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„OK, it says 
that path 
integral 
works. Let‘s 
try it!“	
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Motivation for an Extension	


•  Path Integral ≈ Local Partition Functions Zk	



	

e.g. Spin Foam formulation of LQG	


	


•  Zk – Canonical Ensemble – Local Equilibr.	


	


•  What if Geometry NOT in Equilibrium?	
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Overview	


1.  Is Path Integral Always Valid?	



– Via gµv-functional	


– Via Canonical Gravity / Spin Foams	



2.  Local Non-Equilibrium Formulation	


3.  Relation to Non-Dynamical Approach	


4.  Conclusions ���
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•  Path Integral / Sum of Networks	
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A non-equilibrium extension of quantum gravity

Pierre A. Mandrin⇤

Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, CH
(Dated: February 12, 2016)

A variety of quantum gravity models (including spin foams) can be described using a path integral
formulation. A path integral has a well-known statistical mechanical interpretation in connection
with a canonical ensemble. In this sense, a path integral describes the thermodynamic equilibrium
of a local system in a thermal bath. This interpretation is in contrast to solutions of Einstein’s
Equations which depart from local thermodynamical equilibrium (one example is shown explicitly).
For this reason, we examine an extension of the path integral model to a (locally) non-equilibrium
description. As a non-equilibrium description, we propose to use a global microcanonical ensemble
with constraints. The constraints reduce the set of admissible microscopic states to be consistent
with the macroscopic geometry. We also analyse the relation between the microcanonical description
and a statistical approach not based on dynamical assumptions which has been proposed recently.
This analysis is of interest for the test of consistency of the non-equilibrium description with general
relativity and quantum field theory.

Keywords: Quantum Gravity, Foundations of Quantum Mechanics

I. IS THERE A LIMITED VALIDITY OF THE
PATH INTEGRAL FORMALISM?

The path integral method has been applied with great
success to quantum field theory (QFT) and also has
proven to be particularly suitable and powerful in sev-
eral theories of quantum gravity. Among them, we men-
tion the spin foam formulation of loop quantum gravity
(LQG) [1], for which the time evolution transition ampli-
tude can be written using

Z =
X
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w(�)
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Ae(jf , ie)
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v

Av(jf , ie),

(1)
where the first sum is taken over all possible spin foam
complexes �, the products are taken over the faces f
associated to the spin representations jf , over the the
edges e associated to the intertwiners ie and over the
vortices v, w(�) are weight factors and Af (jf ), Ae(jf , ie)
and Av(jf , ie) are the amplitudes associated to f , e and
v. Every spin foam � = (�, jf , ie) may be seen as one
particular construction of space-time geometry. In the
framework of general relativity (GR), the geometry can
thus be described e.g. by means of spin foams as well
as by a metric functional gµ⌫ . We can thus find a corre-
spondence between (1) and the path integral formulation
in terms of gµ⌫ [2],

Z =

Z Y

µ⌫

Dgµ⌫ f(gµ⌫) e
iS , (2)

where, to preserve generality, f(gµ⌫) is a function of gµ⌫
to account for the distortion of the volume element by

⇤
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gµ⌫ , and S is the gravitational action. (1) and (2) both
are sums over geometries, and every spin foam recon-
struction of a geometry of GR translates to a functional
gµ⌫ .

A. Formulation with metric functional

Let us first look at expression (2) more closely. (2) can
be interpreted as a product of local partition functions
Zk, where every k refers to an infinitesimal 4-volume Vk

localised in space-time:

Z = lim
K!1

KY

k=1

Zk, Zk =

Z Y

µ⌫

dgµ⌫ f(gµ⌫) e
iS(Vk).

(3)
We can use, as a simple analogue of the expression Zk, the
thermodynamic system which exchanges energy E and is
in thermal equilibrium with a heat bath of temperature
T ,

Z =

Z
dE e�E/T . (4)

Exploiting the correspondence between (3) and (4), Vk

can be interpreted as an open statistical system in ther-
mal equilibrium with the surrounding 4-volumes, and the
latter are the thermal bath. The partition function Zk

discribes a canonical ensemble. In this sense, the path in-
tegral approach is a local thermal equilibrium description
of gravity. Comparing the exponents, we see that the ac-
tion S(Vk) ⇠

R
Vk

d4x
p
gR is the analogue of the entropy

(up to a constant imaginary factor and disregarding the
weighting factor f(gµ⌫) which is not relevant in the ex-
plicite example below). We also see that, roughly speak-
ing, gµ⌫ is the analogue of E . Therefore, if both changes
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•  Integral / Sum over small regions Vk:	
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B. Formulation with canonical gravity / spin foams

It shall be briefly outlined how we can repeat the above
argumentation using di↵erent parameters. For example,
canonical gravity has the advantage that we can inter-
pret the result in terms of a space-time weaves. Let us
consider again the thin soap bubble model, together with
its quantum description as a sum of spin foams �. The
spin foams in turn allow the construction of a space-time
manifold and one can reduce its structure back to the
above solution of Einstein’s Equations. We shall keep
the above coordinates (t, r, #, ').

We want to answer the question: Is there a discon-
tinuity across the shell at r = r0, for (at least one) ”ana-
logue” temperature of the spin foams? To obtain local
temperatures, we first need to partition the space-time
into volumes Vk which are compact and small compared
to the macroscopic geometric structure, but large enough
so that the numberNvk of vortices per domain Vk is large,
Nvk �

p
Nvk. The Vk in turn allow us to cut every spin

foam � into pieces �k = (�k, jf , ie). We can write

Z ⇡ lim
K!1

KY

k=1

Zk,
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X

�k

w(�k)
X
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e
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Y

v

Av

=
X

�k,jf ,ie

eiS(�k,jf ,ie). (11)

In (11), the complexes of adjacent Vk are not chosen to
match at the junctions. Therefore, the total Z is not
exactly given by the product of local partition functions
Zk. Due to the large numbers Nvk however, the matching
error on Z is negligibly small. The ”action functional”
S(�k, jf , ie) is defined by analogy to (3) and it can there-
fore be reduced to the form of S(Vk). We assume that
the Hamiltonian constraint given by the shell is such that
the connection Ai does not lead to a di↵erence between
S
��
r0+

and S
��
r0�

. It thus su�ces to examine the local

analogue energies as a function of r. For our purpose, we
will not need to compute them explicitly.

The analogue energies can be read out from the pa-
rameters over which the sum runs in (11), i.e. from
�k, jf , ie. To obtain the energies coming from �k, con-
sider a change of �k: we insert a new edge delimited by
two new vortices, thus increasing the number of vortices.
Roughly speaking, the number of vortices constitutes an
analogue energy E�k . Every time we insert a new edge,
a new triangle is built by the edges, and one corner is
just an old vortex v. This happens in several possible
ways depending on how many edges meet on v. This
yields an ”energy” with several components (index l),
E l
�k

= Nvl , for Nvl corresponding vortices vl, associated

edges el and faces f l. The remaining analogue energies
are: E l

jk =
P

f l jf l , E l
ik =

P
el iel . Again, we start from

the classical solution of the thin soap bubble model. Be-
cause grr(r0+) 6= grr(r0�), the corresponding pieces of
spin foam �k must, in the weighted average (main con-
tributions around the saddle point), di↵er from one side
to the other of the shell by at least one macroscopic pa-
rameter, i.e. by at least one analogue energy. We can
also argue from the radial dependence of the Hamilto-
nian constraint which takes the form

H = A+B�(r � r0), (12)

where A and B depend on the kinematic variables. Inte-
grating Hamilton’s Equations with H satisfying (12) leads
to Er(r0+) 6= Er(r0�), where Er is the radial component
of the Ashtekar variable Ei in spherical coordinates, and
this implies that at least one of the analogue energies
must have a jump in its value. It follows that at least
one of the analogue temperatures associated to the ana-
logue energies must have a discontinuity accross the shell
at r = r0.

This result does not at all fit to the picture of a
canonical ensemble, and the use of a path integral does
not seem to make much sense in the example of the thin
soap bubble model (and for other space-time geometries
as well). If gravity is to be considered as a thermody-
namic system and path integrals as partition functions
integrated over space, this suggests that the path inte-
gral formalism is not general enough in order to describe
all the physically realistic states of quantum gravity.

II. (LOCALLY) NON-EQUILIBRIUM
FORMULATION OF QUANTUM GRAVITY

In order that gravity be formulated more generally, we
may consider a closed physical system under constraints.
In the case of classical gravity, the closed system is usu-
ally the full manifold of global space-time or, occasion-
ally, gravitationally isolated subsystems thereof. Con-
straints are given from known local gravitational data
(e.g. from measurments) or by symmetries of the geom-
etry.
To describe a closed physical system, we use the micro-

canonical ensemble. This can be obtained if we replace
the local partition function Zk by the constrained global
number of states ⌦,

⌦ = e�S , (13)

where S is the entropy and its values can be restricted by
constraint equations. In the formulation using the metric
functional gµ⌫ , this procedure leads to

⌦ = exp [i

Z
d4x

p
gR/h̄], (14)

and the constraint equations are in part symmetries of
space-time and in part of the form gµ⌫(x⇢) = Cµ⌫(x⇢) for
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of R and gµ⌫ are smooth with respect to space-time lo-
cation, the analogue temperature Tk ⇠ dgµ⌫/dS

��
Vk

is

smooth as well (the weight factor f(gµ⌫) is not relevant
and has been dropped), and the local thermal equilibrium
is a good approximation for the thermodynamic system
associated to the infinitesimal volume Vk.

On the other hand, there are geometries which
strongly depart from local equilibrium. For instance, if
the metric depends on a position parameter x and its
changes are discontinuous at the value x = x0, while the
curvature changes continuously in x, then Tk also has a
discontinuity at x = x0, and the system associated to Vk

is not in thermal equilibrium.
There are realistic examples of such local non-

equilibrium geometries. Let us call the following exam-
ple the thin soap bubble model. We consider a bub-
ble made of liquid soap in a tenuous atmospheric gas.
We consider the static and spherically symmetric solu-
tion of Einstein’s Equations (use coordinates t, r, #, '),
with the center of mass described in the local inertial
rest frame (”zero gravity”). The liquid soap forms a
thin shell at most a few atomic layers thick, of mass
msh, at the fixed radial coordinate value r = r0 so that
rs := 2Gmsh/c

2 ⌧ r0, i.e. r0 is much larger than the
Schwarzschild radius rs of the bubble. Inside and outside
the shell, we assume the gas to be approximately homo-
geneus and of much lower mass density ⇢gas than the mass
density ⇢sh of the shell. If we try to resolve the radial
substructure of the shell, we are working at the atomic
level, we are thus forced to apply quantum mechanics (or
even quantum gravity). On the other hand, the classical
description (GR) does not allow interpretable computa-
tions at the level of atoms, the shell substructure cannot
be resolved radially and the classical thin shell must be
treated as a discontinuity of the geometry at r = r0, i.e.
the mass density reads

⇢(r) ⇡ ⇢gas +msh�(r � r0). (5)

Assuming the gas to be non-relativistic and to have negli-
gible pressure gives us the stress tensor Tµ⌫ = ⇢(r)c2�0µ�

0
⌫ .

Using this, we easily obtain the static spherically sym-
metric solution of Einstein’s Equations with only gtt and
grr being non-trivial. For our purpose, it is su�cient to
write explicitly grr:

grr(r) = [1 +
8⇡G⇢gas(r)r2

3c2
+

Gmsh✓(r � r0)

rc2
]�1 (6)

with ✓(r � r0) = 1 if r � r0

= 0 otherwise.

Because the gas is tenuous and rs ⌧ r0, we have
|grr � 1| ⌧ 1 and, in a similar manner, |gtt � 1| ⌧ 1,
so that the determinant g of the metric also satisfies

|pg � 1| ⌧ 1. This means that 4-volumes of this so-
lution are not significantly distorted with respect to flat
space 4-volumes, and we may neglect

p
g while comput-

ing S, while R is the dominant contribution. We have
R = (�8⇡G/c4)Tµ

µ = (�8⇡G/c4)T 0
0 and thus

S(Vk) ⇡ (�8⇡G/c4)

Z

Vk

d4x T 0
0 (rk)

= (�8⇡G/c4)

Z

Vk

d4x ⇢(rk)c
2

= (�8⇡G/c2)Vk⇢(rk), (7)

where we have chosen Vk not to contain any points on
the hypersurface r = r0 and rk(Vk) to be the value r
of the center point of Vk. If Vk exchanges ”heat” with
its neighbourhood and thereby changes grr(rk) by some
amount dgrr(rk) and S(Vk) by dS(Vk), we obtain the
analogue ”r-temperature” associated to Vk as

Tr(Vk) ⇠
dgrr(rk)

dS(Vk)
. (8)

Consider that we let some heat (dgrr(rk)) go from just
outside the shell, r = r0+, to just inside the shell, r =
r0� (i.e. dgrr(r+) = �dgrr(r�)), by extracting some
matter (⇢+) from r = r0+ and inserting some matter (⇢�)
into r = r0�, so that the resulting geometry is, again,
spherically symmetric. We can compute the changes dgrr
in one outer Vk+ and one inner Vk� of same volume V0:

dgrr(r0+)/(8⇡G/c2) = �[d⇢+r
2
0/3 + d⇢�r

2
0/3]g

2
rr(r0+),

dgrr(r0�)/(8⇡G/c2) = �[d⇢�r
2
0/3]g

2
rr(r0�). (9)

On the first line, both d⇢+ and d⇢� a↵ect the outer grr,
whereas the inner grr only sees d⇢� and undergoes a
more dramatic change of its gravitational potential. By
equating both lines of (9), we see that d⇢+ 6= �d⇢� (be-
cause grr(r0+) 6= grr(r0�) due to the shell), and therefore
dS(Vk+) 6= �dS(Vk�). Therefore, Tr has a discontinuity
at r = r0,

lim
rk!r0+

Tr(Vk) 6= lim
rk!r0�

Tr(Vk). (10)

In other terms, the thin soap bubble model is not in local
thermal equilibrium at r = r0.

The thin soap bubble model is one of many exam-
ples, where the thermodynamic picture of the space-time
geometry strongly departs from local equilibrium. If we
insist on the statistical interpretation of gravity (here in
terms of the metric), the canonical description given by
the path integral approach does not make much sense and
we need to look for a non-equilibrium formalism instead.
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terms of the metric), the canonical description given by
the path integral approach does not make much sense and
we need to look for a non-equilibrium formalism instead.
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matter (⇢+) from r = r0+ and inserting some matter (⇢�)
into r = r0�, so that the resulting geometry is, again,
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The thin soap bubble model is one of many exam-
ples, where the thermodynamic picture of the space-time
geometry strongly departs from local equilibrium. If we
insist on the statistical interpretation of gravity (here in
terms of the metric), the canonical description given by
the path integral approach does not make much sense and
we need to look for a non-equilibrium formalism instead.

2

of R and gµ⌫ are smooth with respect to space-time lo-
cation, the analogue temperature Tk ⇠ dgµ⌫/dS

��
Vk

is

smooth as well (the weight factor f(gµ⌫) is not relevant
and has been dropped), and the local thermal equilibrium
is a good approximation for the thermodynamic system
associated to the infinitesimal volume Vk.

On the other hand, there are geometries which
strongly depart from local equilibrium. For instance, if
the metric depends on a position parameter x and its
changes are discontinuous at the value x = x0, while the
curvature changes continuously in x, then Tk also has a
discontinuity at x = x0, and the system associated to Vk

is not in thermal equilibrium.
There are realistic examples of such local non-

equilibrium geometries. Let us call the following exam-
ple the thin soap bubble model. We consider a bub-
ble made of liquid soap in a tenuous atmospheric gas.
We consider the static and spherically symmetric solu-
tion of Einstein’s Equations (use coordinates t, r, #, '),
with the center of mass described in the local inertial
rest frame (”zero gravity”). The liquid soap forms a
thin shell at most a few atomic layers thick, of mass
msh, at the fixed radial coordinate value r = r0 so that
rs := 2Gmsh/c

2 ⌧ r0, i.e. r0 is much larger than the
Schwarzschild radius rs of the bubble. Inside and outside
the shell, we assume the gas to be approximately homo-
geneus and of much lower mass density ⇢gas than the mass
density ⇢sh of the shell. If we try to resolve the radial
substructure of the shell, we are working at the atomic
level, we are thus forced to apply quantum mechanics (or
even quantum gravity). On the other hand, the classical
description (GR) does not allow interpretable computa-
tions at the level of atoms, the shell substructure cannot
be resolved radially and the classical thin shell must be
treated as a discontinuity of the geometry at r = r0, i.e.
the mass density reads

⇢(r) ⇡ ⇢gas +msh�(r � r0). (5)

Assuming the gas to be non-relativistic and to have negli-
gible pressure gives us the stress tensor Tµ⌫ = ⇢(r)c2�0µ�

0
⌫ .

Using this, we easily obtain the static spherically sym-
metric solution of Einstein’s Equations with only gtt and
grr being non-trivial. For our purpose, it is su�cient to
write explicitly grr:

grr(r) = [1 +
8⇡G⇢gas(r)r2

3c2
+

Gmsh✓(r � r0)

rc2
]�1 (6)

with ✓(r � r0) = 1 if r � r0

= 0 otherwise.

Because the gas is tenuous and rs ⌧ r0, we have
|grr � 1| ⌧ 1 and, in a similar manner, |gtt � 1| ⌧ 1,
so that the determinant g of the metric also satisfies

|pg � 1| ⌧ 1. This means that 4-volumes of this so-
lution are not significantly distorted with respect to flat
space 4-volumes, and we may neglect

p
g while comput-

ing S, while R is the dominant contribution. We have
R = (�8⇡G/c4)Tµ

µ = (�8⇡G/c4)T 0
0 and thus

S(Vk) ⇡ (�8⇡G/c4)

Z

Vk

d4x T 0
0 (rk)

= (�8⇡G/c4)

Z

Vk

d4x ⇢(rk)c
2

= (�8⇡G/c2)Vk⇢(rk), (7)

where we have chosen Vk not to contain any points on
the hypersurface r = r0 and rk(Vk) to be the value r
of the center point of Vk. If Vk exchanges ”heat” with
its neighbourhood and thereby changes grr(rk) by some
amount dgrr(rk) and S(Vk) by dS(Vk), we obtain the
analogue ”r-temperature” associated to Vk as

Tr(Vk) ⇠
dgrr(rk)

dS(Vk)
. (8)

Consider that we let some heat (dgrr(rk)) go from just
outside the shell, r = r0+, to just inside the shell, r =
r0� (i.e. dgrr(r+) = �dgrr(r�)), by extracting some
matter (⇢+) from r = r0+ and inserting some matter (⇢�)
into r = r0�, so that the resulting geometry is, again,
spherically symmetric. We can compute the changes dgrr
in one outer Vk+ and one inner Vk� of same volume V0:

dgrr(r0+)/(8⇡G/c2) = �[d⇢+r
2
0/3 + d⇢�r

2
0/3]g

2
rr(r0+),

dgrr(r0�)/(8⇡G/c2) = �[d⇢�r
2
0/3]g

2
rr(r0�). (9)

On the first line, both d⇢+ and d⇢� a↵ect the outer grr,
whereas the inner grr only sees d⇢� and undergoes a
more dramatic change of its gravitational potential. By
equating both lines of (9), we see that d⇢+ 6= �d⇢� (be-
cause grr(r0+) 6= grr(r0�) due to the shell), and therefore
dS(Vk+) 6= �dS(Vk�). Therefore, Tr has a discontinuity
at r = r0,

lim
rk!r0+

Tr(Vk) 6= lim
rk!r0�

Tr(Vk). (10)

In other terms, the thin soap bubble model is not in local
thermal equilibrium at r = r0.

The thin soap bubble model is one of many exam-
ples, where the thermodynamic picture of the space-time
geometry strongly departs from local equilibrium. If we
insist on the statistical interpretation of gravity (here in
terms of the metric), the canonical description given by
the path integral approach does not make much sense and
we need to look for a non-equilibrium formalism instead.

2

of R and gµ⌫ are smooth with respect to space-time lo-
cation, the analogue temperature Tk ⇠ dgµ⌫/dS

��
Vk

is

smooth as well (the weight factor f(gµ⌫) is not relevant
and has been dropped), and the local thermal equilibrium
is a good approximation for the thermodynamic system
associated to the infinitesimal volume Vk.

On the other hand, there are geometries which
strongly depart from local equilibrium. For instance, if
the metric depends on a position parameter x and its
changes are discontinuous at the value x = x0, while the
curvature changes continuously in x, then Tk also has a
discontinuity at x = x0, and the system associated to Vk

is not in thermal equilibrium.
There are realistic examples of such local non-

equilibrium geometries. Let us call the following exam-
ple the thin soap bubble model. We consider a bub-
ble made of liquid soap in a tenuous atmospheric gas.
We consider the static and spherically symmetric solu-
tion of Einstein’s Equations (use coordinates t, r, #, '),
with the center of mass described in the local inertial
rest frame (”zero gravity”). The liquid soap forms a
thin shell at most a few atomic layers thick, of mass
msh, at the fixed radial coordinate value r = r0 so that
rs := 2Gmsh/c

2 ⌧ r0, i.e. r0 is much larger than the
Schwarzschild radius rs of the bubble. Inside and outside
the shell, we assume the gas to be approximately homo-
geneus and of much lower mass density ⇢gas than the mass
density ⇢sh of the shell. If we try to resolve the radial
substructure of the shell, we are working at the atomic
level, we are thus forced to apply quantum mechanics (or
even quantum gravity). On the other hand, the classical
description (GR) does not allow interpretable computa-
tions at the level of atoms, the shell substructure cannot
be resolved radially and the classical thin shell must be
treated as a discontinuity of the geometry at r = r0, i.e.
the mass density reads

⇢(r) ⇡ ⇢gas +msh�(r � r0). (5)

Assuming the gas to be non-relativistic and to have negli-
gible pressure gives us the stress tensor Tµ⌫ = ⇢(r)c2�0µ�

0
⌫ .

Using this, we easily obtain the static spherically sym-
metric solution of Einstein’s Equations with only gtt and
grr being non-trivial. For our purpose, it is su�cient to
write explicitly grr:

grr(r) = [1 +
8⇡G⇢gas(r)r2

3c2
+

Gmsh✓(r � r0)

rc2
]�1 (6)

with ✓(r � r0) = 1 if r � r0

= 0 otherwise.

Because the gas is tenuous and rs ⌧ r0, we have
|grr � 1| ⌧ 1 and, in a similar manner, |gtt � 1| ⌧ 1,
so that the determinant g of the metric also satisfies

|pg � 1| ⌧ 1. This means that 4-volumes of this so-
lution are not significantly distorted with respect to flat
space 4-volumes, and we may neglect

p
g while comput-

ing S, while R is the dominant contribution. We have
R = (�8⇡G/c4)Tµ

µ = (�8⇡G/c4)T 0
0 and thus

S(Vk) ⇡ (�8⇡G/c4)

Z

Vk

d4x T 0
0 (rk)

= (�8⇡G/c4)

Z

Vk

d4x ⇢(rk)c
2

= (�8⇡G/c2)Vk⇢(rk), (7)

where we have chosen Vk not to contain any points on
the hypersurface r = r0 and rk(Vk) to be the value r
of the center point of Vk. If Vk exchanges ”heat” with
its neighbourhood and thereby changes grr(rk) by some
amount dgrr(rk) and S(Vk) by dS(Vk), we obtain the
analogue ”r-temperature” associated to Vk as

Tr(Vk) ⇠
dgrr(rk)

dS(Vk)
. (8)

Consider that we let some heat (dgrr(rk)) go from just
outside the shell, r = r0+, to just inside the shell, r =
r0� (i.e. dgrr(r+) = �dgrr(r�)), by extracting some
matter (⇢+) from r = r0+ and inserting some matter (⇢�)
into r = r0�, so that the resulting geometry is, again,
spherically symmetric. We can compute the changes dgrr
in one outer Vk+ and one inner Vk� of same volume V0:

dgrr(r0+)/(8⇡G/c2) = �[d⇢+r
2
0/3 + d⇢�r

2
0/3]g

2
rr(r0+),

dgrr(r0�)/(8⇡G/c2) = �[d⇢�r
2
0/3]g

2
rr(r0�). (9)

On the first line, both d⇢+ and d⇢� a↵ect the outer grr,
whereas the inner grr only sees d⇢� and undergoes a
more dramatic change of its gravitational potential. By
equating both lines of (9), we see that d⇢+ 6= �d⇢� (be-
cause grr(r0+) 6= grr(r0�) due to the shell), and therefore
dS(Vk+) 6= �dS(Vk�). Therefore, Tr has a discontinuity
at r = r0,

lim
rk!r0+

Tr(Vk) 6= lim
rk!r0�

Tr(Vk). (10)

In other terms, the thin soap bubble model is not in local
thermal equilibrium at r = r0.

The thin soap bubble model is one of many exam-
ples, where the thermodynamic picture of the space-time
geometry strongly departs from local equilibrium. If we
insist on the statistical interpretation of gravity (here in
terms of the metric), the canonical description given by
the path integral approach does not make much sense and
we need to look for a non-equilibrium formalism instead.

2

of R and gµ⌫ are smooth with respect to space-time lo-
cation, the analogue temperature Tk ⇠ dgµ⌫/dS

��
Vk

is

smooth as well (the weight factor f(gµ⌫) is not relevant
and has been dropped), and the local thermal equilibrium
is a good approximation for the thermodynamic system
associated to the infinitesimal volume Vk.

On the other hand, there are geometries which
strongly depart from local equilibrium. For instance, if
the metric depends on a position parameter x and its
changes are discontinuous at the value x = x0, while the
curvature changes continuously in x, then Tk also has a
discontinuity at x = x0, and the system associated to Vk

is not in thermal equilibrium.
There are realistic examples of such local non-

equilibrium geometries. Let us call the following exam-
ple the thin soap bubble model. We consider a bub-
ble made of liquid soap in a tenuous atmospheric gas.
We consider the static and spherically symmetric solu-
tion of Einstein’s Equations (use coordinates t, r, #, '),
with the center of mass described in the local inertial
rest frame (”zero gravity”). The liquid soap forms a
thin shell at most a few atomic layers thick, of mass
msh, at the fixed radial coordinate value r = r0 so that
rs := 2Gmsh/c

2 ⌧ r0, i.e. r0 is much larger than the
Schwarzschild radius rs of the bubble. Inside and outside
the shell, we assume the gas to be approximately homo-
geneus and of much lower mass density ⇢gas than the mass
density ⇢sh of the shell. If we try to resolve the radial
substructure of the shell, we are working at the atomic
level, we are thus forced to apply quantum mechanics (or
even quantum gravity). On the other hand, the classical
description (GR) does not allow interpretable computa-
tions at the level of atoms, the shell substructure cannot
be resolved radially and the classical thin shell must be
treated as a discontinuity of the geometry at r = r0, i.e.
the mass density reads

⇢(r) ⇡ ⇢gas +msh�(r � r0). (5)

Assuming the gas to be non-relativistic and to have negli-
gible pressure gives us the stress tensor Tµ⌫ = ⇢(r)c2�0µ�

0
⌫ .

Using this, we easily obtain the static spherically sym-
metric solution of Einstein’s Equations with only gtt and
grr being non-trivial. For our purpose, it is su�cient to
write explicitly grr:

grr(r) = [1 +
8⇡G⇢gas(r)r2

3c2
+

Gmsh✓(r � r0)

rc2
]�1 (6)

with ✓(r � r0) = 1 if r � r0

= 0 otherwise.

Because the gas is tenuous and rs ⌧ r0, we have
|grr � 1| ⌧ 1 and, in a similar manner, |gtt � 1| ⌧ 1,
so that the determinant g of the metric also satisfies

|pg � 1| ⌧ 1. This means that 4-volumes of this so-
lution are not significantly distorted with respect to flat
space 4-volumes, and we may neglect

p
g while comput-

ing S, while R is the dominant contribution. We have
R = (�8⇡G/c4)Tµ

µ = (�8⇡G/c4)T 0
0 and thus

S(Vk) ⇡ (�8⇡G/c4)

Z

Vk

d4x T 0
0 (rk)

= (�8⇡G/c4)

Z

Vk

d4x ⇢(rk)c
2

= (�8⇡G/c2)Vk⇢(rk), (7)

where we have chosen Vk not to contain any points on
the hypersurface r = r0 and rk(Vk) to be the value r
of the center point of Vk. If Vk exchanges ”heat” with
its neighbourhood and thereby changes grr(rk) by some
amount dgrr(rk) and S(Vk) by dS(Vk), we obtain the
analogue ”r-temperature” associated to Vk as

Tr(Vk) ⇠
dgrr(rk)

dS(Vk)
. (8)

Consider that we let some heat (dgrr(rk)) go from just
outside the shell, r = r0+, to just inside the shell, r =
r0� (i.e. dgrr(r+) = �dgrr(r�)), by extracting some
matter (⇢+) from r = r0+ and inserting some matter (⇢�)
into r = r0�, so that the resulting geometry is, again,
spherically symmetric. We can compute the changes dgrr
in one outer Vk+ and one inner Vk� of same volume V0:

dgrr(r0+)/(8⇡G/c2) = �[d⇢+r
2
0/3 + d⇢�r

2
0/3]g

2
rr(r0+),

dgrr(r0�)/(8⇡G/c2) = �[d⇢�r
2
0/3]g

2
rr(r0�). (9)

On the first line, both d⇢+ and d⇢� a↵ect the outer grr,
whereas the inner grr only sees d⇢� and undergoes a
more dramatic change of its gravitational potential. By
equating both lines of (9), we see that d⇢+ 6= �d⇢� (be-
cause grr(r0+) 6= grr(r0�) due to the shell), and therefore
dS(Vk+) 6= �dS(Vk�). Therefore, Tr has a discontinuity
at r = r0,

lim
rk!r0+

Tr(Vk) 6= lim
rk!r0�

Tr(Vk). (10)

In other terms, the thin soap bubble model is not in local
thermal equilibrium at r = r0.

The thin soap bubble model is one of many exam-
ples, where the thermodynamic picture of the space-time
geometry strongly departs from local equilibrium. If we
insist on the statistical interpretation of gravity (here in
terms of the metric), the canonical description given by
the path integral approach does not make much sense and
we need to look for a non-equilibrium formalism instead.

2

of R and gµ⌫ are smooth with respect to space-time lo-
cation, the analogue temperature Tk ⇠ dgµ⌫/dS

��
Vk

is

smooth as well (the weight factor f(gµ⌫) is not relevant
and has been dropped), and the local thermal equilibrium
is a good approximation for the thermodynamic system
associated to the infinitesimal volume Vk.

On the other hand, there are geometries which
strongly depart from local equilibrium. For instance, if
the metric depends on a position parameter x and its
changes are discontinuous at the value x = x0, while the
curvature changes continuously in x, then Tk also has a
discontinuity at x = x0, and the system associated to Vk

is not in thermal equilibrium.
There are realistic examples of such local non-

equilibrium geometries. Let us call the following exam-
ple the thin soap bubble model. We consider a bub-
ble made of liquid soap in a tenuous atmospheric gas.
We consider the static and spherically symmetric solu-
tion of Einstein’s Equations (use coordinates t, r, #, '),
with the center of mass described in the local inertial
rest frame (”zero gravity”). The liquid soap forms a
thin shell at most a few atomic layers thick, of mass
msh, at the fixed radial coordinate value r = r0 so that
rs := 2Gmsh/c

2 ⌧ r0, i.e. r0 is much larger than the
Schwarzschild radius rs of the bubble. Inside and outside
the shell, we assume the gas to be approximately homo-
geneus and of much lower mass density ⇢gas than the mass
density ⇢sh of the shell. If we try to resolve the radial
substructure of the shell, we are working at the atomic
level, we are thus forced to apply quantum mechanics (or
even quantum gravity). On the other hand, the classical
description (GR) does not allow interpretable computa-
tions at the level of atoms, the shell substructure cannot
be resolved radially and the classical thin shell must be
treated as a discontinuity of the geometry at r = r0, i.e.
the mass density reads

⇢(r) ⇡ ⇢gas +msh�(r � r0). (5)

Assuming the gas to be non-relativistic and to have negli-
gible pressure gives us the stress tensor Tµ⌫ = ⇢(r)c2�0µ�

0
⌫ .

Using this, we easily obtain the static spherically sym-
metric solution of Einstein’s Equations with only gtt and
grr being non-trivial. For our purpose, it is su�cient to
write explicitly grr:

grr(r) = [1 +
8⇡G⇢gas(r)r2

3c2
+

Gmsh✓(r � r0)

rc2
]�1 (6)

with ✓(r � r0) = 1 if r � r0

= 0 otherwise.

Because the gas is tenuous and rs ⌧ r0, we have
|grr � 1| ⌧ 1 and, in a similar manner, |gtt � 1| ⌧ 1,
so that the determinant g of the metric also satisfies

|pg � 1| ⌧ 1. This means that 4-volumes of this so-
lution are not significantly distorted with respect to flat
space 4-volumes, and we may neglect

p
g while comput-

ing S, while R is the dominant contribution. We have
R = (�8⇡G/c4)Tµ

µ = (�8⇡G/c4)T 0
0 and thus

S(Vk) ⇡ (�8⇡G/c4)

Z

Vk

d4x T 0
0 (rk)

= (�8⇡G/c4)

Z

Vk

d4x ⇢(rk)c
2

= (�8⇡G/c2)Vk⇢(rk), (7)

where we have chosen Vk not to contain any points on
the hypersurface r = r0 and rk(Vk) to be the value r
of the center point of Vk. If Vk exchanges ”heat” with
its neighbourhood and thereby changes grr(rk) by some
amount dgrr(rk) and S(Vk) by dS(Vk), we obtain the
analogue ”r-temperature” associated to Vk as

Tr(Vk) ⇠
dgrr(rk)

dS(Vk)
. (8)

Consider that we let some heat (dgrr(rk)) go from just
outside the shell, r = r0+, to just inside the shell, r =
r0� (i.e. dgrr(r+) = �dgrr(r�)), by extracting some
matter (⇢+) from r = r0+ and inserting some matter (⇢�)
into r = r0�, so that the resulting geometry is, again,
spherically symmetric. We can compute the changes dgrr
in one outer Vk+ and one inner Vk� of same volume V0:

dgrr(r0+)/(8⇡G/c2) = �[d⇢+r
2
0/3 + d⇢�r

2
0/3]g

2
rr(r0+),

dgrr(r0�)/(8⇡G/c2) = �[d⇢�r
2
0/3]g

2
rr(r0�). (9)

On the first line, both d⇢+ and d⇢� a↵ect the outer grr,
whereas the inner grr only sees d⇢� and undergoes a
more dramatic change of its gravitational potential. By
equating both lines of (9), we see that d⇢+ 6= �d⇢� (be-
cause grr(r0+) 6= grr(r0�) due to the shell), and therefore
dS(Vk+) 6= �dS(Vk�). Therefore, Tr has a discontinuity
at r = r0,

lim
rk!r0+

Tr(Vk) 6= lim
rk!r0�

Tr(Vk). (10)

In other terms, the thin soap bubble model is not in local
thermal equilibrium at r = r0.

The thin soap bubble model is one of many exam-
ples, where the thermodynamic picture of the space-time
geometry strongly departs from local equilibrium. If we
insist on the statistical interpretation of gravity (here in
terms of the metric), the canonical description given by
the path integral approach does not make much sense and
we need to look for a non-equilibrium formalism instead.



Non-Equilibrium Quantum Gravity 

Fourth Tux Workshop on Quantum Gravity, February 15-19, 2016 

1. Is Path Integral Always Valid?	


•  Example: „Thin Soap Bubble Model“	



	

(details will be on arxiv)	


     = ... 	


	


	



Q ~	



	



                              ->  Tr+ ≠ Tr-	



P. Mandrin, University of Zurich 9 

r	



Shell of mass msh at r = r0	


(a few atomic layers thick)	



Tenuous gas	


Mass density:	



2

of R and gµ⌫ are smooth with respect to space-time lo-
cation, the analogue temperature Tk ⇠ dgµ⌫/dS

��
Vk

is

smooth as well (the weight factor f(gµ⌫) is not relevant
and has been dropped), and the local thermal equilibrium
is a good approximation for the thermodynamic system
associated to the infinitesimal volume Vk.

On the other hand, there are geometries which
strongly depart from local equilibrium. For instance, if
the metric depends on a position parameter x and its
changes are discontinuous at the value x = x0, while the
curvature changes continuously in x, then Tk also has a
discontinuity at x = x0, and the system associated to Vk

is not in thermal equilibrium.
There are realistic examples of such local non-

equilibrium geometries. Let us call the following exam-
ple the thin soap bubble model. We consider a bub-
ble made of liquid soap in a tenuous atmospheric gas.
We consider the static and spherically symmetric solu-
tion of Einstein’s Equations (use coordinates t, r, #, '),
with the center of mass described in the local inertial
rest frame (”zero gravity”). The liquid soap forms a
thin shell at most a few atomic layers thick, of mass
msh, at the fixed radial coordinate value r = r0 so that
rs := 2Gmsh/c

2 ⌧ r0, i.e. r0 is much larger than the
Schwarzschild radius rs of the bubble. Inside and outside
the shell, we assume the gas to be approximately homo-
geneus and of much lower mass density ⇢gas than the mass
density ⇢sh of the shell. If we try to resolve the radial
substructure of the shell, we are working at the atomic
level, we are thus forced to apply quantum mechanics (or
even quantum gravity). On the other hand, the classical
description (GR) does not allow interpretable computa-
tions at the level of atoms, the shell substructure cannot
be resolved radially and the classical thin shell must be
treated as a discontinuity of the geometry at r = r0, i.e.
the mass density reads

⇢(r) ⇡ ⇢gas +msh�(r � r0). (5)

Assuming the gas to be non-relativistic and to have negli-
gible pressure gives us the stress tensor Tµ⌫ = ⇢(r)c2�0µ�

0
⌫ .

Using this, we easily obtain the static spherically sym-
metric solution of Einstein’s Equations with only gtt and
grr being non-trivial. For our purpose, it is su�cient to
write explicitly grr:
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with ✓(r � r0) = 1 if r � r0

= 0 otherwise.

Because the gas is tenuous and rs ⌧ r0, we have
|grr � 1| ⌧ 1 and, in a similar manner, |gtt � 1| ⌧ 1,
so that the determinant g of the metric also satisfies

|pg � 1| ⌧ 1. This means that 4-volumes of this so-
lution are not significantly distorted with respect to flat
space 4-volumes, and we may neglect
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ing S, while R is the dominant contribution. We have
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where we have chosen Vk not to contain any points on
the hypersurface r = r0 and rk(Vk) to be the value r
of the center point of Vk. If Vk exchanges ”heat” with
its neighbourhood and thereby changes grr(rk) by some
amount dgrr(rk) and S(Vk) by dS(Vk), we obtain the
analogue ”r-temperature” associated to Vk as

Tr(Vk) ⇠
dgrr(rk)

dS(Vk)
. (8)

Consider that we let some heat (dgrr(rk)) go from just
outside the shell, r = r0+, to just inside the shell, r =
r0� (i.e. dgrr(r+) = �dgrr(r�)), by extracting some
matter (⇢+) from r = r0+ and inserting some matter (⇢�)
into r = r0�, so that the resulting geometry is, again,
spherically symmetric. We can compute the changes dgrr
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On the first line, both d⇢+ and d⇢� a↵ect the outer grr,
whereas the inner grr only sees d⇢� and undergoes a
more dramatic change of its gravitational potential. By
equating both lines of (9), we see that d⇢+ 6= �d⇢� (be-
cause grr(r0+) 6= grr(r0�) due to the shell), and therefore
dS(Vk+) 6= �dS(Vk�). Therefore, Tr has a discontinuity
at r = r0,

lim
rk!r0+

Tr(Vk) 6= lim
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Tr(Vk). (10)

In other terms, the thin soap bubble model is not in local
thermal equilibrium at r = r0.

The thin soap bubble model is one of many exam-
ples, where the thermodynamic picture of the space-time
geometry strongly departs from local equilibrium. If we
insist on the statistical interpretation of gravity (here in
terms of the metric), the canonical description given by
the path integral approach does not make much sense and
we need to look for a non-equilibrium formalism instead.
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rs := 2Gmsh/c

2 ⌧ r0, i.e. r0 is much larger than the
Schwarzschild radius rs of the bubble. Inside and outside
the shell, we assume the gas to be approximately homo-
geneus and of much lower mass density ⇢gas than the mass
density ⇢sh of the shell. If we try to resolve the radial
substructure of the shell, we are working at the atomic
level, we are thus forced to apply quantum mechanics (or
even quantum gravity). On the other hand, the classical
description (GR) does not allow interpretable computa-
tions at the level of atoms, the shell substructure cannot
be resolved radially and the classical thin shell must be
treated as a discontinuity of the geometry at r = r0, i.e.
the mass density reads

⇢(r) ⇡ ⇢gas +msh�(r � r0). (5)

Assuming the gas to be non-relativistic and to have negli-
gible pressure gives us the stress tensor Tµ⌫ = ⇢(r)c2�0µ�
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⌫ .

Using this, we easily obtain the static spherically sym-
metric solution of Einstein’s Equations with only gtt and
grr being non-trivial. For our purpose, it is su�cient to
write explicitly grr:

grr(r) = [1 +
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with ✓(r � r0) = 1 if r � r0

= 0 otherwise.

Because the gas is tenuous and rs ⌧ r0, we have
|grr � 1| ⌧ 1 and, in a similar manner, |gtt � 1| ⌧ 1,
so that the determinant g of the metric also satisfies

|pg � 1| ⌧ 1. This means that 4-volumes of this so-
lution are not significantly distorted with respect to flat
space 4-volumes, and we may neglect
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g while comput-

ing S, while R is the dominant contribution. We have
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= (�8⇡G/c2)Vk⇢(rk), (7)

where we have chosen Vk not to contain any points on
the hypersurface r = r0 and rk(Vk) to be the value r
of the center point of Vk. If Vk exchanges ”heat” with
its neighbourhood and thereby changes grr(rk) by some
amount dgrr(rk) and S(Vk) by dS(Vk), we obtain the
analogue ”r-temperature” associated to Vk as

Tr(Vk) ⇠
dgrr(rk)

dS(Vk)
. (8)

Consider that we let some heat (dgrr(rk)) go from just
outside the shell, r = r0+, to just inside the shell, r =
r0� (i.e. dgrr(r+) = �dgrr(r�)), by extracting some
matter (⇢+) from r = r0+ and inserting some matter (⇢�)
into r = r0�, so that the resulting geometry is, again,
spherically symmetric. We can compute the changes dgrr
in one outer Vk+ and one inner Vk� of same volume V0:

dgrr(r0+)/(8⇡G/c2) = �[d⇢+r
2
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2
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rr(r0+),
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On the first line, both d⇢+ and d⇢� a↵ect the outer grr,
whereas the inner grr only sees d⇢� and undergoes a
more dramatic change of its gravitational potential. By
equating both lines of (9), we see that d⇢+ 6= �d⇢� (be-
cause grr(r0+) 6= grr(r0�) due to the shell), and therefore
dS(Vk+) 6= �dS(Vk�). Therefore, Tr has a discontinuity
at r = r0,

lim
rk!r0+

Tr(Vk) 6= lim
rk!r0�

Tr(Vk). (10)

In other terms, the thin soap bubble model is not in local
thermal equilibrium at r = r0.

The thin soap bubble model is one of many exam-
ples, where the thermodynamic picture of the space-time
geometry strongly departs from local equilibrium. If we
insist on the statistical interpretation of gravity (here in
terms of the metric), the canonical description given by
the path integral approach does not make much sense and
we need to look for a non-equilibrium formalism instead.
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A variety of quantum gravity models (including spin foams) can be described using a path integral
formulation. A path integral has a well-known statistical mechanical interpretation in connection
with a canonical ensemble. In this sense, a path integral describes the thermodynamic equilibrium
of a local system in a thermal bath. This interpretation is in contrast to solutions of Einstein’s
Equations which depart from local thermodynamical equilibrium (one example is shown explicitly).
For this reason, we examine an extension of the path integral model to a (locally) non-equilibrium
description. As a non-equilibrium description, we propose to use a global microcanonical ensemble
with constraints. The constraints reduce the set of admissible microscopic states to be consistent
with the macroscopic geometry. We also analyse the relation between the microcanonical description
and a statistical approach not based on dynamical assumptions which has been proposed recently.
This analysis is of interest for the test of consistency of the non-equilibrium description with general
relativity and quantum field theory.
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I. IS THERE A LIMITED VALIDITY OF THE
PATH INTEGRAL FORMALISM?

The path integral method has been applied with great
success to quantum field theory (QFT) and also has
proven to be particularly suitable and powerful in sev-
eral theories of quantum gravity. Among them, we men-
tion the spin foam formulation of loop quantum gravity
(LQG) [1], for which the time evolution transition ampli-
tude can be written using

Z =
X

�

w(�)
X

jf ,ie

Y

f

Af (jf )
Y

e

Ae(jf , ie)
Y

v

Av(jf , ie),

(1)
where the first sum is taken over all possible spin foam
complexes �, the products are taken over the faces f
associated to the spin representations jf , over the the
edges e associated to the intertwiners ie and over the
vortices v, w(�) are weight factors and Af (jf ), Ae(jf , ie)
and Av(jf , ie) are the amplitudes associated to f , e and
v. Every spin foam � = (�, jf , ie) may be seen as one
particular construction of space-time geometry. In the
framework of general relativity (GR), the geometry can
thus be described e.g. by means of spin foams as well
as by a metric functional gµ⌫ . We can thus find a corre-
spondence between (1) and the path integral formulation
in terms of gµ⌫ [2],

Z =

Z Y

µ⌫

Dgµ⌫ f(gµ⌫) e
iS , (2)

where, to preserve generality, f(gµ⌫) is a function of gµ⌫
to account for the distortion of the volume element by

⇤
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gµ⌫ , and S is the gravitational action. (1) and (2) both
are sums over geometries, and every spin foam recon-
struction of a geometry of GR translates to a functional
gµ⌫ .

A. Formulation with metric functional

Let us first look at expression (2) more closely. (2) can
be interpreted as a product of local partition functions
Zk, where every k refers to an infinitesimal 4-volume Vk

localised in space-time:

Z = lim
K!1

KY

k=1

Zk, Zk =

Z Y

µ⌫

dgµ⌫ f(gµ⌫) e
iS(Vk).

(3)
We can use, as a simple analogue of the expression Zk, the
thermodynamic system which exchanges energy E and is
in thermal equilibrium with a heat bath of temperature
T ,

Z =

Z
dE e�E/T . (4)

Exploiting the correspondence between (3) and (4), Vk

can be interpreted as an open statistical system in ther-
mal equilibrium with the surrounding 4-volumes, and the
latter are the thermal bath. The partition function Zk

discribes a canonical ensemble. In this sense, the path in-
tegral approach is a local thermal equilibrium description
of gravity. Comparing the exponents, we see that the ac-
tion S(Vk) ⇠

R
Vk

d4x
p
gR is the analogue of the entropy

(up to a constant imaginary factor and disregarding the
weighting factor f(gµ⌫) which is not relevant in the ex-
plicite example below). We also see that, roughly speak-
ing, gµ⌫ is the analogue of E . Therefore, if both changes
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B. Formulation with canonical gravity / spin foams

It shall be briefly outlined how we can repeat the above
argumentation using di↵erent parameters. For example,
canonical gravity has the advantage that we can inter-
pret the result in terms of a space-time weaves. Let us
consider again the thin soap bubble model, together with
its quantum description as a sum of spin foams �. The
spin foams in turn allow the construction of a space-time
manifold and one can reduce its structure back to the
above solution of Einstein’s Equations. We shall keep
the above coordinates (t, r, #, ').

We want to answer the question: Is there a discon-
tinuity across the shell at r = r0, for (at least one) ”ana-
logue” temperature of the spin foams? To obtain local
temperatures, we first need to partition the space-time
into volumes Vk which are compact and small compared
to the macroscopic geometric structure, but large enough
so that the numberNvk of vortices per domain Vk is large,
Nvk �

p
Nvk. The Vk in turn allow us to cut every spin

foam � into pieces �k = (�k, jf , ie). We can write

Z ⇡ lim
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In (11), the complexes of adjacent Vk are not chosen to
match at the junctions. Therefore, the total Z is not
exactly given by the product of local partition functions
Zk. Due to the large numbers Nvk however, the matching
error on Z is negligibly small. The ”action functional”
S(�k, jf , ie) is defined by analogy to (3) and it can there-
fore be reduced to the form of S(Vk). We assume that
the Hamiltonian constraint given by the shell is such that
the connection Ai does not lead to a di↵erence between
S
��
r0+

and S
��
r0�

. It thus su�ces to examine the local

analogue energies as a function of r. For our purpose, we
will not need to compute them explicitly.

The analogue energies can be read out from the pa-
rameters over which the sum runs in (11), i.e. from
�k, jf , ie. To obtain the energies coming from �k, con-
sider a change of �k: we insert a new edge delimited by
two new vortices, thus increasing the number of vortices.
Roughly speaking, the number of vortices constitutes an
analogue energy E�k . Every time we insert a new edge,
a new triangle is built by the edges, and one corner is
just an old vortex v. This happens in several possible
ways depending on how many edges meet on v. This
yields an ”energy” with several components (index l),
E l
�k

= Nvl , for Nvl corresponding vortices vl, associated

edges el and faces f l. The remaining analogue energies
are: E l

jk =
P

f l jf l , E l
ik =

P
el iel . Again, we start from

the classical solution of the thin soap bubble model. Be-
cause grr(r0+) 6= grr(r0�), the corresponding pieces of
spin foam �k must, in the weighted average (main con-
tributions around the saddle point), di↵er from one side
to the other of the shell by at least one macroscopic pa-
rameter, i.e. by at least one analogue energy. We can
also argue from the radial dependence of the Hamilto-
nian constraint which takes the form

H = A+B�(r � r0), (12)

where A and B depend on the kinematic variables. Inte-
grating Hamilton’s Equations with H satisfying (12) leads
to Er(r0+) 6= Er(r0�), where Er is the radial component
of the Ashtekar variable Ei in spherical coordinates, and
this implies that at least one of the analogue energies
must have a jump in its value. It follows that at least
one of the analogue temperatures associated to the ana-
logue energies must have a discontinuity accross the shell
at r = r0.

This result does not at all fit to the picture of a
canonical ensemble, and the use of a path integral does
not seem to make much sense in the example of the thin
soap bubble model (and for other space-time geometries
as well). If gravity is to be considered as a thermody-
namic system and path integrals as partition functions
integrated over space, this suggests that the path inte-
gral formalism is not general enough in order to describe
all the physically realistic states of quantum gravity.

II. (LOCALLY) NON-EQUILIBRIUM
FORMULATION OF QUANTUM GRAVITY

In order that gravity be formulated more generally, we
may consider a closed physical system under constraints.
In the case of classical gravity, the closed system is usu-
ally the full manifold of global space-time or, occasion-
ally, gravitationally isolated subsystems thereof. Con-
straints are given from known local gravitational data
(e.g. from measurments) or by symmetries of the geom-
etry.
To describe a closed physical system, we use the micro-

canonical ensemble. This can be obtained if we replace
the local partition function Zk by the constrained global
number of states ⌦,

⌦ = e�S , (13)

where S is the entropy and its values can be restricted by
constraint equations. In the formulation using the metric
functional gµ⌫ , this procedure leads to

⌦ = exp [i

Z
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p
gR/h̄], (14)

and the constraint equations are in part symmetries of
space-time and in part of the form gµ⌫(x⇢) = Cµ⌫(x⇢) for
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B. Formulation with canonical gravity / spin foams

It shall be briefly outlined how we can repeat the above
argumentation using di↵erent parameters. For example,
canonical gravity has the advantage that we can inter-
pret the result in terms of a space-time weaves. Let us
consider again the thin soap bubble model, together with
its quantum description as a sum of spin foams �. The
spin foams in turn allow the construction of a space-time
manifold and one can reduce its structure back to the
above solution of Einstein’s Equations. We shall keep
the above coordinates (t, r, #, ').

We want to answer the question: Is there a discon-
tinuity across the shell at r = r0, for (at least one) ”ana-
logue” temperature of the spin foams? To obtain local
temperatures, we first need to partition the space-time
into volumes Vk which are compact and small compared
to the macroscopic geometric structure, but large enough
so that the numberNvk of vortices per domain Vk is large,
Nvk �

p
Nvk. The Vk in turn allow us to cut every spin
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match at the junctions. Therefore, the total Z is not
exactly given by the product of local partition functions
Zk. Due to the large numbers Nvk however, the matching
error on Z is negligibly small. The ”action functional”
S(�k, jf , ie) is defined by analogy to (3) and it can there-
fore be reduced to the form of S(Vk). We assume that
the Hamiltonian constraint given by the shell is such that
the connection Ai does not lead to a di↵erence between
S
��
r0+

and S
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. It thus su�ces to examine the local

analogue energies as a function of r. For our purpose, we
will not need to compute them explicitly.

The analogue energies can be read out from the pa-
rameters over which the sum runs in (11), i.e. from
�k, jf , ie. To obtain the energies coming from �k, con-
sider a change of �k: we insert a new edge delimited by
two new vortices, thus increasing the number of vortices.
Roughly speaking, the number of vortices constitutes an
analogue energy E�k . Every time we insert a new edge,
a new triangle is built by the edges, and one corner is
just an old vortex v. This happens in several possible
ways depending on how many edges meet on v. This
yields an ”energy” with several components (index l),
E l
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= Nvl , for Nvl corresponding vortices vl, associated

edges el and faces f l. The remaining analogue energies
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the classical solution of the thin soap bubble model. Be-
cause grr(r0+) 6= grr(r0�), the corresponding pieces of
spin foam �k must, in the weighted average (main con-
tributions around the saddle point), di↵er from one side
to the other of the shell by at least one macroscopic pa-
rameter, i.e. by at least one analogue energy. We can
also argue from the radial dependence of the Hamilto-
nian constraint which takes the form

H = A+B�(r � r0), (12)

where A and B depend on the kinematic variables. Inte-
grating Hamilton’s Equations with H satisfying (12) leads
to Er(r0+) 6= Er(r0�), where Er is the radial component
of the Ashtekar variable Ei in spherical coordinates, and
this implies that at least one of the analogue energies
must have a jump in its value. It follows that at least
one of the analogue temperatures associated to the ana-
logue energies must have a discontinuity accross the shell
at r = r0.

This result does not at all fit to the picture of a
canonical ensemble, and the use of a path integral does
not seem to make much sense in the example of the thin
soap bubble model (and for other space-time geometries
as well). If gravity is to be considered as a thermody-
namic system and path integrals as partition functions
integrated over space, this suggests that the path inte-
gral formalism is not general enough in order to describe
all the physically realistic states of quantum gravity.

II. (LOCALLY) NON-EQUILIBRIUM
FORMULATION OF QUANTUM GRAVITY

In order that gravity be formulated more generally, we
may consider a closed physical system under constraints.
In the case of classical gravity, the closed system is usu-
ally the full manifold of global space-time or, occasion-
ally, gravitationally isolated subsystems thereof. Con-
straints are given from known local gravitational data
(e.g. from measurments) or by symmetries of the geom-
etry.
To describe a closed physical system, we use the micro-

canonical ensemble. This can be obtained if we replace
the local partition function Zk by the constrained global
number of states ⌦,
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where S is the entropy and its values can be restricted by
constraint equations. In the formulation using the metric
functional gµ⌫ , this procedure leads to
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and the constraint equations are in part symmetries of
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B. Formulation with canonical gravity / spin foams

It shall be briefly outlined how we can repeat the above
argumentation using di↵erent parameters. For example,
canonical gravity has the advantage that we can inter-
pret the result in terms of a space-time weaves. Let us
consider again the thin soap bubble model, together with
its quantum description as a sum of spin foams �. The
spin foams in turn allow the construction of a space-time
manifold and one can reduce its structure back to the
above solution of Einstein’s Equations. We shall keep
the above coordinates (t, r, #, ').

We want to answer the question: Is there a discon-
tinuity across the shell at r = r0, for (at least one) ”ana-
logue” temperature of the spin foams? To obtain local
temperatures, we first need to partition the space-time
into volumes Vk which are compact and small compared
to the macroscopic geometric structure, but large enough
so that the numberNvk of vortices per domain Vk is large,
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In (11), the complexes of adjacent Vk are not chosen to
match at the junctions. Therefore, the total Z is not
exactly given by the product of local partition functions
Zk. Due to the large numbers Nvk however, the matching
error on Z is negligibly small. The ”action functional”
S(�k, jf , ie) is defined by analogy to (3) and it can there-
fore be reduced to the form of S(Vk). We assume that
the Hamiltonian constraint given by the shell is such that
the connection Ai does not lead to a di↵erence between
S
��
r0+

and S
��
r0�

. It thus su�ces to examine the local

analogue energies as a function of r. For our purpose, we
will not need to compute them explicitly.

The analogue energies can be read out from the pa-
rameters over which the sum runs in (11), i.e. from
�k, jf , ie. To obtain the energies coming from �k, con-
sider a change of �k: we insert a new edge delimited by
two new vortices, thus increasing the number of vortices.
Roughly speaking, the number of vortices constitutes an
analogue energy E�k . Every time we insert a new edge,
a new triangle is built by the edges, and one corner is
just an old vortex v. This happens in several possible
ways depending on how many edges meet on v. This
yields an ”energy” with several components (index l),
E l
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= Nvl , for Nvl corresponding vortices vl, associated

edges el and faces f l. The remaining analogue energies
are: E l
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el iel . Again, we start from

the classical solution of the thin soap bubble model. Be-
cause grr(r0+) 6= grr(r0�), the corresponding pieces of
spin foam �k must, in the weighted average (main con-
tributions around the saddle point), di↵er from one side
to the other of the shell by at least one macroscopic pa-
rameter, i.e. by at least one analogue energy. We can
also argue from the radial dependence of the Hamilto-
nian constraint which takes the form

H = A+B�(r � r0), (12)

where A and B depend on the kinematic variables. Inte-
grating Hamilton’s Equations with H satisfying (12) leads
to Er(r0+) 6= Er(r0�), where Er is the radial component
of the Ashtekar variable Ei in spherical coordinates, and
this implies that at least one of the analogue energies
must have a jump in its value. It follows that at least
one of the analogue temperatures associated to the ana-
logue energies must have a discontinuity accross the shell
at r = r0.

This result does not at all fit to the picture of a
canonical ensemble, and the use of a path integral does
not seem to make much sense in the example of the thin
soap bubble model (and for other space-time geometries
as well). If gravity is to be considered as a thermody-
namic system and path integrals as partition functions
integrated over space, this suggests that the path inte-
gral formalism is not general enough in order to describe
all the physically realistic states of quantum gravity.

II. (LOCALLY) NON-EQUILIBRIUM
FORMULATION OF QUANTUM GRAVITY

In order that gravity be formulated more generally, we
may consider a closed physical system under constraints.
In the case of classical gravity, the closed system is usu-
ally the full manifold of global space-time or, occasion-
ally, gravitationally isolated subsystems thereof. Con-
straints are given from known local gravitational data
(e.g. from measurments) or by symmetries of the geom-
etry.
To describe a closed physical system, we use the micro-

canonical ensemble. This can be obtained if we replace
the local partition function Zk by the constrained global
number of states ⌦,

⌦ = e�S , (13)

where S is the entropy and its values can be restricted by
constraint equations. In the formulation using the metric
functional gµ⌫ , this procedure leads to

⌦ = exp [i

Z
d4x

p
gR/h̄], (14)

and the constraint equations are in part symmetries of
space-time and in part of the form gµ⌫(x⇢) = Cµ⌫(x⇢) for
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I. IS THERE A LIMITED VALIDITY OF THE
PATH INTEGRAL FORMALISM?

The path integral method has been applied with great
success to quantum field theory (QFT) and also has
proven to be particularly suitable and powerful in sev-
eral theories of quantum gravity. Among them, we men-
tion the spin foam formulation of loop quantum gravity
(LQG) [1], for which the time evolution transition ampli-
tude can be written using

Z =
X

�

w(�)
X

jf ,ie

Y

f

Af (jf )
Y

e

Ae(jf , ie)
Y

v

Av(jf , ie),

(1)
where the first sum is taken over all possible spin foam
complexes �, the products are taken over the faces f
associated to the spin representations jf , over the the
edges e associated to the intertwiners ie and over the
vortices v, w(�) are weight factors and Af (jf ), Ae(jf , ie)
and Av(jf , ie) are the amplitudes associated to f , e and
v. Every spin foam � = (�, jf , ie) may be seen as one
particular construction of space-time geometry. In the
framework of general relativity (GR), the geometry can
thus be described e.g. by means of spin foams as well
as by a metric functional gµ⌫ . We can thus find a corre-
spondence between (1) and the path integral formulation
in terms of gµ⌫ [2],

Z =

Z Y

µ⌫

Dgµ⌫ f(gµ⌫) e
iS , (2)

where, to preserve generality, f(gµ⌫) is a function of gµ⌫
to account for the distortion of the volume element by

⇤
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gµ⌫ , and S is the gravitational action. (1) and (2) both
are sums over geometries, and every spin foam recon-
struction of a geometry of GR translates to a functional
gµ⌫ .

A. Formulation with metric functional

Let us first look at expression (2) more closely. (2) can
be interpreted as a product of local partition functions
Zk, where every k refers to an infinitesimal 4-volume Vk

localised in space-time:

Z = lim
K!1

KY

k=1

Zk, Zk =

Z Y

µ⌫

dgµ⌫ f(gµ⌫) e
iS(Vk).

(3)
We can use, as a simple analogue of the expression Zk, the
thermodynamic system which exchanges energy E and is
in thermal equilibrium with a heat bath of temperature
T ,

Z =

Z
dE e�E/T . (4)

Exploiting the correspondence between (3) and (4), Vk

can be interpreted as an open statistical system in ther-
mal equilibrium with the surrounding 4-volumes, and the
latter are the thermal bath. The partition function Zk

discribes a canonical ensemble. In this sense, the path in-
tegral approach is a local thermal equilibrium description
of gravity. Comparing the exponents, we see that the ac-
tion S(Vk) ⇠

R
Vk

d4x
p
gR is the analogue of the entropy

(up to a constant imaginary factor and disregarding the
weighting factor f(gµ⌫) which is not relevant in the ex-
plicite example below). We also see that, roughly speak-
ing, gµ⌫ is the analogue of E . Therefore, if both changes



Non-Equilibrium Quantum Gravity 

Fourth Tux Workshop on Quantum Gravity, February 15-19, 2016 

2. Local Non-Equilibrium 
Formulation	



•  Formulation with metric:	


	



	

with constraints	


•  Canonical Gravity / Spin Foams:	


	



	

with constraints on                 . 	



P. Mandrin, University of Zurich 15 

3

B. Formulation with canonical gravity / spin foams

It shall be briefly outlined how we can repeat the above
argumentation using di↵erent parameters. For example,
canonical gravity has the advantage that we can inter-
pret the result in terms of a space-time weaves. Let us
consider again the thin soap bubble model, together with
its quantum description as a sum of spin foams �. The
spin foams in turn allow the construction of a space-time
manifold and one can reduce its structure back to the
above solution of Einstein’s Equations. We shall keep
the above coordinates (t, r, #, ').

We want to answer the question: Is there a discon-
tinuity across the shell at r = r0, for (at least one) ”ana-
logue” temperature of the spin foams? To obtain local
temperatures, we first need to partition the space-time
into volumes Vk which are compact and small compared
to the macroscopic geometric structure, but large enough
so that the numberNvk of vortices per domain Vk is large,
Nvk �

p
Nvk. The Vk in turn allow us to cut every spin

foam � into pieces �k = (�k, jf , ie). We can write
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In (11), the complexes of adjacent Vk are not chosen to
match at the junctions. Therefore, the total Z is not
exactly given by the product of local partition functions
Zk. Due to the large numbers Nvk however, the matching
error on Z is negligibly small. The ”action functional”
S(�k, jf , ie) is defined by analogy to (3) and it can there-
fore be reduced to the form of S(Vk). We assume that
the Hamiltonian constraint given by the shell is such that
the connection Ai does not lead to a di↵erence between
S
��
r0+

and S
��
r0�

. It thus su�ces to examine the local

analogue energies as a function of r. For our purpose, we
will not need to compute them explicitly.

The analogue energies can be read out from the pa-
rameters over which the sum runs in (11), i.e. from
�k, jf , ie. To obtain the energies coming from �k, con-
sider a change of �k: we insert a new edge delimited by
two new vortices, thus increasing the number of vortices.
Roughly speaking, the number of vortices constitutes an
analogue energy E�k . Every time we insert a new edge,
a new triangle is built by the edges, and one corner is
just an old vortex v. This happens in several possible
ways depending on how many edges meet on v. This
yields an ”energy” with several components (index l),
E l
�k

= Nvl , for Nvl corresponding vortices vl, associated

edges el and faces f l. The remaining analogue energies
are: E l

jk =
P

f l jf l , E l
ik =

P
el iel . Again, we start from

the classical solution of the thin soap bubble model. Be-
cause grr(r0+) 6= grr(r0�), the corresponding pieces of
spin foam �k must, in the weighted average (main con-
tributions around the saddle point), di↵er from one side
to the other of the shell by at least one macroscopic pa-
rameter, i.e. by at least one analogue energy. We can
also argue from the radial dependence of the Hamilto-
nian constraint which takes the form

H = A+B�(r � r0), (12)

where A and B depend on the kinematic variables. Inte-
grating Hamilton’s Equations with H satisfying (12) leads
to Er(r0+) 6= Er(r0�), where Er is the radial component
of the Ashtekar variable Ei in spherical coordinates, and
this implies that at least one of the analogue energies
must have a jump in its value. It follows that at least
one of the analogue temperatures associated to the ana-
logue energies must have a discontinuity accross the shell
at r = r0.

This result does not at all fit to the picture of a
canonical ensemble, and the use of a path integral does
not seem to make much sense in the example of the thin
soap bubble model (and for other space-time geometries
as well). If gravity is to be considered as a thermody-
namic system and path integrals as partition functions
integrated over space, this suggests that the path inte-
gral formalism is not general enough in order to describe
all the physically realistic states of quantum gravity.

II. (LOCALLY) NON-EQUILIBRIUM
FORMULATION OF QUANTUM GRAVITY

In order that gravity be formulated more generally, we
may consider a closed physical system under constraints.
In the case of classical gravity, the closed system is usu-
ally the full manifold of global space-time or, occasion-
ally, gravitationally isolated subsystems thereof. Con-
straints are given from known local gravitational data
(e.g. from measurments) or by symmetries of the geom-
etry.
To describe a closed physical system, we use the micro-

canonical ensemble. This can be obtained if we replace
the local partition function Zk by the constrained global
number of states ⌦,

⌦ = e�S , (13)

where S is the entropy and its values can be restricted by
constraint equations. In the formulation using the metric
functional gµ⌫ , this procedure leads to

⌦ = exp [i
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gR/h̄], (14)

and the constraint equations are in part symmetries of
space-time and in part of the form gµ⌫(x⇢) = Cµ⌫(x⇢) for
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canonical gravity has the advantage that we can inter-
pret the result in terms of a space-time weaves. Let us
consider again the thin soap bubble model, together with
its quantum description as a sum of spin foams �. The
spin foams in turn allow the construction of a space-time
manifold and one can reduce its structure back to the
above solution of Einstein’s Equations. We shall keep
the above coordinates (t, r, #, ').

We want to answer the question: Is there a discon-
tinuity across the shell at r = r0, for (at least one) ”ana-
logue” temperature of the spin foams? To obtain local
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. It thus su�ces to examine the local

analogue energies as a function of r. For our purpose, we
will not need to compute them explicitly.

The analogue energies can be read out from the pa-
rameters over which the sum runs in (11), i.e. from
�k, jf , ie. To obtain the energies coming from �k, con-
sider a change of �k: we insert a new edge delimited by
two new vortices, thus increasing the number of vortices.
Roughly speaking, the number of vortices constitutes an
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a new triangle is built by the edges, and one corner is
just an old vortex v. This happens in several possible
ways depending on how many edges meet on v. This
yields an ”energy” with several components (index l),
E l
�k

= Nvl , for Nvl corresponding vortices vl, associated

edges el and faces f l. The remaining analogue energies
are: E l

jk =
P

f l jf l , E l
ik =

P
el iel . Again, we start from

the classical solution of the thin soap bubble model. Be-
cause grr(r0+) 6= grr(r0�), the corresponding pieces of
spin foam �k must, in the weighted average (main con-
tributions around the saddle point), di↵er from one side
to the other of the shell by at least one macroscopic pa-
rameter, i.e. by at least one analogue energy. We can
also argue from the radial dependence of the Hamilto-
nian constraint which takes the form

H = A+B�(r � r0), (12)

where A and B depend on the kinematic variables. Inte-
grating Hamilton’s Equations with H satisfying (12) leads
to Er(r0+) 6= Er(r0�), where Er is the radial component
of the Ashtekar variable Ei in spherical coordinates, and
this implies that at least one of the analogue energies
must have a jump in its value. It follows that at least
one of the analogue temperatures associated to the ana-
logue energies must have a discontinuity accross the shell
at r = r0.

This result does not at all fit to the picture of a
canonical ensemble, and the use of a path integral does
not seem to make much sense in the example of the thin
soap bubble model (and for other space-time geometries
as well). If gravity is to be considered as a thermody-
namic system and path integrals as partition functions
integrated over space, this suggests that the path inte-
gral formalism is not general enough in order to describe
all the physically realistic states of quantum gravity.

II. (LOCALLY) NON-EQUILIBRIUM
FORMULATION OF QUANTUM GRAVITY

In order that gravity be formulated more generally, we
may consider a closed physical system under constraints.
In the case of classical gravity, the closed system is usu-
ally the full manifold of global space-time or, occasion-
ally, gravitationally isolated subsystems thereof. Con-
straints are given from known local gravitational data
(e.g. from measurments) or by symmetries of the geom-
etry.
To describe a closed physical system, we use the micro-

canonical ensemble. This can be obtained if we replace
the local partition function Zk by the constrained global
number of states ⌦,

⌦ = e�S , (13)

where S is the entropy and its values can be restricted by
constraint equations. In the formulation using the metric
functional gµ⌫ , this procedure leads to

⌦ = exp [i

Z
d4x

p
gR/h̄], (14)

and the constraint equations are in part symmetries of
space-time and in part of the form gµ⌫(x⇢) = Cµ⌫(x⇢) for
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a list or range of positions x⇢. In the spin foam formula-
tion, we have

⌦ = w(�)
Y

f

Af

Y

e

Ae

Y

v

Av, (15)

and the above constraints must be rewritten in terms of
the analogue energies of � = (�, jf , ie).

By maximising the expressions (14) and (15), respec-
tively, under the constraints, we obtain the saddle points
of the corresponding classical theories. From (14), we di-
rectly obtain Einstein’s Equations. However, for finitely
many ”atoms of space-time”, the probability for observ-
ing the evolution from one quantum state to the other
(e.g. from a spin network s(t1) to a spin network s(t2)) is
finite even if we depart from the saddle point. Therefore,
in the quantum description, we must take into account
many di↵erent possible macroscopic states rather than
the expectation values of transition amplitudes (which
would be weighted path integrals). The probabilities re-
sulting from ⌦ should be, at least in principle, measur-
able by means of a classical instrumentation. This is
the interpretation of the non-equilibrium formulation of
gravity.

III. RELATION TO AN APPROACH NOT
BASED ON DYNAMICS AND CONCLUSION

While the path integral formulation of gravity is equiv-
alent to the standard quantisation of classical gravity
(in terms of the action or in terms of the Hamiltonian
or Hamilton-Jacobi formalism), what type of ”quantum
model” do we obtain from the constrained microcanon-
ical formalism of Section II? We immediately see from
(14) and (15) that the microcanonical formalism only in-
volves the action which is analogous to the entropy of
the statistical picture. On the other hand the canoni-
cal formalism as formulated in (1) and (2) also involves
dynamical variables (the anaolgue energies), so that the
prior knowledge of the full classical dynamics is required
before formulating the quantum theory.

The lack of dynamical variables in the microcanoni-
cal formalism suggests that the microscopic description is

not fundamentally based on dynamics. We can verify this
idea by considering closed 4d-manifolds as macroscopic
parameterisations of a partitioned set of elementary (pri-
mary) non-interacting quantum objects and computing
the probabilities of coarse-grained partitions into sys-
tems which are in turn made of fine-grained partitions,
supplemented by an ordering-structure. This model has
been described in [3] where it is called a ”non-dynamical
approach” to quantum gravity (NDA). From the same
reference, (14) can be obtained under the restriction of
vanishing torsion. Furthermore, it has been shown in
[4] that NDA yields classical equations of the same form
as Einstein’s Equations in the limits of currently mea-
surable curvature, and the path integral formulation of
quantum field theory in the flat space approximation.
This means that the local non-equilibrium formulation
of gravity is compatible with our current knowledge from
well-established physical theories.

The above use of the microcanonical ensemble looks
quite similar to black hole thermodynamics via the con-
cepts of black hole entropy [5] and temperature [6]. How-
ever, the similarity is only superficial as the black hole
is treated as an isolated system in exact thermal equi-
librium, in contrast to the non-equilibrium formulation
with constraints. The black hole is merely a special case
of our model and is obtained by dropping the constraints.

Finally, we can put the local non-equilibrium for-
mulation of gravity (or equivalently NDA) into relation
with approaches other than the one in terms of gµ⌫ and
the spin foam formulation. Most of the quantum grav-
ity theories are based on dynamical assumptions prior to
quantisation (including e.g. string theory, causal sets or
also thermodynamical models using quasi-local concepts
[7][8][9]). In general, such theories assume some form of
network of linked elementary objects for which a statis-
tical description can be given and thus a path integral
formulation can be found. The idea of non-equilibrium
gravity can therefore be applied in a much more general
way, for many di↵erent approaches to quantum gravity.
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where A and B are constants, G

µn

is computed starting from
g

µn

using the formula for the Einstein tensor and B leaves
the possibility for a cosmological constant L . With (24), GR
has been shown to be dual to the non-dynamical approach
for d = 3, A and B appropriately given by GR, without tor-
sion and up to the observationally relevant second order in
the dimension of the derivatives of g

µn

.

Because the gravitational space and the non-dynamical pa-
rameter space are dual to each other, we also expect the µ-
term to be dual to the gravitational stress (or matter term).
Let us recall that µ has two contributions. While µ

odc

is
given by arbitrary local measurements and are not bound to
space-time symmetries, µ

psc

is given by and satisfies space-
time symmetries (as far as they are consistent with µ

odc

).
For example, suppose that r has been experimentally de-
termined at four space-time locations and fits a spherically
symmetric, ”static” parameterisation. Then, the extremisa-
tion condition (14) tells us that µ

psc

satisfies the symme-
tries of this parameterisation, namely one translation and
two rotation symmetries. This feature is similar to the sym-
metry properties known for the QFT Lagrangian L

m

of mat-
ter wave functions on a corresponding gravitational back-
ground. This fact suggests us to define ”dual field functions”
y

l

(xk) in analogy to the wave functions in QFT. In the flat
space-time approximation of QFT, the free Lagrangian of
one particle species is quadratic in the amplitude of the wave
function, i.e. L

m

⇠ |y|2. By analogy, we can introduce dual
wave functions y

l

on which µ

psc

depends so that µ

psc

⇠
|y

l

|2.

6 Quantum measurements, quantum gravity and QFT

From the condition dS

c

= 0, one can obtain the statistical
expectation values of r and µ corresponding to the macro-
scopic state of highest probability. However, for a finite sam-
ple, the observed values may be somewhat different from the
expectation values because the macroscopic state can differ
somewhat from the one with the highest probability. These
differences can be interpreted as quantum fluctuations (cor-
responding to quantum gravity effects). In order to probe
such fluctuations, we can think of quantum detectors. Quan-
tum mechanical information (e.g. a particle) is emitted by an
emitter E and detected by a detector D1 or D2 . . ., see figure
6 for two detectors. For simplicity, we assume that one de-
tector fires. Because each detector D

i

is a macroscopic sys-
tem, its number N

i

of quanta is very large, ideally N

i

! •.
We thus may maximise S

c

under the constraint of an event
on one of the n

D

detector systems S
D1,SD2, . . . ,SDn

D

.

The question one can ask is: What is the probability that the
quantum information is detected by D1 rather than any other
Dk (k 6= 1)? The answer is given by the constrained numbers

E

D1

D2

Fig. 6 Quantum emitter and detectors

of possible states, W(E|Dk) for ”emitted in E and detected
in Dk”:

p(E ! D1) =
W(E|D1)

Ân

D

k=1 W(E|Dk)
, (25)

W(E|Dk) = e
(iS

c

��
E|Dk

)
=

exp[i(S
��
E|Dk

+
Z

M
dd+1

x

p
�g µ

E|Dk

)]. (26)

In order to evaluate (25), we need to solve dS

c

��
E|Dk

= 0.
This is a potentially very large set of coupled inhomoge-
neous nonlinear differential equations involving S[eD

µ

,w
µDG

]
and

p
�g.

We may now compare NDA with a path integral approach
to quantum gravity. To do this, we consider a special case.
We divide the (d +1)-parameterisation space into small (in-
finitesimal) volumes V and consider the approximation of
thermal equilibrium for V (V exchanges heat with a thermal
bath which is its neighbourhood). Therefore, we must re-
place the (microcanonical) number of states W by the (canon-
ical) partition function

Z(V,T )⇡
Z
[’
G ,g

de

G

g

] [ ’
µ,DL

dw

µDL

] ei[E(V )/T+S

m

(V )]

⇡
Z
[’
G ,g

de

G

g

] [ ’
µ,DL

dw

µDL

] eiS
c

(V,T ), (27)

where S

m

(V ) =
R

V

dd+1
x µ . In the last line, the approxima-

tion E(V )⇡ (dE/dS)
��
S=0S(V ) has been used and holds be-

cause V is infinitesimal. We obtain the total entropy by inte-
grating (27) over the space. Any volume correction factors
may be absorbed into new variables ẽ

G

g

and w̃

µDL

, which
yields:

Ztot =
Z
[’
G ,g

D ẽ

G

g

] [ ’
µ,DL

Dw̃

µDL

] eiS
c . (28)

This equation has the form of a path integral expression for
quantum gravity with torsion. Therefore, the path integral
formulation corresponds to a local thermal equilibrium ap-
proximation of NDA. However, this is only an approxima-
tion of NDA and does not account for (possibly many) pa-
rameter space solutions with locally unbounded behaviour
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a list or range of positions x⇢. In the spin foam formula-
tion, we have
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and the above constraints must be rewritten in terms of
the analogue energies of � = (�, jf , ie).

By maximising the expressions (14) and (15), respec-
tively, under the constraints, we obtain the saddle points
of the corresponding classical theories. From (14), we di-
rectly obtain Einstein’s Equations. However, for finitely
many ”atoms of space-time”, the probability for observ-
ing the evolution from one quantum state to the other
(e.g. from a spin network s(t1) to a spin network s(t2)) is
finite even if we depart from the saddle point. Therefore,
in the quantum description, we must take into account
many di↵erent possible macroscopic states rather than
the expectation values of transition amplitudes (which
would be weighted path integrals). The probabilities re-
sulting from ⌦ should be, at least in principle, measur-
able by means of a classical instrumentation. This is
the interpretation of the non-equilibrium formulation of
gravity.

III. RELATION TO AN APPROACH NOT
BASED ON DYNAMICS AND CONCLUSION

While the path integral formulation of gravity is equiv-
alent to the standard quantisation of classical gravity
(in terms of the action or in terms of the Hamiltonian
or Hamilton-Jacobi formalism), what type of ”quantum
model” do we obtain from the constrained microcanon-
ical formalism of Section II? We immediately see from
(14) and (15) that the microcanonical formalism only in-
volves the action which is analogous to the entropy of
the statistical picture. On the other hand the canoni-
cal formalism as formulated in (1) and (2) also involves
dynamical variables (the anaolgue energies), so that the
prior knowledge of the full classical dynamics is required
before formulating the quantum theory.

The lack of dynamical variables in the microcanoni-
cal formalism suggests that the microscopic description is

not fundamentally based on dynamics. We can verify this
idea by considering closed 4d-manifolds as macroscopic
parameterisations of a partitioned set of elementary (pri-
mary) non-interacting quantum objects and computing
the probabilities of coarse-grained partitions into sys-
tems which are in turn made of fine-grained partitions,
supplemented by an ordering-structure. This model has
been described in [3] where it is called a ”non-dynamical
approach” to quantum gravity (NDA). From the same
reference, (14) can be obtained under the restriction of
vanishing torsion. Furthermore, it has been shown in
[4] that NDA yields classical equations of the same form
as Einstein’s Equations in the limits of currently mea-
surable curvature, and the path integral formulation of
quantum field theory in the flat space approximation.
This means that the local non-equilibrium formulation
of gravity is compatible with our current knowledge from
well-established physical theories.

The above use of the microcanonical ensemble looks
quite similar to black hole thermodynamics via the con-
cepts of black hole entropy [5] and temperature [6]. How-
ever, the similarity is only superficial as the black hole
is treated as an isolated system in exact thermal equi-
librium, in contrast to the non-equilibrium formulation
with constraints. The black hole is merely a special case
of our model and is obtained by dropping the constraints.

Finally, we can put the local non-equilibrium for-
mulation of gravity (or equivalently NDA) into relation
with approaches other than the one in terms of gµ⌫ and
the spin foam formulation. Most of the quantum grav-
ity theories are based on dynamical assumptions prior to
quantisation (including e.g. string theory, causal sets or
also thermodynamical models using quasi-local concepts
[7][8][9]). In general, such theories assume some form of
network of linked elementary objects for which a statis-
tical description can be given and thus a path integral
formulation can be found. The idea of non-equilibrium
gravity can therefore be applied in a much more general
way, for many di↵erent approaches to quantum gravity.

ACKNOWLEDGMENTS

I would like to thank Gino Isidori for fruitful discus-
sions and Philippe Jetzer for hospitality at University of
Zurich.

[1] J. Engle, E. Livine, R. Pereira, C. Rovelli, Nucl. Phys. B
799 (2008) 136.

[2] H. W. Hamber, The Feynman path integral approach,
Springer, Berlin - Heidelberg (2009).

[3] P. A. Mandrin, physics.gen-ph/1601.04534 (2016).
[4] P. A. Mandrin, gr-qc/1505.03719 (2015).

[5] J. D. Bekenstein, Phys. Rev. D 7 (1973) 2333–2346.
[6] S. W. Hawking, Commun. math. Phys. 43 (1975) 199–220.
[7] J. D. Brown, J. W. York, gr-qc/9209014 (1992).
[8] J. D. Brown, J. W. York, Phys. Rev. D 47 (1993) 1407–

1419.
[9] J. D. E. Creighton, R. B. Mann, Phys. Rev. D 52 (1995)

4569–4587.

A non-equilibrium extension of quantum gravity

Pierre A. Mandrin⇤

Department of Physics, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, CH
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A variety of quantum gravity models (including spin foams) can be described using a path integral
formulation. A path integral has a well-known statistical mechanical interpretation in connection
with a canonical ensemble. In this sense, a path integral describes the thermodynamic equilibrium
of a local system in a thermal bath. This interpretation is in contrast to solutions of Einstein’s
Equations which depart from local thermodynamical equilibrium (one example is shown explicitly).
For this reason, we examine an extension of the path integral model to a (locally) non-equilibrium
description. As a non-equilibrium description, we propose to use a global microcanonical ensemble
with constraints. The constraints reduce the set of admissible microscopic states to be consistent
with the macroscopic geometry. We also analyse the relation between the microcanonical description
and a statistical approach not based on dynamical assumptions which has been proposed recently.
This analysis is of interest for the test of consistency of the non-equilibrium description with general
relativity and quantum field theory.
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I. IS THERE A LIMITED VALIDITY OF THE
PATH INTEGRAL FORMALISM?

The path integral method has been applied with great
success to quantum field theory (QFT) and also has
proven to be particularly suitable and powerful in sev-
eral theories of quantum gravity. Among them, we men-
tion the spin foam formulation of loop quantum gravity
(LQG) [1], for which the time evolution transition ampli-
tude can be written using

Z =
X

�

w(�)
X

jf ,ie

Y

f

Af (jf )
Y

e

Ae(jf , ie)
Y

v

Av(jf , ie),

(1)
where the first sum is taken over all possible spin foam
complexes �, the products are taken over the faces f
associated to the spin representations jf , over the the
edges e associated to the intertwiners ie and over the
vortices v, w(�) are weight factors and Af (jf ), Ae(jf , ie)
and Av(jf , ie) are the amplitudes associated to f , e and
v. Every spin foam � = (�, jf , ie) may be seen as one
particular construction of space-time geometry. In the
framework of general relativity (GR), the geometry can
thus be described e.g. by means of spin foams as well
as by a metric functional gµ⌫ . We can thus find a corre-
spondence between (1) and the path integral formulation
in terms of gµ⌫ [2],

Z =

Z Y

µ⌫

Dgµ⌫ f(gµ⌫) e
iS , (2)

where, to preserve generality, f(gµ⌫) is a function of gµ⌫
to account for the distortion of the volume element by

⇤
pierre.mandrin@uzh.ch

gµ⌫ , and S is the gravitational action. (1) and (2) both
are sums over geometries, and every spin foam recon-
struction of a geometry of GR translates to a functional
gµ⌫ .

A. Formulation with metric functional

Let us first look at expression (2) more closely. (2) can
be interpreted as a product of local partition functions
Zk, where every k refers to an infinitesimal 4-volume Vk

localised in space-time:

Z = lim
K!1

KY

k=1

Zk, Zk =

Z Y

µ⌫

dgµ⌫ f(gµ⌫) e
iS(Vk).

(3)
We can use, as a simple analogue of the expression Zk, the
thermodynamic system which exchanges energy E and is
in thermal equilibrium with a heat bath of temperature
T ,

Z =

Z
dE e�E/T . (4)

Exploiting the correspondence between (3) and (4), Vk

can be interpreted as an open statistical system in ther-
mal equilibrium with the surrounding 4-volumes, and the
latter are the thermal bath. The partition function Zk

discribes a canonical ensemble. In this sense, the path in-
tegral approach is a local thermal equilibrium description
of gravity. Comparing the exponents, we see that the ac-
tion S(Vk) ⇠

R
Vk

d4x
p
gR is the analogue of the entropy

(up to a constant imaginary factor and disregarding the
weighting factor f(gµ⌫) which is not relevant in the ex-
plicite example below). We also see that, roughly speak-
ing, gµ⌫ is the analogue of E . Therefore, if both changes
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I. IS THERE A LIMITED VALIDITY OF THE
PATH INTEGRAL FORMALISM?

The path integral method has been applied with great
success to quantum field theory (QFT) and also has
proven to be particularly suitable and powerful in sev-
eral theories of quantum gravity. Among them, we men-
tion the spin foam formulation of loop quantum gravity
(LQG) [1], for which the time evolution transition ampli-
tude can be written using

Z =
X

�

w(�)
X

jf ,ie

Y

f

Af (jf )
Y

e

Ae(jf , ie)
Y

v

Av(jf , ie),

(1)
where the first sum is taken over all possible spin foam
complexes �, the products are taken over the faces f
associated to the spin representations jf , over the the
edges e associated to the intertwiners ie and over the
vortices v, w(�) are weight factors and Af (jf ), Ae(jf , ie)
and Av(jf , ie) are the amplitudes associated to f , e and
v. Every spin foam � = (�, jf , ie) may be seen as one
particular construction of space-time geometry. In the
framework of general relativity (GR), the geometry can
thus be described e.g. by means of spin foams as well
as by a metric functional gµ⌫ . We can thus find a corre-
spondence between (1) and the path integral formulation
in terms of gµ⌫ [2],

Z =

Z Y

µ⌫

Dgµ⌫ f(gµ⌫) e
iS , (2)

where, to preserve generality, f(gµ⌫) is a function of gµ⌫
to account for the distortion of the volume element by
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gµ⌫ , and S is the gravitational action. (1) and (2) both
are sums over geometries, and every spin foam recon-
struction of a geometry of GR translates to a functional
gµ⌫ .

A. Formulation with metric functional

Let us first look at expression (2) more closely. (2) can
be interpreted as a product of local partition functions
Zk, where every k refers to an infinitesimal 4-volume Vk

localised in space-time:

Z = lim
K!1

KY

k=1

Zk, Zk =

Z Y

µ⌫

dgµ⌫ f(gµ⌫) e
iS(Vk).

(3)
We can use, as a simple analogue of the expression Zk, the
thermodynamic system which exchanges energy E and is
in thermal equilibrium with a heat bath of temperature
T ,

Z =

Z
dE e�E/T . (4)

Exploiting the correspondence between (3) and (4), Vk

can be interpreted as an open statistical system in ther-
mal equilibrium with the surrounding 4-volumes, and the
latter are the thermal bath. The partition function Zk

discribes a canonical ensemble. In this sense, the path in-
tegral approach is a local thermal equilibrium description
of gravity. Comparing the exponents, we see that the ac-
tion S(Vk) ⇠

R
Vk

d4x
p
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plicite example below). We also see that, roughly speak-
ing, gµ⌫ is the analogue of E . Therefore, if both changes
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B. Formulation with canonical gravity / spin foams

It shall be briefly outlined how we can repeat the above
argumentation using di↵erent parameters. For example,
canonical gravity has the advantage that we can inter-
pret the result in terms of a space-time weaves. Let us
consider again the thin soap bubble model, together with
its quantum description as a sum of spin foams �. The
spin foams in turn allow the construction of a space-time
manifold and one can reduce its structure back to the
above solution of Einstein’s Equations. We shall keep
the above coordinates (t, r, #, ').

We want to answer the question: Is there a discon-
tinuity across the shell at r = r0, for (at least one) ”ana-
logue” temperature of the spin foams? To obtain local
temperatures, we first need to partition the space-time
into volumes Vk which are compact and small compared
to the macroscopic geometric structure, but large enough
so that the numberNvk of vortices per domain Vk is large,
Nvk �

p
Nvk. The Vk in turn allow us to cut every spin

foam � into pieces �k = (�k, jf , ie). We can write

Z ⇡ lim
K!1

KY

k=1

Zk,

Zk =
X

�k

w(�k)
X

jf ,ie

Y

f

Af

Y

e

Ae

Y

v

Av

=
X

�k,jf ,ie

eiS(�k,jf ,ie). (11)

In (11), the complexes of adjacent Vk are not chosen to
match at the junctions. Therefore, the total Z is not
exactly given by the product of local partition functions
Zk. Due to the large numbers Nvk however, the matching
error on Z is negligibly small. The ”action functional”
S(�k, jf , ie) is defined by analogy to (3) and it can there-
fore be reduced to the form of S(Vk). We assume that
the Hamiltonian constraint given by the shell is such that
the connection Ai does not lead to a di↵erence between
S
��
r0+

and S
��
r0�

. It thus su�ces to examine the local

analogue energies as a function of r. For our purpose, we
will not need to compute them explicitly.

The analogue energies can be read out from the pa-
rameters over which the sum runs in (11), i.e. from
�k, jf , ie. To obtain the energies coming from �k, con-
sider a change of �k: we insert a new edge delimited by
two new vortices, thus increasing the number of vortices.
Roughly speaking, the number of vortices constitutes an
analogue energy E�k . Every time we insert a new edge,
a new triangle is built by the edges, and one corner is
just an old vortex v. This happens in several possible
ways depending on how many edges meet on v. This
yields an ”energy” with several components (index l),
E l
�k

= Nvl , for Nvl corresponding vortices vl, associated

edges el and faces f l. The remaining analogue energies
are: E l

jk =
P

f l jf l , E l
ik =

P
el iel . Again, we start from

the classical solution of the thin soap bubble model. Be-
cause grr(r0+) 6= grr(r0�), the corresponding pieces of
spin foam �k must, in the weighted average (main con-
tributions around the saddle point), di↵er from one side
to the other of the shell by at least one macroscopic pa-
rameter, i.e. by at least one analogue energy. We can
also argue from the radial dependence of the Hamilto-
nian constraint which takes the form

H = A+B�(r � r0), (12)

where A and B depend on the kinematic variables. Inte-
grating Hamilton’s Equations with H satisfying (12) leads
to Er(r0+) 6= Er(r0�), where Er is the radial component
of the Ashtekar variable Ei in spherical coordinates, and
this implies that at least one of the analogue energies
must have a jump in its value. It follows that at least
one of the analogue temperatures associated to the ana-
logue energies must have a discontinuity accross the shell
at r = r0.

This result does not at all fit to the picture of a
canonical ensemble, and the use of a path integral does
not seem to make much sense in the example of the thin
soap bubble model (and for other space-time geometries
as well). If gravity is to be considered as a thermody-
namic system and path integrals as partition functions
integrated over space, this suggests that the path inte-
gral formalism is not general enough in order to describe
all the physically realistic states of quantum gravity.

II. (LOCALLY) NON-EQUILIBRIUM
FORMULATION OF QUANTUM GRAVITY

In order that gravity be formulated more generally, we
may consider a closed physical system under constraints.
In the case of classical gravity, the closed system is usu-
ally the full manifold of global space-time or, occasion-
ally, gravitationally isolated subsystems thereof. Con-
straints are given from known local gravitational data
(e.g. from measurments) or by symmetries of the geom-
etry.
To describe a closed physical system, we use the micro-

canonical ensemble. This can be obtained if we replace
the local partition function Zk by the constrained global
number of states ⌦,

⌦ = e�S , (13)

where S is the entropy and its values can be restricted by
constraint equations. In the formulation using the metric
functional gµ⌫ , this procedure leads to

⌦ = exp [i

Z
d4x

p
gR/h̄], (14)

and the constraint equations are in part symmetries of
space-time and in part of the form gµ⌫(x⇢) = Cµ⌫(x⇢) for
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•  System S has N primary quanta, N >> N1/2	


•  Partition P = ({Sj};<:) with ordering <:	
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•  Each Box has max. p-1 quanta	


	

p-1≥1  (but not much greater than 1)	



•  Entropy Sj = ln(Ω(Sj1,Sj2,...))  [Nj >> Nj
1/2]	



•  Define Tj = dEj / dSj          [Ej = (ln p) Nj]	
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•                                             [if Sj has mj coverings]	



•  Macro-State with Highest Probability has 	


	

mj = d = independent of j  [d: dimension] 	
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Despite considerable progress in several approaches to quantum gravity, there remain
uncertainties on the conceptual level. One issue concerns the di↵erent roles played by
space and time in the canonical quantum formalism. This issue occurs because the
Hamilton-Jacobi dynamics is being quantised. The question then arises whether addi-
tional physically relevant states could exist which cannot be represented in the canonical
form or as a partition function. For this reason, the author has explored a statistical
approach (NDA) which is not based on quantum dynamical assumptions and does not
require space-time splitting boundary conditions either. For dimension 3+1 and under
thermal equilibrium, NDA simplifies to a path integral model. However, the general
case of NDA cannot be written as a partition function. As a test of NDA, one recov-
ers general relativity at low curvature and quantum field theory in the flat space-time
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1. The second law of thermodynamics

(x

k

j

) 2 V

j

⇠ Rmj
(1)

The partition with the highest probability corresponds to the macroscopic state

we mostly expect to observe. Thus, we maximise the entropy S =

P
j

S

j

of S under

constraints, using Lagrange multipliers. Because P is chosen as fine as possible and

every path can be closed, the sum can be converted to a closed integral over the

domain T = x(S) and then maximised:

�S

c

= �

I

T
d

d

x [s(x

k

) +

mcX

l=1

�

l

(x

k

) ⇣

l

(x

k

)] = 0 (2)

e

i
H
T dd

xL( s+
Pmc

l=1

�l⇣l )
= max (3)

2. Quantum formalism

Typically, one wants to compute the probability of detecting a quantum process P1

rather than any of the alternative processes P2 . . . Pn

D

. For any Pk, k = 1 . . . n

D

,

we first compute the macroscopic state with the largest number ⌦

Pk

of microstates

under the constraint µ

Pk

by evaluating �S

c

= 0. Then, the probability for P1 is

p(P1) =

⌦

P1P
nD

k=1 ⌦Pk

. (4)

3. Relation to Non-Dynamical 
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•  Maximise the Entropy	


•  Convert Sum to integral           	


•  Add mc constraints        with Lagrange 

multipliers        [symmetries + observations]	
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description at all and thus no straight-forward formulation.

2. Partitioning of primary quanta

Consider a system S (a set) containing a large number N �
p
N of objects called

primary quanta. To inspect part of S, we partition S into n subsystems S
i

con-
taining N

i

quanta, i = 1 . . . n. Together with an arbitrary ordering (with relations
S
j

<: S
k

), we obtain an (ordered) partitioning P = ({S
i

};<:).
Define coarse-grained partitions P with n subsystems and N

j

�
p
N

j

, j =
1 . . . n, such that each S

j

contains subsystems Sb

j1 . . .Sb

jqj
as members of very fine

partitions Pb with q

j

= n

b

/n � 2 and n

b fixed, and call the Sb

jl

boxes. Then, the
partition P with the largest number ⌦ of possible fine partitions Pb is the one with
the highest probability to occur, while other partitions are suppressed. We choose
P fine enough in order to resolve any relevant constraints on the subsystems of S
(e.g. due to observational data). To make ⌦ finite, we must impose a constant
p � 1 � 1 but not much greater than 1 before the computations and restrict the
population of each box by setting N

b

i

 p� 1. The entropy S

j

of each S
j

is

S

j

= ln⌦
j

= n

j

ln p =
E

j

T

j

, (1)

where E

j

= ln p ·N
j

and the ”temperature” T

j

is defined by T

j

= Ej

Sj
. A system is

in thermal equilibrium if the temperatures of all its statistically large subsystems
are equal. In general however, a system is not in thermal equilibrium if constraints
are imposed on its subsystems, because the constraints remove part of the possible
macroscopic states of the system.

We now parameterise the coarse-grained subsystems S
j

by assigning to each one
a set of numbers (xk

j

). It is convenient to increment the kth component xk

j

for the
kth covering of S

j

. Then, (xk

j

) can be seen as an element of a local vector space
V

i

isomorphic to R

mj if S
j

has m
j

coverings. For the partition P with the highest
probability, it can be shown that all values m

j

must be equal, m
i

= d = constant,
and d is called the dimension. One can also show that every path along arbitrary
coverings is closed after a finite sequence of coverings.

3. The second law of thermodynamics

The partition with the highest probability corresponds to the macroscopic state we
mostly expect to observe. Thus, we maximise the entropy S =

P
j

S

j

of S under
constraints, using Lagrange multipliers. Because P is chosen as fine as possible and
every path can be closed, the sum can be converted to a closed integral over the
domain T = x(S) and then maximised:

�S

c

= �

I

T
ddx [s(xk) +

mcX

l=1

�

l

(xk) ⇣
l

(xk)] = 0 (2)
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j

�
p
N

j

, j =
1 . . . n, such that each S

j

contains subsystems Sb

j1 . . .Sb

jqj
as members of very fine

partitions Pb with q

j

= n

b

/n � 2 and n

b fixed, and call the Sb

jl

boxes. Then, the
partition P with the largest number ⌦ of possible fine partitions Pb is the one with
the highest probability to occur, while other partitions are suppressed. We choose
P fine enough in order to resolve any relevant constraints on the subsystems of S
(e.g. due to observational data). To make ⌦ finite, we must impose a constant
p � 1 � 1 but not much greater than 1 before the computations and restrict the
population of each box by setting N

b

i

 p� 1. The entropy S

j

of each S
j

is

S

j

= ln⌦
j

= n

j

ln p =
E

j

T

j

, (1)

where E

j

= ln p ·N
j

and the ”temperature” T

j

is defined by T

j

= Ej

Sj
. A system is

in thermal equilibrium if the temperatures of all its statistically large subsystems
are equal. In general however, a system is not in thermal equilibrium if constraints
are imposed on its subsystems, because the constraints remove part of the possible
macroscopic states of the system.

We now parameterise the coarse-grained subsystems S
j

by assigning to each one
a set of numbers (xk

j

). It is convenient to increment the kth component xk

j

for the
kth covering of S

j

. Then, (xk

j

) can be seen as an element of a local vector space
V

i

isomorphic to R

mj if S
j

has m
j

coverings. For the partition P with the highest
probability, it can be shown that all values m

j

must be equal, m
i

= d = constant,
and d is called the dimension. One can also show that every path along arbitrary
coverings is closed after a finite sequence of coverings.

3. The second law of thermodynamics

The partition with the highest probability corresponds to the macroscopic state we
mostly expect to observe. Thus, we maximise the entropy S =

P
j

S

j

of S under
constraints, using Lagrange multipliers. Because P is chosen as fine as possible and
every path can be closed, the sum can be converted to a closed integral over the
domain T = x(S) and then maximised:

�S

c

= �

I

T
ddx [s(xk) +

mcX

l=1

�

l

(xk) ⇣
l

(xk)] = 0 (2)

3. Relation to Non-Dynamical 
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c

Lagrange multiplier ”functions” �
l

(xk) = �

q

and
constraint functions ⇣

l

(xk) defined by

�

q

(g
q

� c

q

) =

Z
x(S0

j(q))

ddx �

l

(xk) ⇣
l

(xk),

MX
q=1

�

q

(g
q

� c

q

) =
mcX
l=1

I
T
ddx �

l

(xk) ⇣
l

(xk). (6)

The closed integral in (5,6) arises because all paths can be
closed, and thus the integral may also be interpreted as
a boundary integral. Therefore, the range of integration
must have either a periodicity or a periodic identification
of end points. On the other hand, xk is arbitrary, i.e.
x

k is not required to satisfy any periodicity conditions
at all. This is unsatisfactory if xk is taken to be real.
Conversely, we can substitute ddx = iddx

L

in the inte-
gral expression to obtain S

c

= i
H
ddx

L

[. . .] = iS
cL

and,
therefore, ⌦ = exp[iS

cL

] exhibits a periodic identification
of points modulo 2⇡. This transformation is nothing else
than a ”Wick rotation”. If we can find a foliation of hy-
persurfaces x

d

L

= constant so that x

d = ixd

L

, then x

d

L

is
analogous to the time component of space-time. xd = x

d

E

has Euclidean, xk

L

has Lorentzian-like ”signature”.
The analytical properties of the x

k-dependent func-
tions depend on the type of parameterisation we ap-
ply. The observational constraints could imply singular
points. In the present article, however, we shall only con-
sider well-behaved parameterisations and constraints, i.e.
the integrands s(xk) and �

l

(xk) ⇣
l

(xk) are smooth func-
tions of xk after maximisation of S

c

(�S
c

= 0). Therefore,
we can apply the tools of di↵erential geometry.

Because T may be interpreted as a boundary, it is
possible to apply Gauss’ law on (5). To this end, it
is useful to substitute the freely variable parameterisa-
tion x

k by one fixed choice x̄

k. We interpret ddx̄ as the
volume form: it is not a↵ected by a change of the pa-
rameterisation x

k. By contrast, the factors ddx and s

change whenever we perform a coordinate transforma-
tion x

k ! x

0k. In order for s to remain smooth after
this transformation, @x̄j

/@x

k itself must be smooth. It
even must be a di↵eomorphism in order to be invert-
ible. We must require the transformations x

k ! x

0k to
be invertible so that we do not loose information under
the back-transformation. The entropy does not change
under a transformation and is thus di↵eomorphism in-
variant. Let us use the simplest fixed parameterisation,
which is the cartesian, (x̄K) 2 R

d, K = 1 . . . d. Intro-
ducing the vielbeins eK

k

= @x̄

K

/@x

k and the (Euclidean)
metric �

kl

= e

K

k

⌘

KL

e

L

l

with determinant � yields

�

H
T ddx̄[��1/2

s + �

�1/2

mcX
l=1

�

l

⇣

l

] =

�

H
T ddx

p
� [��1/2

s+
mcX
l=1

�

l

⇠

l

] = 0, (7)

where ⇠

l

(xk) = �

�1/2

⇣

l

(xk). Due to the parameterisa-
tion, the variation also includes the vielbeins and func-
tions thereof. We do not only distribute the quanta ran-
domly among the boxes, but also with respect to x

k.
Because the parameterisation is arbitrary, � = �

�1/2

s

transforms as �

0(x0k) = �(xk) under translations x

0k =
x

k + a

k and does not explicitly depend on x

k. Define

⌧

k

K

= �

�1/2

s �

kl

e

L

l

⌘

LK

,  =
mcX
l=1

�

l

⇠

l

. (8)

(7) can then be expressed shortly as

�

I
T
ddx

p
� [⌧k

K

e

K

k

+ ] = 0. (9)

If T is orientable, (9) can be converted into an inte-
gral over a (d + 1)-dimensional volume M with bound-
ary @M = T . To construct M, each boundary el-
ement is supplemented by an (outward) unit vector
(n�) = (0, . . . , 0, 1) normal to the local space V (xk). The
boundary element can then be written as d�

�

= n

�

ddx.
The integrand of (9) must be converted into a (d + 1)-
dimensional vector with extended notation ⌧

k

K

e

K

k

=

⌧

k�

K

e

K

k

n

�

and  = 

�

n

�

(up to a new gauge freedom
due to the index �). We then extend the embedding of
T to the bulk M as a smooth manifold with extended
cartesian fixed parameters x̄

µ and not yet determined
vielbeins e

�

�

, metric g

µ⌫

(determinant g) and possibly
torsion. With this trick, we can apply Gauss’ theorem:I

T
ddx n

�

p
� [⌧k�

K

e

K

k

+ 

� ] =Z
M

dd+1

x

p
g [r

�

(⌧ ��
�

e

�

�

) +r
�



� ], (10)

If T fails to be orientable, there are closed paths � :
t 2 [0, 1] ! x

k

t

2 T along which the initial (positive)
orientation is flipped, det[d{xj

t!1

(xk

0

)}] = �1. A spe-
cial coordinate basis is x

1

t

= t, x2

1

= �x

2

0

, xk>2

1

= x

k

0

.
Around �, T looks like a moebus-strip of dimension d,
it has non-vanishing torsion. However, S =

P
i

S

i

has
the same value as for the untwisted space T̃ obtained
from T by setting x

2

1

= +x

2

0

. The presence of constraints
reduces the number of microstates and thus the ”net en-
tropy”, S ! S

c

. Thus, S̃
c

(T̃ ) = S

c

(T ) and S

c

is also left
unchanged. Because T̃ is orientable, Gauss’ theorem ap-
plies. Thus, we only need to replacer

�

by the torsionless
covariant derivative r̃

�

in (10). Let us finally perform
the Wick-rotation x

µ ! x

µ

L

and drop the index L in what
follows. The first term of (10) can be expanded:

⇢ = r̃
�

(⌧ ��
�

e

�

�

) = �

�

µ

r̃
�

(⌧µ�
⇤

e

⇤

�

)

= g

µ⌫

g

⌫�r̃
�

(⌧µ�
⇤

e

⇤

�

)

= e

�

µ

⌘

��

e

�

⌫

g

⌫�r̃
�

(⌧µ�
⇤

e

⇤

�

)

= e

�

µ

e

�

⌫

�µ⌫

��

, (11)
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has Euclidean, xk
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The analytical properties of the x

k-dependent func-
tions depend on the type of parameterisation we ap-
ply. The observational constraints could imply singular
points. In the present article, however, we shall only con-
sider well-behaved parameterisations and constraints, i.e.
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(xk) are smooth func-
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k by one fixed choice x̄

k. We interpret ddx̄ as the
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Field Equations	
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with entropy density s(xk), m
c

constraint functions ⇣
l

(xk) and Lagrange multiplier
functions �

l

(xk). The closed integral may be interpreted as a boundary integral.
For this reason, there must be a periodic identification of points which we encode
by substituting ddx = iddx

L

in (2) (Wick rotation). x

d = x

d

E

are Euclidean, xk

L

Lorentzian-like parameters (we shall often ommit the subscripts).
We shall consider here smooth functions s(xk), �

l

(xk)⇣
l

(xk) and postpone the
more general case with badly discontinuous or singular points to a later study. This
allows the tools of di↵erential geometry to be used.

One can apply Gauss’ law to (2). Non-orientable boundaries can be replaced by
orientable boundaries without changing S

c

, and thus Gauss’ law can be extended.
Furthermore, s can be shown to be di↵eomorphism invariant if the parameter trans-
formations are invertible. We thus can define the d-dimensional vielbeins e

L

l

, the
metric �

kl

, the (d + 1)-dimensional vielbeins e

�
�

and the metric g

µ⌫

8. Let us de-

fine ⇠
l

(xk) = �

�1/2
⇣

l

(xk), ⌧k�
K

n

�

= �

�1/2
s �

kl

e

L

l

⌘

LK

with (d + 1)-dimensional
unit vector n

�

normal to the space V

i

of S
i

(xk) and µn
µ

=
P

mc

l=1 �

l

⇠

l

. After a
few standard manipulations8, one obtains a field equation of the form of a higher
curvature generalisation of GR (Palatini notation), in Lorentz-like coordinates:

�

Z

M
dd+1

x

p
�g [e�

µ

e

�
⌫

�µ⌫

�� + µ] = 0. (3)

with �µ⌫

�� = ⌘��g
⌫�r̃

�

[e⇤
�

⌧

µ�

⇤ ], @M = T , µ = r̃
µ



µ, and r̃
�

is the torsionless
covariant derivative. (3) can be shown to reduce to GR under weak field conditions,
for d = 3 and introducing the known constants of GR (Newton’s and cosmological
constant), in accord to available experimental data.

Any symmetries imposed to the parameterisation contribute some part µpsc to
µ. By analogy to GR, the quantity µpsc can be interpreted as the ”matter term” and
decomposed into ”fields”  

l

(xk) with conveniently defined norm, | 
l

|2 =  

†
l

 

l

=
C

l

= constant. Defining ⇡�

l

 

l

n

�

= �

l

⇠

l

��
psc

and applying Gauss’ theorem leads to

µpsc =
X

l

[(r̃
�

⇡

�

l

)  
l

+ ⇡

�

l

r̃
�

 

l

]. (4)

4. Quantum formalism

Typically, one wants to compute the probability of detecting a quantum process P1
rather than any of the alternative processes P2 . . . Pn

D

. For any Pk, k = 1 . . . n
D

,
we first compute the macroscopic state with the largest number ⌦

Pk

of microstates
under the constraint µ

Pk

by evaluating �S
c

= 0. Then, the probability for P1 is

p(P1) =
⌦

P1P
nD

k=1 ⌦Pk

. (5)

Generalised Gauss Theorem	
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Recover GR	

•  d = 3	


•  Weak Field	


•  Inserting Constants G & Λ from GR	



Recover QFT	


•  d = 3	


•  Local Therm. Equilibrium	



3. Relation to Non-Dynamical 
Approach (NDA)	
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4. Conclusions	



•  Advocating Microcanonical Treatment	


•  For Local Non-Equilibrium Geometries	


•  Relation to NDA (not based on dynamics)	


•  Compatible with GR	


•  Compatible with QFT	
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THANK YOU!	




