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Introduction:
The Birds Eye View Of The Idea
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Bird’s eye view

Take the superspace of all metric spaces S = {si | (si ,di ) metric space}.
I Define relevant dimension for relevant si ∈ S.
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Take the superspace of all metric spaces S = {si | (si ,di ) metric space}.
I Define relevant dimension for relevant si ∈ S.

⇓
Put a suitable metric dS on S ⇒ (S,dS) a super metric space.

I dS defines some comparison (of physical relevance e.g. isometry).
I dS defines convergence
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Bird’s eye view

Take the superspace of all metric spaces S = {si | (si ,di ) metric space}.
I Define relevant dimension for relevant si ∈ S.

⇓
Put a suitable metric dS on S ⇒ (S,dS) a super metric space.

I dS defines some comparison (of physical relevance e.g. isometry).
I dS defines convergence

⇓
Propose a coarse graining scheme in (S,dS):

I Start from a graph.
I Produce a sequence

{
(Gi , dGi )

}
⊂ (S, dS).
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⇓
Propose a coarse graining scheme in (S,dS):

I Start from a graph.
I Produce a sequence

{
(Gi , dGi )

}
⊂ (S, dS).

⇓
1 Existence of a fixed point: {(Gi ,dGi )} converges to (X ,dX ) w.r.t. dS?

2 dim (X ) = 3(+1)?
3 X a manifold (at least topological)?
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Setting The Stage:

Some Graph Theoretic Definitions
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Some basic graph concepts - 1
A graph G = (V ,E) ; vertices vi ∈ V ; edges eij ∈ E ⊂ V × V ; if eij 6= eji
directed graph.
Locally bounded valence: valence finite ∀vi ∈ G
Globally bounded valence: valence <∞ on G
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A graph G = (V ,E) ; vertices vi ∈ V ; edges eij ∈ E ⊂ V × V ; if eij 6= eji
directed graph.
Locally bounded valence: valence finite ∀vi ∈ G
Globally bounded valence: valence <∞ on G

Path γ: an edge sequence without repetition of vertices, except of
initial/terminal vertex.
Connected graph: ∃γ for each vi , vj ∈ G.
Length of path l(γ): number of edges occurring in the path.
Geodesic path: path of minimal length between two vertices

d(vi , vj ) := min
γ
{l(γ), γ connects vi with vj}
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With geodesic path as metric: Any (not)connected graph G is a (psedo)metric
space (G,d)
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A graph G = (V ,E) ; vertices vi ∈ V ; edges eij ∈ E ⊂ V × V ; if eij 6= eji
directed graph.
Locally bounded valence: valence finite ∀vi ∈ G
Globally bounded valence: valence <∞ on G

Path γ: an edge sequence without repetition of vertices, except of
initial/terminal vertex.
Connected graph: ∃γ for each vi , vj ∈ G.
Length of path l(γ): number of edges occurring in the path.
Geodesic path: path of minimal length between two vertices

d(vi , vj ) := min
γ
{l(γ), γ connects vi with vj}

With geodesic path as metric: Any (not)connected graph G is a (psedo)metric
space (G,d)

Ball of radius r centered at x ∈ M in a metric space (M,d):
B(x , r) = {y ∈ M|d(x , y) ≤ r}
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Coarse Graining

Provide a scheme of coarse graining.
How to ignore details, so to be able to check if two spaces are
coarsely similar?
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A class of coarse grainings based on isometry
Isometric embedding: A distant preserving map between two metric spaces

f : (X ,dX )→ (Y ,dY ) such that dX (x1, x2) = dY (f (x1), f (x2))
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Isometric embedding: A distant preserving map between two metric spaces

f : (X ,dX )→ (Y ,dY ) such that dX (x1, x2) = dY (f (x1), f (x2))

Quai-isometric embedding: A map f from a metric space,
f : (M1,d1)→ (M2,d2), , i.e. if there exist constants, λ ≥ 1, ε ≥ 0, such that

∀x , y ∈ M1 :
1
λ

d1(x , y)− ε ≤ d2(f (x), f (y)) ≤ λd1(x , y) + ε,

i.e. ∀x , y ∈ M1, the distance between their images is (up to the additive
constant ε) within a factor of λ of their original distance.
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i.e. ∀x , y ∈ M1, the distance between their images is (up to the additive
constant ε) within a factor of λ of their original distance.

Quasi-isomery: a quasi-isometric embedding f in which

∀z ∈ M2 ∧ ∃x ∈ M1 : d2(z, f (x)) ≤ C.

i.e. every z ∈ M2 is within the constant distance C of an image point.
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i.e. ∀x , y ∈ M1, the distance between their images is (up to the additive
constant ε) within a factor of λ of their original distance.

Quasi-isomery: a quasi-isometric embedding f in which

∀z ∈ M2 ∧ ∃x ∈ M1 : d2(z, f (x)) ≤ C.

i.e. every z ∈ M2 is within the constant distance C of an image point.

Quasi-isometry is an equivalence relation on metric spaces that ignores
their small-scale details in favor of their coarse structure.
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Quasi-isometry example:
Equilateral triangle lattice
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Quasi-isometry example:
Equilateral triangle lattice

The integer lattice Zn is quasi-isometric to Rn:

f :Zn → Rn

:(x1, . . . , xn) 7→ (x1, . . . , xn), xi ∈ Z

1 Distances are preserved.

2 n-tuples ∈ Rn are within
√

n
4 of n-tuples ∈ Zn.
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Comparison And Fixed Point

Construct super metric space.
Provide a measure of comparing different (coarse grained) spaces.
A sequence of spaces are coarsely similar? Converge to a fixed
point?
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dH : Distance of metric subspaces
In (M,d), Hausdorff Distance dH(X ,Y ) of X ,Y ⊂ M ∧ X ,Y 6= ∅:

dH (X ,Y ) = inf {ε ≥ 0|X ⊆ Uε(Y ),Y ⊆ Uε(X )}
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dH : Distance of metric subspaces
In (M,d), Hausdorff Distance dH(X ,Y ) of X ,Y ⊂ M ∧ X ,Y 6= ∅:

dH (X ,Y ) = inf {ε ≥ 0|X ⊆ Uε(Y ),Y ⊆ Uε(X )}

ε-neighborhood of a subset
In (M,d), ε-neighborhood of X ⊂ M: union of all ε-balls around all x ∈ X

Uε(X ) =
⋃

x∈X

{z ∈ M|d(z, x) ≤ ε}

All points within ε of the set X , or generalized ball of radius ε around X .

Saeed Rastgoo (UAM-I, Mexico) Discrete to continuum: the Gromov–Hausdorff space 4th EFI, Tux, Feb. 18, 2016 11 / 24



dH : Distance of metric subspaces
In (M,d), Hausdorff Distance dH(X ,Y ) of X ,Y ⊂ M ∧ X ,Y 6= ∅:

dH (X ,Y ) = inf {ε ≥ 0|X ⊆ Uε(Y ),Y ⊆ Uε(X )}
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Set of all non-empty compact (non-compact) subsets of a metric space +
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How to compare two metric spaces? Gromov-Hausdorff distance

Roughly speaking, define something similar to dH is the superset of all
metric spaces, or
Make them subspace of another metric space.
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dGH : Distance of metric spaces, convergence
The Gromov-Hausdorff Distance dGH of compact (X ,dX ) , (Y ,dY )

dGH (X ,Y ) = inf dZ
H (f (X ),g(Y ))

of all metric spaces Z and isometric embeddings f : X → Z , g : Y → Z

Measures how far two compact metric spaces are from being isometric:
Two compact spaces, X ,Y , are isometric iff dGH(X ,Y ) = 0.
Turns the set of all isometry classes of compact metric spaces into a
metric space: The Gromov-Hausdorff space
Defines a notion of convergence for sequences of compact metric
spaces: The Gromov-Hausdorff convergence
Hausdorff limit: A metric space to which such a sequence converges
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dGH : Distance of metric spaces, convergence
The Gromov-Hausdorff Distance dGH of compact (X ,dX ) , (Y ,dY )

dGH (X ,Y ) = inf dZ
H (f (X ),g(Y ))

of all metric spaces Z and isometric embeddings f : X → Z , g : Y → Z
Measures how far two compact metric spaces are from being isometric:
Two compact spaces, X ,Y , are isometric iff dGH(X ,Y ) = 0.
Turns the set of all isometry classes of compact metric spaces into a
metric space: The Gromov-Hausdorff space
Defines a notion of convergence for sequences of compact metric
spaces: The Gromov-Hausdorff convergence
Hausdorff limit: A metric space to which such a sequence converges

How to deal with (i.e. define convergence for) non-compact spaces?
Pointed convergence...
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Pointed convergence, uniform compactness
Pointed convergence: Given a sequence (Xi , xi ∈ Xi ) of (locally compact
complete) metric spaces with distinguished points, it converges to (X , x) if for
any R > 0 the sequence of closed R-balls, B(xi ,R), converges to B(x ,R) in X
in dGH sense.

Saeed Rastgoo (UAM-I, Mexico) Discrete to continuum: the Gromov–Hausdorff space 4th EFI, Tux, Feb. 18, 2016 13 / 24



Pointed convergence, uniform compactness
Pointed convergence: Given a sequence (Xi , xi ∈ Xi ) of (locally compact
complete) metric spaces with distinguished points, it converges to (X , x) if for
any R > 0 the sequence of closed R-balls, B(xi ,R), converges to B(x ,R) in X
in dGH sense.

Saeed Rastgoo (UAM-I, Mexico) Discrete to continuum: the Gromov–Hausdorff space 4th EFI, Tux, Feb. 18, 2016 13 / 24



Pointed convergence, uniform compactness
Pointed convergence: Given a sequence (Xi , xi ∈ Xi ) of (locally compact
complete) metric spaces with distinguished points, it converges to (X , x) if for
any R > 0 the sequence of closed R-balls, B(xi ,R), converges to B(x ,R) in X
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Especially useful in uniformly compact spaces.
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Pointed convergence, uniform compactness
Pointed convergence: Given a sequence (Xi , xi ∈ Xi ) of (locally compact
complete) metric spaces with distinguished points, it converges to (X , x) if for
any R > 0 the sequence of closed R-balls, B(xi ,R), converges to B(x ,R) in X
in dGH sense.

Especially useful in uniformly compact spaces.

Set (or sequence) of compact {(Xi ,di )} are uniformly compact if:
Diameters Di uniformly bounded: ∃R ∈ R|Di ≤ R, ∀Xi .
For each ε > 0, Xi is coverable by Nε <∞ balls of radius ε independent
of the index i .
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Growth
Growth function β(G, vi , r) in a graph G is the number of vertices in a ball of
radius r :

β(G, vi , r) := |BG(vi , r)|

G has polynomial growth: β(G, vi , r) . r D̄ ≈ Ar D̄ for D̄ ≥ 0.
G has uniform polynomial growth (uniform polynomial growth):

Ard ≤ β(G, vi , r) ≤ Brd

and A,B,d > 0. (for locally finite graph, is indep. of vi )
Degree of polynomial growth:

D̄(G) = lim sup
r

ln (β (G, r))

ln(r)

may not be an integer.
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Existence of fixed point: chain of argument

1 Start from a graph G0 with unif. polyn. growth (e.g. Cayley; local. fin.
vert. transit.)

2 Produce Gi
quasi-isometry−→ Gi+1. Globally bounded valence.

1 Quasi-isomery preserves growth deg.
2 Gi has unif. polyn. growth⇒ Gi+1 has uniform polynomial growth

3 If G0 has unif. polyn. grow., and Gi
quasi-isometry−→ Gi+1 : The balls B(xi ,R) of

a sequence {Gi} are uniformly compact.
4 If ∀R and ε > 0, balls B(xi ,R) of a given sequence {(Xi , xi )} are uniformly

compact, then (a subsequence of spaces of) {(Xi , xi )} converges in
pointed dGH sense.
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3 If G0 has unif. polyn. grow., and Gi
quasi-isometry−→ Gi+1 : The balls B(xi ,R) of

a sequence {Gi} are uniformly compact.
4 If ∀R and ε > 0, balls B(xi ,R) of a given sequence {(Xi , xi )} are uniformly

compact, then (a subsequence of spaces of) {(Xi , xi )} converges in
pointed dGH sense.

Fixed point: The sequence of {Gi} with initial condition G0 of uniform

polynomial growth, and Gi
quasi-isometry−→ Gi+1 (has a subsequence that)

converges in pointed dGH sense.
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Dimension

Introduce a candidate.
Conditions for integer dimension?
Behavior of dimension under coarse graining?
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A first look at dimension: a definition
A few simple observations about dimension:

Dimension often related to certain “degree of connectivity”, # of
neighborhoods of a point
Graphs not embedded in any background: generally have spectral/fractal
dimensions
Embedded graphs have dimension of the background
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A first look at dimension: a definition
A few simple observations about dimension:

Dimension often related to certain “degree of connectivity”, # of
neighborhoods of a point
Graphs not embedded in any background: generally have spectral/fractal
dimensions
Embedded graphs have dimension of the background

Dimension? Limiting behavior of growth function a good candidate: (upper
and lower) Internal scaling dimension

Ds(vi ) := lim sup
r→∞

ln (β (vi , r))

ln(r)
, Ds(vi ) := lim inf

r→∞

ln (β (vi , r))

ln(r)

in general different and non-integer.
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Stability under coarse graining, integerness
Some properties of internal scaling dimension:

Related to connectivity, # of neighbors, and how it grows.

In embedded graphs, regular lattices:
Ds(vi ) = Ds(vi ) = Ds(vi ) ∀vi ∈ V (G)

Valence locally finite in G: Ds(vi ) & Ds(vi ) independent of reference vi .
Ds(vi ) and Ds(vi ) invariant under k -local edge operations (add/remove
edges G1 → G2, only done to eij where vj ∈ BG1 (vi , k)⇒ vj ∈ BG2 (vi , k))
In G with (uniform) polynomial growth: internal scaling dimension=degree
of polynomial growth.
Stability of dimension under coarse graining: Degree of polynomial
growth and thus internal scaling dimension, preserved under
quasi-isometry: Gi

quasi-isometry−→ Gi+1

Integer dimension: Vertex transitive graphs with polynomial growth have
integer dim
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Dimension round up
Under this coarse graining scheme:

Internal scaling dimension is stable under quasi-isometry (coarse
graining)

To have integer final dim, G0 should have integer dim = initial condition
I Vertex transitive graphs a candidate class, includes Cayley.

All the layers have the same dim (Good or bad? Weakness or
prediction?)
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Dimension round up
Under this coarse graining scheme:

Internal scaling dimension is stable under quasi-isometry (coarse
graining)
To have integer final dim, G0 should have integer dim = initial condition

I Vertex transitive graphs a candidate class, includes Cayley.

All the layers have the same dim (Good or bad? Weakness or
prediction?)

Bottom line: starting from a vertex transitive graph G0 with uniform polynomial
growth, and coarse graining by Gi

quasi-isometry−→ Gi+1, all Gi guaranteed to have
integer dim.
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Final word on fixed point and integ. dim

If
1 Initial condition: G0 vertex transitive graph with uniform polynomial

growth (or any graph with uniform polynomial growth or integer dim)

2 Coarse graining: some kind of quasi-isometry
3 Means of comparison and convergence: dGH
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Final word on fixed point and integ. dim

If
1 Initial condition: G0 vertex transitive graph with uniform polynomial

growth (or any graph with uniform polynomial growth or integer dim)
2 Coarse graining: some kind of quasi-isometry
3 Means of comparison and convergence: dGH

A fixed point (Hausdorff limit) with an integer dim is guaranteed
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Continuum Limit

An idea how to get a topological/PL manifold out of a graph.
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The main steps of the method

Main theorem: A D-dimensional simplicial complex is a PL-manifold if
the link of every vertex in the complex is topologically a (D − 1)-sphere
[Thurston]

I Link: given a vertex v in a simplicial complex, consider the set of all
simplices σi which have v on their boundary; then the link of v is the union of
all other simplices on the boundary of those σi which do not contain v .

I Essentially, prove that each point has a neighborhood in the complex that is
homeomorphic to a ball.
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all other simplices on the boundary of those σi which do not contain v .

I Essentially, prove that each point has a neighborhood in the complex that is
homeomorphic to a ball.

Argument steps:
1 Given G, find the corresponding (Voronoi) cell complex.

2 Produce a simplicial complex that is PL equivalent to this cell complex
1 barycentric decomposition

3 Is link of every vertex in the complex is topologically a (D − 1)-sphere?
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Brief review of SDCN
Start from a graph with simple dynamics (more flexible version of cellular
automata)
Excitations 1D edges
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Brief review of SDCN
Start from a graph with simple dynamics (more flexible version of cellular
automata)
Excitations 1D edges

Corase graining (Ising-like): specific type of quasi-isometry, k -local edge
deletion:

1 In Gi , find complete graphs K (i)
n .

2 Gi+1 will have

1 K (i)
n of Gi as vertices vj(Gi+1)

2 Edges between vj(Gi+1) and vl(Gi+1) if corresponding K (i)
n ’s have sufficient

vertex overlap in Gi

K4 K5 K6
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1 K (i)
n of Gi as vertices vj(Gi+1)

2 Edges between vj(Gi+1) and vl(Gi+1) if corresponding K (i)
n ’s have sufficient

vertex overlap in Gi

K4 K5 K6

Each (subcollection of) layer(s) potentially has own topology/geometry

Each (supposedly) smooth spacetime point has internal structure/DoF
Points far w.r.t. smooth spacetime metric may internally be close

I Entanglement and non-locality?
I ER=EPR, BH info paradox?
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vertex overlap in Gi

K4 K5 K6

Each (subcollection of) layer(s) potentially has own topology/geometry
Each (supposedly) smooth spacetime point has internal structure/DoF

Points far w.r.t. smooth spacetime metric may internally be close

I Entanglement and non-locality?
I ER=EPR, BH info paradox?
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Summary/Future directions
What is done up to now:

In super space of all metric spaces, there are sequences of graphs that
have a fixed point w.r.t. quasi-isometry and dGH .
Starting from a large class of graphs (vertex transitive & uniform
polynomial growth), a fixed point (Hausdorff limit) with integer dim is
guaranteed.
Convergence and integer dim are compatible; seemingly go hand in hand
Completely background independent, bottom-up and generic (no
decomposition of a manifold)
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Summary/Future directions
Future direction (a lot!):

Explore smoothness, metric in fixed point resembles spacetime metric?
Beyond polynomial growth? exponential growth etc.
Apply to spin networks/foams. Edge color play a rule? Changes under
coarse graining? LQG an effective theory?
Explore relation to other coarse graining methods
Expand to more methods of coarse graining? Also use more of Coarse
Geometry methods
Is metric space analysis enough? need to check more structure?
Connections between graph of groups and Cayley graphs, and spin
networks/foams?
Random graphs
Less restriction on dim (different fractal dim for each level)?
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