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GR and ‘observables’

General Relativity is a gauge theory

⇒ physical observables should be diffeomorphism invariant

canonically:

observables should commute with constraints ⇒ Dirac observables as
‘constants of motion’

dynamics relationally ⇒ ‘evolving constants of motion’ [Wheeler 60’s; Rovelli 90’s;

Dittrich ’06,’07......]

important for quantum theory

⇒ notoriously difficult to construct

often overlooked: even absent in presence of chaos

1 what then is observable?

2 consequences for QT?
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Illustration: closed FRW with (min. coupled) massive scalar
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(a) typical solution, (b) close-up on (a), (c) defocussing of nearby trajectories in turning region

Ham. constraint C = p2
φ − p2

α − e4α + m2 φ2 e6α

model chaotic and non-integrable [Page ’84, Cornish, Shellard ’98; Belinsky, Khalatnikov,

Grishchuk, Zeldovich ’85]

strong defocussing of classical solutions near αmax

has not been fully quantized in any canonical approach
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Breakdown of relational dynamics and semiclassicality [PH, Kubalova, Tsobanjan, ’12]
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classical solution close-up on αmax moments in initial α–time

devoid of good internal ‘clocks’

treat model with effective method (‘effective
WdW’)
⇒ clock changes possible in QT
[method from Bojowald, PH, Tsobanjan ’11a, ’11b]

in region of max. expansion hell breaks loose
(chaotic scattering):

1 breakdown of semiclassicality
[also indep. observed in Kiefer ’88]

2 relational observables only transient

⇒ relational evolution breaks down
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Chaos and constants of motion

integrable (unconstrained) systems:

N (smooth) constants of motion F1, . . . ,FN for 2N-phase space

if {Fi ,Fj} = 0, the Fi form N-dim. surface

MF ' T k × RN−k

non-integrable (unconstrained) systems:

no global (smooth) constants of motion other than H exist

⇒ trajectories lie on (2N − 1)-dim. energy surface

various characterizations:
ergodic
chaotic
... ⇒ distinction unimportant for us, important: non-integrabiliity

non-integrability generic, ∃ concrete theorems for absence of constants of
motion [Arnold, Kozlov, Neishtadt book ’07]
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Non-integrability and constraints [Dittrich, PH, Koslowski, Nelson ’15; ’16]

Consider system on 2N-dim. phase space with m1 1st class constraints Ci .

weakly integrable if:

1 ∃ 2(N −m1) Dirac observables Oi indep. of Cj

2 N −m1 of Dirac observables are weakly in involution {Oi ,Oj} ≈ 0

⇒ ∃ reduced phase space

⇒ trajectories on N-dim submanifolds of constraint surface

weakly non-integrable if:

@ different. Dirac observables indep. of Ci

⇒ @ reduced phase space

⇒ gauge invariant DoFs exist, but non-differentiable (or local)

⇒ trajectories not restricted to N-dim submanifolds

generalize notion of ‘observable’: include non-differentiable ones

how to represent in QT? ⇒ no Poisson algebraic structure
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GR a presumably weakly non-integrable

Plenty of evidence that GR weakly non-integrable:

a generic dynamical system is chaotic

Newtonian N ≥ 3 body problem chaotic

k = 1 FRW with min. coupled massive scalar chaotic
[Page ’84; Cornish, Shellard ’98; Belinsky, Khalatnikov, Grishchuk, Zeldovich ’85]

Mixmaster (Bianchi IX) universe chaotic
[Misner ’69; Cornish, Levin ’97; Motter, Leterlier ’01]

BKL conjecture: generic cosmological solution features chaotic oscillations
[Belinsky, Khalatnikov, Lifshitz ’70]

vacuum GR on closed spatial slices: no Dirac observables as spatial
integrals of metric and its derivatives
[Anderson, Torre ’93; ’96]

⇒ smooth Dirac observables and reduced phase space (probably) @ in full GR
⇒ what are repercussions for QG?
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Parametrized chaotic systems are weakly integrable

Let Hchaos(qi , pi ) be Hamiltonian of non-integrable unconstrained system.

Parametrization yields constrained system

C = pt − Hchaos(qi , pi ) ≈ 0

BUT: weakly integrable because global gauge t = const exists

difference:

unconstrained: do not need to solve dynamics

constrained: need to solve dynamics

to access physical DoFs
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Toy model: free particles on a circle [Dittrich, PH, Koslowski, Nelson ’15; ’16]

Compactify free dynamics: xi + 1 ∼ xi , i = 1, 2 ⇒ conf. manf. Q ' T 2

C =
p2

1

2m1
+

p2
2

2m2
− E ≈ 0

solutions to EoMs

x1(t) =
p1

m1
t + x10 − n1

x2(t) =
p2

m2
t + x20 − n2

ni := b pi
mi

t + xi0c winding number in xi

if:
m2
m1

p1
p2
∈ Q: resonant torus, periodic orbits

m2
m1

p1
p2

/∈ Q: non-resonant torus, ergodic orbits

x1

x2

1

10
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Absence of sufficiently many Dirac observables [Dittrich, PH, Koslowski, Nelson ’15; ’16]

momenta pi are Dirac observables
∃ smooth Dirac observables F (pi ; x1, x2) with ∂iF 6= 0?

NO: F constant on trajectories must be discontinuous in xi

trajectories on non-resonant torus fill it densely

⇒ F takes every value in every neighbourhood
(of non-resonant torus)

ergodicity destroys full integrability
⇒ no reduced phase space, no (sufficient) algebra of observables

even worse: space of solutions
1 non-Hausdorff
2 not a manifold

failure of Marsden-Weinstein reduction
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Generalization of Dirac observables

can still have gauge invariant ‘observables’, however, either
1 global and discontinuous, e.g.

M = (x1 + n1)p2/m2 − (x2 + n2)p1/m1

2 local [Bojowald, PH, Tsobanjan ’11a; ’11b]

also relational dynamics still meaningful, albeit implicitly

⇒ e.g.: choose x1 as ‘clock’, obtain relational ‘observable’

x2(τ) =
m1

m2

p2

p1
(τ − x1 + n1(τ, x2(τ), x1, x2)) + x2 − n2(τ, x2(τ), x1, x2)

resonant torus: finitely many solutions

non-resonant torus: ‘densely many’ solutions

x1 = 0

but: locally, explicit solutions exist on each branch (for fixed n1, n2)

11 / 20



Quantization?

1 reduced quantization

2 ‘standard’ Dirac quantization

3 polymer quantization
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Quantization?

1 reduced quantization ×
2 ‘standard’ Dirac quantization ×
3 polymer quantization 3
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Reduced quantization

outright impossible since no reduced phase space ×
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Standard Dirac quantization

Hkin = L2(S1 × S1)

p̂iψ = −i~∂iψ

basis:

ψk1,k2(x1, x2) = exp(2πik1x1) exp(2πik2x2), (k1, k2) ∈ Z2

constraint

Ĉ =
p̂2

1

2m1
+

p̂2
2

2m2
− E

solutions to constraint given by k1, k2 s.t.

k2
1 +

m1

m2
k2
2 =

2m1E
~2

difficult Diophantine problem

⇒ for m1/m2 /∈ Q
0 ≤ dimHphys ≤ 4

‘few observables’ ⇒ ‘few states’
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Sick quantum theory: no semiclassics [Dittrich, PH, Koslowski, Nelson ’15; ’16]

dimHphys = 4:

NOT peaked on class. orbit for m1/m2 /∈ Q width/separation ≈ 1
⇒ similar for other cases

physical transition amplitudes

W (~x1, ~p1;~x2, ~p2) =
〈(~x2, ~p2)| P̂ |(~x1, ~p1)〉q

〈(~x1, ~p1)| P̂ |(~x1, ~p1)〉 〈(~x2, ~p2)| P̂ |(~x2, ~p2)〉

show no semiclassical behaviour either

16 / 20



An extreme example [Dittrich, PH, Koslowski, Nelson ’15]

Consider on S1 × S1

C =
p2

1

2m1
− p2

2

2m2
and

p
m2/m1 /∈ Q

⇒ all classical solutions ergodic

⇒ no configurational Dirac observable

solutions to quantum constraint equivalent to

k2 = ±
p

m2/m1 k1

⇒ no solutions for ~k ∈ Z2

⇒ well-defined classical dynamics, but no ‘standard’ QT
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Polymer type quantization: discrete topology [Dittrich, PH, Koslowski, Nelson ’15; ’16]

additional ‘observables’ discontinuous ⇒ try discrete topology on T 2

Hkin given by (uncountable) basis

ψx′
1,x

′
2
(x1, x2) = δx′

1,x1
δx′

2,x2

no momenta, but translations

(Rµ1 ψ)(x1, x2) = ψ(x1 + µ, x2), (Rµ2 ψ)(x1, x2) = ψ(x1, x2 + µ)

⇒ p2
i /2 replaced by

Sµi := − ~2

2µ2 (R+µ
i + R−µi − 2)

constraint
Ĉµ = Sµ1 + Sµ2 − E

Bohr compactification:

4

k100

2

0

0 1 32 4

100

1

3

eigenstates and eigenvalues Rµi for µ /∈ Q (continuous ρ ∈ [0, 1)):

φx′,ρ(x) =
X
l∈Z

e2πilρ δx′+lµ,x , {e2πiρ ∈ U(1)}
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Large physical Hilbert space and enough observables

spectrum of constraint Ĉµ forµ /∈ Q:

{~2

µ2 (2− cos(2πρ1)− cos(2πρ2))− E |ρ1, ρ2 ∈ [0, 1)}

⇒ upon superselec. get ∞-dim. separable Hphys as L2 over ‘momentum’ ρ
on this Hphys have sufficiently many observables

M̂ :=
i
2π

„
sin(2πρ2)

∂

∂ρ1
− sin(2πρ1)

∂

∂ρ2

«
(‘angular mom.’)

[M̂, e2πiρ1 ] = −e2πiρ1 sin(2πρ2)

good semiclassical transition amplitudes

W (ψ1, ψ2) =
〈ψ1| P̂ |ψ2〉q

〈ψ1| P̂ |ψ1〉 〈ψ2| P̂ |ψ2〉

-30 -20 -10 0 10 20 30
lo2

0.9970

0.9975

0.9980

0.9985

0.9990

0.9995

1.0000

NormW

-30 -20 -10 10 20 30
lo1

- L1

0.2

0.4

0.6

0.8

1.0

NormW

19 / 20



Conclusions

Chaos precludes smooth Dirac observables

⇒ probably no smooth Dirac observables and red. phase space for full GR

serious problem for ‘standard’ constraint quantization

what do we do?

always ∃ generalized discontinuous ‘observables’

⇒ adapt method of quantization, refine topology until sufficiently many
observables continuous

⇒ here: polymer quantization overcomes troubles of ‘standard’ quantization!

open questions

path integral

extend to field theory case
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