h, B, \Delta, \Phi$). Riemannian metric, one–forms, functions on Σ.

Maciej Dunajski, Einstein-Weyl and Near Horizons Tux, February 2017
Near Horizon Limit

- $D + 1$–dimensional manifold M, Lorentzian metric g, Maxwell potential A, stationary Killing vector U.
- Moncrief–Isenberg 1983: In the neighbourhood of the Killing horizon $g(U, U) = 0 \exists$ Gaussian coordinates (u, r, y^i) s. t. $U = \partial/\partial u$ and
Near Horizon Limit

- $D + 1$–dimensional manifold M, Lorentzian metric g, Maxwell potential A, stationary Killing vector U.
- Moncrief–Isenberg 1983: In the neighbourhood of the Killing horizon $g(U, U) = 0 \exists$ Gaussian coordinates (u, r, y^i) s. t. $U = \partial/\partial u$ and
 - The horizon is a surface $r = 0$.

Near–horizon limit (NHL) Real 2003, Lewandowski–Pawlowski 2003 $u \rightarrow u/\epsilon$, $r \rightarrow r\epsilon$, limit $\epsilon \rightarrow 0$ ($\gamma, h, B, \Delta, \Phi$). Riemannian metric, one–forms, functions on Σ.

Maciej Dunajski, Einstein-Weyl and Near Horizons Tux, February 2017 3 / 10
Near Horizon Limit

- $D + 1$–dimensional manifold M, Lorentzian metric g, Maxwell potential A, stationary Killing vector U.

 Moncrief–Isenberg 1983: In the neighbourhood of the Killing horizon $g(U, U) = 0 \exists$ Gaussian coordinates (u, r, y^i) s. t. $U = \partial/\partial u$ and
 - The horizon is a surface $r = 0$.
 - $y^i, i = 1, \ldots, D - 1$ are coordinates on a Riemannian cross–section Σ.

\[g = 2 du (dr + rh^{-1} - \frac{1}{2} r^2 \Delta du) + \gamma, \quad A = r \Phi du + B, \] where $\gamma = \gamma_{ij}(r, y^i) dy^i dy^j, \quad h = h_i(r, y^i) dy^i, \quad B = B_i(r, y^i) dy^i, \quad \Delta = \Delta(r, y^i), \quad \Phi = \Phi(r, y^i)$ are all real–analytic in r.

$u \to u/\epsilon, \quad r \to r \epsilon, \quad \text{limit } \epsilon \to 0 (\gamma, h, B, \Delta, \Phi)$. Riemannian metric, one–forms, functions on Σ.

Maciej Dunajski, **Einstein-Weyl and Near Horizons**

Tux, February 2017
Near Horizon Limit

- \(D + 1 \)-dimensional manifold \(M \), Lorentzian metric \(g \), Maxwell potential \(A \), stationary Killing vector \(U \).
- **Moncrief–Isenberg 1983**: In the neighbourhood of the Killing horizon \(g(U, U) = 0 \) \exists Gaussian coordinates \((u, r, y^i)\) s.t. \(U = \partial / \partial u \) and
 - The horizon is a surface \(r = 0 \).
 - \(y^i, i = 1, \ldots, D - 1 \) are coordinates on a Riemannian cross–section \(\Sigma \).
- \(g = 2du \left(dr + rh - \frac{1}{2} r^2 \Delta du \right) + \gamma, \ A = r\Phi du + B \), where

\[
\begin{align*}
 \gamma &= \gamma_{ij}(r, y)dy^i dy^j, \quad h = h_i(r, y)dy^i, \quad B = B_i(r, y)dy^i, \\
 \Delta &= \Delta(r, y), \quad \Phi = \Phi(r, y) \text{ are all real–analytic in } r.
\end{align*}
\]
Near Horizon Limit

- $D+1$–dimensional manifold M, Lorentzian metric g, Maxwell potential A, stationary Killing vector U.

- **Moncrief–Isenberg 1983**: In the neighbourhood of the Killing horizon $g(U,U) = 0 \exists$ Gaussian coordinates (u,r,y^i) s. t. $U = \partial/\partial u$ and

 - The horizon is a surface $r = 0$.
 - $y^i, i = 1, \ldots, D - 1$ are coordinates on a Riemannian cross–section Σ.

- $g = 2du\left(dr + rh - \frac{1}{2}r^2\Delta du\right) + \gamma$, $A = r\Phi du + B$, where

 $$\gamma = \gamma_{ij}(r,y)dy^idy^j, \quad h = h_i(r,y)dy^i, \quad B = B_i(r,y)dy^i,$$
 $$\Delta = \Delta(r,y), \quad \Phi = \Phi(r,y)$$

 are all real–analytic in r.

 $$u \to u/\epsilon, \quad r \to r\epsilon, \quad \text{limit } \epsilon \to 0$$
Near Horizon Limit

- $D + 1$–dimensional manifold M, Lorentzian metric g, Maxwell potential A, stationary Killing vector U.
- **Moncrief–Isenberg 1983:** In the neighbourhood of the Killing horizon $g(U, U) = 0$ \exists **Gaussian coordinates** (u, r, y^i) s. t. $U = \partial/\partial u$ and
 - The horizon is a surface $r = 0$.
 - $y^i, i = 1, \ldots, D - 1$ are coordinates on a Riemannian cross–section Σ.
- $g = 2du \left(dr + rh - \frac{1}{2} r^2 \Delta du \right) + \gamma$, $A = r\Phi du + B$, where
 $$
 \gamma = \gamma_{ij}(r, y)dy^i dy^j, \quad h = h_i(r, y)dy^i, \quad B = B_i(r, y)dy^i, \\
 \Delta = \Delta(r, y), \quad \Phi = \Phi(r, y) \quad \text{are all real–analytic in } r.
 $$

 $$
 u \to u/\epsilon, \quad r \to r\epsilon, \quad \lim \epsilon \to 0
 $$

- $(\gamma, h, B, \Delta, \Phi)$. Riemannian metric, one–forms, functions on Σ.

Results

- In NHL, the field equations on \((M, g, A)\) reduce to elliptic equations on \(\Sigma\). This talk:

 - **Theorem 1**: Einstein–Maxwell–Chern–Simons equations (minimal supergravity in five dimensions) on \(M \rightarrow\) Einstein–Weyl equations on \(\Sigma\).

 - **Theorem 2**: Compact \((\Sigma, [\gamma])\): squashed \(S^3\), product metric on \(S^2 \times S^1\), or flat torus. Reconstruct \((M, g, A)\) from its NHL? Too though. But

 - **Theorem 3**: The moduli space of transverse infinitesimal deformations of a compact near–horizon geometry is finite–dimensional.

All theorems assume supersymmetry.

Unexpected spin-off: conformal invariance and integrability (via twistor transform) on \(\Sigma\).
Results

- In NHL, the field equations on \((M, g, A)\) reduce to elliptic equations on \(\Sigma\). This talk:
- **Theorem 1**: Einstein–Maxwell–Chern–Simons equations (minimal supergravity in five dimensions) on \(M \rightarrow\) Einstein–Weyl equations on \(\Sigma\).

- **Theorem 2**: Compact \((\Sigma, [\gamma])\): squashed \(S^3\), product metric on \(S^2 \times S^1\), or flat torus. Reconstruct \((M, g, A)\) from its NHL? Too though. But
- **Theorem 3**: The moduli space of transverse infinitesimal deformations of a compact near–horizon geometry is finite–dimensional.

All theorems assume supersymmetry. Unexpected spin-off: conformal invariance and integrability (via twistor transform) on \(\Sigma\).
In NHL, the field equations on (M, g, A) reduce to elliptic equations on Σ. This talk:

Theorem 1: Einstein–Maxwell–Chern–Simons equations (minimal supergravity in five dimensions) on $M \rightarrow$ Einstein–Weyl equations on Σ.

Theorem 2: Compact $(\Sigma, [\gamma])$: squashed S^3, product metric on $S^2 \times S^1$, or flat torus.
In NHL, the field equations on \((M, g, A)\) reduce to elliptic equations on \(\Sigma\). This talk:

Theorem 1: Einstein–Maxwell–Chern–Simons equations (minimal supergravity in five dimensions) on \(M \rightarrow\) Einstein–Weyl equations on \(\Sigma\).

Theorem 2: Compact \((\Sigma, [\gamma])\): squashed \(S^3\), product metric on \(S^2 \times S^1\), or flat torus.

Reconstruct \((M, g, A)\) from its NHL? Too though. But **Theorem 3**: The moduli space of transverse infinitesimal deformations of a compact near–horizon geometry is finite–dimensional.

All theorems assume supersymmetry. Unexpected spin-off: conformal invariance and integrability (via twistor transform) on \(\Sigma\).
Results

- In NHL, the field equations on (M, g, A) reduce to elliptic equations on Σ. This talk:

 - **Theorem 1**: Einstein–Maxwell–Chern–Simons equations (minimal supergravity in five dimensions) on $M \rightarrow$ Einstein–Weyl equations on Σ.

 - **Theorem 2**: Compact $(\Sigma, [\gamma])$: squashed S^3, product metric on $S^2 \times S^1$, or flat torus.

- Reconstruct (M, g, A) from its NHL? Too though. But

 - **Theorem 3**: The moduli space of transverse infinitesimal deformations of a compact near–horizon geometry is finite–dimensional.

- All theorems assume supersymmetry.
Results

- In NHL, the field equations on \((M, g, A)\) reduce to elliptic equations on \(\Sigma\). This talk:

 - **Theorem 1**: Einstein–Maxwell–Chern–Simons equations (minimal supergravity in five dimensions) on \(M \rightarrow\) Einstein–Weyl equations on \(\Sigma\).
 - **Theorem 2**: Compact \((\Sigma, [\gamma])\): squashed \(S^3\), product metric on \(S^2 \times S^1\), or flat torus.
 - Reconstruct \((M, g, A)\) from its NHL? Too though. But **Theorem 3**: The moduli space of transverse infinitesimal deformations of a compact near–horizon geometry is finite–dimensional.

- All theorems assume supersymmetry.
- Unexpected spin-off: conformal invariance and integrability (via twistor transform) on \(\Sigma\).
Minimal supergravity in 5 dimensions

- \mathcal{R} Ricci scalar of g. Maxwell field $H = dA$

$$S = \int_M \mathcal{R} \text{vol}_M - \frac{3}{2} H \wedge \star_5 H - H \wedge H \wedge A.$$
Minimal supergravity in 5 dimensions

- \mathcal{R} Ricci scalar of g. Maxwell field $H = dA$

$$S = \int_M \mathcal{R} \text{vol}_M - \frac{3}{2} H \wedge \ast_5 H - H \wedge H \wedge A.$$

- Field equations

$$dH = 0, \quad d\ast_5 H + H \wedge H = 0,$$

$$\mathcal{R}_{\alpha\beta} - \frac{3}{2} H_{\alpha\gamma} H_{\beta}^{\gamma} + \frac{1}{4} g_{\alpha\beta} H^2 = 0.$$
Minimal supergravity in 5 dimensions

- \mathcal{R} Ricci scalar of g. Maxwell field $H = dA$

$$S = \int_{M} \mathcal{R} \text{vol}_M - \frac{3}{2} H \wedge *_5 H - H \wedge H \wedge A.$$

- Field equations

$$dH = 0, \quad d*_{5}H + H \wedge H = 0,$$

$$\mathcal{R}_{\alpha\beta} - \frac{3}{2} H_{\alpha\gamma} H_{\beta}^\gamma + \frac{1}{4} g_{\alpha\beta} H^2 = 0.$$

- NHL: Riemannian (Σ, γ), one–forms (h, B), functions (Δ, Φ).
Minimal supergravity in 5 dimensions

- \mathcal{R} Ricci scalar of g. Maxwell field $H = dA$
 \[S = \int_M \mathcal{R} \, \text{vol}_M - \frac{3}{2} H \wedge \ast_5 H - H \wedge H \wedge A. \]

- Field equations
 \[dH = 0, \quad d\ast_5 H + H \wedge H = 0, \]
 \[\mathcal{R}_{\alpha\beta} - \frac{3}{2} H_{\alpha\gamma} H_{\beta}{}^{\gamma} + \frac{1}{4} g_{\alpha\beta} H^2 = 0. \]

- NHL: Riemannian (Σ, γ), one–forms (h, B), functions (Δ, Φ).
 - Supersymmetric near horizon
 \[h + \ast_3 dB = 0, \quad \Delta = \Phi^2. \]
Minimal supergravity in 5 dimensions

- \mathcal{R} Ricci scalar of g. Maxwell field $H = dA$

$$S = \int_M \mathcal{R} \ vol_M - \frac{3}{2} H \wedge *5H - H \wedge H \wedge A.$$

- Field equations

$$dH = 0, \quad d *5H + H \wedge H = 0,$$

$$\mathcal{R}_{\alpha\beta} - \frac{3}{2} H_{\alpha\gamma} H_{\beta}^{\gamma} + \frac{1}{4} g_{\alpha\beta} H^2 = 0.$$

- NHL: Riemannian (Σ, γ), one–forms (h, B), functions (Δ, Φ).
 - Supersymmetric near horizon

$$h + *3dB = 0, \quad \Delta = \Phi^2.$$

- Field equations:

$$*3(d\Phi + h\Phi) = dh, \quad (\text{Maxwell})$$

$$d *3h = 0, \quad (\text{Einstein ur})$$

$$R_{ij} + \nabla_{(i}h_{j)} + h_i h_j = \left(\frac{1}{2} \Phi^2 + h^k h_k \right) \gamma_{ij} \quad (\text{Einstein ij})$$
A Weyl structure \((\Sigma, [\gamma], D)\)
- Riemannian conformal structure \([\gamma] = \{e^{2\Omega}\gamma, \Omega: \Sigma \to \mathbb{R}\}\).
- Torision–free connection \(D\) on \(T\Sigma\).
- Compatibility \(D_i\gamma_{jk} = 2h_i\gamma_{jk}\) for some \(h \in \Lambda^1(\Sigma)\).
A Weyl structure $(\Sigma, [\gamma], D)$

- Riemannian conformal structure $[\gamma] = \{e^{2\Omega}\gamma, \Omega : \Sigma \to \mathbb{R}\}$.
- Torision-free connection D on $T\Sigma$.
- Compatibility $D_i \gamma_{jk} = 2h_i \gamma_{jk}$ for some $h \in \Lambda^1(\Sigma)$.

Einstein–Weyl equations Cartan 1943: Symmetrised Ricci tensor of D is proportional to $\gamma \in [\gamma]$.
A Weyl structure \((\Sigma, [\gamma], D)\)
- Riemannian conformal structure \([\gamma] = \{e^{2\Omega}\gamma, \Omega : \Sigma \to \mathbb{R}\}\).
- Torison–free connection \(D\) on \(T\Sigma\).
- Compatibility \(D_i\gamma_{jk} = 2h_i\gamma_{jk}\) for some \(h \in \Lambda^1(\Sigma)\).

Einstein–Weyl equations Cartan 1943: Symmetrised Ricci tensor of \(D\) is proportional to \(\gamma \in [\gamma]\).
- Conformal invariance: \(\gamma \to e^{2\Omega}\gamma, \ h \to h + d\Omega\).
A Weyl structure \((\Sigma, [\gamma], D)\)
- Riemannian conformal structure \([\gamma] = \{e^{2\Omega}\gamma, \Omega : \Sigma \to \mathbb{R}\}\).
- Torision-free connection \(D\) on \(T\Sigma\).
- Compatibility \(D_i \gamma_{jk} = 2h_i \gamma_{jk}\) for some \(h \in \Lambda^1(\Sigma)\).

Einstein–Weyl equations Cartan 1943: Symmetrised Ricci tensor of \(D\) is proportional to \(\gamma \in [\gamma]\).
- Conformal invariance: \(\gamma \to e^{2\Omega}\gamma, \ h \to h + d\Omega\).
- If \(D_i \gamma_{jk} = 0\), then \((\Sigma, g)\) is Einstein (constant curvature).
3D Einstein–Weyl geometry

- A Weyl structure \((\Sigma, [\gamma], D)\)
 - Riemannian conformal structure \([\gamma] = \{e^{2\Omega}\gamma, \Omega : \Sigma \to \mathbb{R}\}\).
 - Torision–free connection \(D\) on \(T\Sigma\).
 - Compatibility \(D_i\gamma_{jk} = 2h_i\gamma_{jk}\) for some \(h \in \Lambda^1(\Sigma)\).

- Einstein–Weyl equations Cartan 1943: Symmetrised Ricci tensor of \(D\) is proportional to \(\gamma \in [\gamma]\).
 - Conformal invariance: \(\gamma \to e^{2\Omega}\gamma, \quad h \to h + d\Omega\).
 - If \(D_i\gamma_{jk} = 0\), then \((\Sigma, g)\) is Einstein (constant curvature).
 - In general (real analytic): 4 arbitrary functions of 2 variables.
A Weyl structure \((\Sigma, [\gamma], D)\)
- Riemannian conformal structure \([\gamma] = \{e^{2\Omega}\gamma, \Omega : \Sigma \rightarrow \mathbb{R}\}\).
- Torision–free connection \(D\) on \(T\Sigma\).
- Compatibility \(D_i \gamma_{jk} = 2h_i \gamma_{jk}\) for some \(h \in \Lambda^1(\Sigma)\).

Einstein–Weyl equations: Cartan 1943: Symmetrised Ricci tensor of \(D\) is proportional to \(\gamma \in [\gamma]\).
- Conformal invariance: \(\gamma \rightarrow e^{2\Omega}\gamma, \ h \rightarrow h + d\Omega\).
- If \(D_i \gamma_{jk} = 0\), then \((\Sigma, g)\) is Einstein (constant curvature).
- In general (real analytic): 4 arbitrary functions of 2 variables.
A Weyl structure \((\Sigma, [\gamma], D)\)
- Riemannian conformal structure \([\gamma] = \{e^{2\Omega}\gamma, \Omega : \Sigma \rightarrow \mathbb{R}\}\).
- Torision–free connection \(D\) on \(T\Sigma\).
- Compatibility \(D_i\gamma_{jk} = 2h_i\gamma_{jk}\) for some \(h \in \Lambda^1(\Sigma)\).

Einstein–Weyl equations Cartan 1943: Symmetrised Ricci tensor of \(D\) is proportional to \(\gamma \in [\gamma]\).
- Conformal invariance: \(\gamma \rightarrow e^{2\Omega}\gamma, \quad h \rightarrow h + d\Omega\).
- If \(D_i\gamma_{jk} = 0\), then \((\Sigma, g)\) is Einstein (constant curvature).
- In general (real analytic): 4 arbitrary functions of 2 variables.
- Example (Berger sphere)

\[
\gamma = (\sigma_1)^2 + (\sigma_2)^2 + a^2(\sigma_3)^2, \quad h = a\sqrt{1 - a^2}\sigma_3
\]

where \(d\sigma_1 + \sigma_2 \wedge \sigma_3 = 0\), etc.
An Einstein–Weyl space is Hyper–CR iff there exists $\Phi : \Sigma \to \mathbb{R}$ s. t.

$$\star_3 (d\Phi + h\Phi) = dh, \quad W = \frac{3}{2}\Phi^2,$$

where W is the Ricci scalar of D.

Conformal weights:

$W \in \Gamma(\mathcal{E}(-2))$, $\Phi \in \Gamma(\mathcal{E}(-1))$.

Gauduchon–Tod 1999: Berger sphere, product metric on $S^2 \times S^1$ and flat torus are all compact examples.

Integrable system MD-Tod 2001: There exist local coordinates $z : \Sigma \to \mathbb{C}$, $v : \Sigma \to \mathbb{R}$ and a function $F : \Sigma \to \mathbb{R}$ such that

$$\gamma = dzd\bar{z} + \frac{1}{16}((Fdv - i(Fzdz - F\bar{z}d\bar{z})) + dF)^2,$$

$h = \ldots$,

where $F = F(z, \bar{z}, v)$ satisfies

$$Fz\bar{z}(F + Fvv) - (Fz + iFvz)(F\bar{z} - iFv\bar{z}) = 4.$$

An Einstein–Weyl space is Hyper–CR iff there exists $\Phi : \Sigma \rightarrow \mathbb{R}$ s. t.

$$\ast_3(d\Phi + h\Phi) = dh, \quad W = \frac{3}{2}\Phi^2,$$

where W is the Ricci scalar of D.

Conformal weights: $W \in \Gamma(E(-2))$, $\Phi \in \Gamma(E(-1))$.
An Einstein–Weyl space is Hyper–CR iff there exists $\Phi : \Sigma \rightarrow \mathbb{R}$ s. t.

$$*_3(d\Phi + h\Phi) = dh, \quad W = \frac{3}{2}\Phi^2,$$

where W is the Ricci scalar of D.

Conformal weights: $W \in \Gamma(\mathcal{E}(-2)), \Phi \in \Gamma(\mathcal{E}(-1))$.

Gauduchon–Tod 1999: Berger sphere, product metric on $S^2 \times S^1$ and flat torus are all compact examples.
An Einstein–Weyl space is Hyper–CR iff there exists $\Phi : \Sigma \to \mathbb{R}$ s. t.

$$\ast_3 (d\Phi + h\Phi) = dh, \quad W = \frac{3}{2}\Phi^2,$$

where W is the Ricci scalar of D.

Conformal weights: $W \in \Gamma(\mathcal{E}(-2)), \Phi \in \Gamma(\mathcal{E}(-1))$.

Gauduchon–Tod 1999: Berger sphere, product metric on $S^2 \times S^1$ and flat torus are all compact examples.

Integrable system MD-Tod 2001: There exist local coordinates $z : \Sigma \to \mathbb{C}, v : \Sigma \to \mathbb{R}$ and a function $F : \Sigma \to \mathbb{R}$ such that

$$\gamma = dzd\bar{z} + \frac{1}{16}(Fdv - i(Fzd\bar{z} - F\bar{z}d\bar{z}) + dF_v)^2, \quad h = \ldots ,$$

where $F = F(z, \bar{z}, v)$ satisfies

$$F_{\bar{z}z}(F + F_{vv}) - (F_z + iF_{vz})(F_{\bar{z}} - iF_{v\bar{z}}) = 4.$$
Let \((\gamma, h)\) be a hyper–CR Einstein–Weyl structure on \(\Sigma\) and let \(\Omega : \Sigma \to \mathbb{R}^+\) satisfy \(d \ast_3 (de^\Omega) + d \ast_3 (e^\Omega h) = 0\). Then

\[
 g = e^{2\Omega}(2du(dr + rh - \frac{1}{3}r^2Wdu) + \gamma + 6rdud\Omega)
\]

\[
 A = \sqrt{\frac{2}{3}}e^\Omega r\sqrt{W}du + \alpha \quad (\ast)
\]

is a solution to the 5D Einstein–Maxwell–Chern–Simons supergravity. Here \(\alpha \in \Lambda^1(\Sigma)\) is such that \(d\alpha = -e^\Omega \ast_3 (h + d\Omega)\).

- All near–horizon geometries for 5D SUSY back holes/rings/strings are locally of the form \((\ast)\).
- If \(\Sigma\) is compact then \(\gamma\) is a metric on the Berger sphere, a product metric on \(S^1 \times S^2\) or a flat metric on \(T^3\).
Taylor expand the near-horizon data in r

\[
\Delta = \Delta_0(y) + r\delta\Delta(y) + O(r^2), \\
h = h_0(y) + r\delta h(y) + O(r^2), \\
\gamma = \gamma_0(y) + r\delta\gamma(y) + O(r^2).
\]
Extension to the bulk

- Taylor expand the near-horizon data in r

\[
\Delta = \Delta_0(y) + r \delta \Delta(y) + O(r^2),
\]
\[
h = h_0(y) + r \delta h(y) + O(r^2),
\]
\[
\gamma = \gamma_0(y) + r \delta \gamma(y) + O(r^2).
\]

- Gauge freedom $\delta \gamma_{ij} \rightarrow \delta \gamma_{ij} + \nabla_i \nabla_j f - h_{(i} \nabla_{j)} f$, etc.
Extension to the bulk

- Taylor expand the near-horizon data in r

\[
\Delta = \Delta_0(y) + r\delta\Delta(y) + O(r^2),
\]
\[
h = h_0(y) + r\delta h(y) + O(r^2),
\]
\[
\gamma = \gamma_0(y) + r\delta\gamma(y) + O(r^2).
\]

- Gauge freedom $\delta\gamma_{ij} \rightarrow \delta\gamma_{ij} + \nabla_i \nabla_j f - h_{(i} \nabla_{j)} f$, etc.

- **Theorem**: The moduli space of supersymmetric transverse deformations of supersymmetric near horizon solutions with compact spatial sections, corresponding to the moduli $(\delta\Delta, \delta h, \delta\gamma)$, modulo the gauge transformations is finite dimensional.
Extension to the bulk

- Taylor expand the near-horizon data in r

 $$\Delta = \Delta_0(y) + r\delta \Delta(y) + O(r^2),$$
 $$h = h_0(y) + r\delta h(y) + O(r^2),$$
 $$\gamma = \gamma_0(y) + r\delta \gamma(y) + O(r^2).$$

- Gauge freedom $\delta \gamma_{ij} \rightarrow \delta \gamma_{ij} + \nabla_i \nabla_j f - h_{(i} \nabla_{j)} f$, etc.

- **Theorem:** The moduli space of supersymmetric transverse deformations of supersymmetric near horizon solutions with compact spatial sections, corresponding to the moduli $(\delta \Delta, \delta h, \delta \gamma)$, modulo the gauge transformations is finite dimensional.

- **Idea of proof:** Find a global gauge s.t. $\nabla^2 \delta \gamma_{ij} = C_{ij}$ (RHS linear in $\delta \gamma, \nabla \delta \gamma$). Use ellipticity.
Summary and Outlook

- Supersymmetric near horizon geometry of \((4 + 1)\)-dimensional minimal supergravity.
Summary and Outlook

- Supersymmetric near horizon geometry of \((4 + 1)\)-dimensional minimal supergravity.
 - Integrable Einstein–Weyl geometry on spatial cross–sections.

One–form \(h \in \Lambda^1(\Sigma)\) satisfies
\[
\nabla_i (h_j + h_i h_j) = -\frac{1}{2} R_{ij}^{\gamma}.
\]
This can be solved explicitly if \(\gamma\) is axi–symmetric (Kerr).

Conjecture. Let \(\gamma\) be a Riemannian metric on \(\Sigma = S^2\), such that \((\ast)\) holds. Then there exists a Killing vector on \((\Sigma, \gamma)\).
Summary and Outlook

- Supersymmetric near horizon geometry of $(4 + 1)$-dimensional minimal supergravity.
 - Integrable Einstein–Weyl geometry on spatial cross–sections.
 - Finite–dimensional moduli space of transverse deformations.
- Near horizon geometry of $(3 + 1)$ vacuum Einstein equations.
Summary and Outlook

- Supersymmetric near horizon geometry of \((4 + 1)\)-dimensional minimal supergravity.
 - Integrable Einstein–Weyl geometry on spatial cross–sections.
 - Finite–dimensional moduli space of transverse deformations.
- Near horizon geometry of \((3 + 1)\) vacuum Einstein equations.
 - Spatial cross section \((\Sigma, \gamma)\) is Einstein: \(R_{ij} = R\gamma_{ij}/2\)
Summary and Outlook

- Supersymmetric near horizon geometry of $(4 + 1)$–dimensional minimal supergravity.
 - Integrable Einstein–Weyl geometry on spatial cross–sections.
 - Finite–dimensional moduli space of transverse deformations.
- Near horizon geometry of $(3 + 1)$ vacuum Einstein equations.
 - Spatial cross section (Σ, γ) is Einstein: $R_{ij} = R\gamma_{ij}/2$
 - One–form $h \in \Lambda^1(\Sigma)$ satisfies

\[
\nabla(i h_j) + h_i h_j = \frac{1}{2} R\gamma_{ij}. \quad (*)
\]

This can be solved explicitly if γ is axi–symmetric (Kerr).

Conjecture. Let γ be a Riemannian metric on $\Sigma = S^2$, such that $(*)$ holds. Then there exists a Killing vector on (Σ, γ).

Maciej Dunajski, Einstein-Weyl and Near Horizons, Tux, February 2017 10 / 10
Summary and Outlook

- Supersymmetric near horizon geometry of (4 + 1)–dimensional minimal supergravity.
 - Integrable Einstein–Weyl geometry on spatial cross–sections.
 - Finite–dimensional moduli space of transverse deformations.
- Near horizon geometry of (3 + 1) vacuum Einstein equations.
 - Spatial cross section \((\Sigma, \gamma)\) is Einstein: \(R_{ij} = R\gamma_{ij}/2\)
 - One–form \(h \in \Lambda^1(\Sigma)\) satisfies
 \[
 \nabla_{(i} h_{j)} + h_i h_j = \frac{1}{2} R\gamma_{ij}. \quad (*)
 \]
 - This can be solved explicitly if \(\gamma\) is axi–symmetric (Kerr).
Summary and Outlook

- Supersymmetric near horizon geometry of $(4 + 1)$–dimensional minimal supergravity.
 - Integrable Einstein–Weyl geometry on spatial cross–sections.
 - Finite–dimensional moduli space of transverse deformations.
- Near horizon geometry of $(3 + 1)$ vacuum Einstein equations.
 - Spatial cross section (Σ, γ) is Einstein: $R_{ij} = R\gamma_{ij}/2$
 - One–form $h \in \Lambda^1(\Sigma)$ satisfies
 \[
 \nabla_{(i}h_{j)} + h_i h_j = \frac{1}{2} R\gamma_{ij}. \quad (*)
 \]
 - This can be solved explicitly if γ is axi–symmetric (Kerr).
 - **Conjecture.** Let γ be a Riemannian metric on $\Sigma = S^2$, such that $(*)$ holds. Then there exists a Killing vector on (Σ, γ).