From discrete to continuum: Lessons from the Gromov-Hausdorff space

Saeed Rastgoo (UAM-I, Mexico)

Based on an ongoing work with

Manfred Requardt (University of Göttingen)

Fourth EFI workshop, Tux, Austria, February 18, 2016

Introduction: The Birds Eye View Of The Idea

Shared Semiclassical Limit Challenges

Saeed Rastgoo (UAM-I, Mexico)

• Take the superspace of all metric spaces $S = \{s_i | (s_i, d_i) \text{ metric space}\}$.

Define relevant dimension for relevant $s_i \in S$.

Take the superspace of all metric spaces S = {s_i | (s_i, d_i) metric space}.
Define relevant dimension for relevant s_i ∈ S.

• Put a suitable metric d_S on $S \Rightarrow (S, d_S)$ a super metric space.

- Take the superspace of all metric spaces S = {s_i | (s_i, d_i) metric space}.
 Define relevant dimension for relevant s_i ∈ S.
- Put a suitable metric d_S on $S \Rightarrow (S, d_S)$ a super metric space.
 - d_S defines some comparison (of physical relevance e.g. isometry).

4/24

• Take the superspace of all metric spaces $S = \{s_i | (s_i, d_i) \text{ metric space}\}$.

Define relevant dimension for relevant $s_i \in S$.

- Put a suitable metric d_S on $S \Rightarrow (S, d_S)$ a super metric space.
 - d_S defines some comparison (of physical relevance e.g. isometry).
 - d_S defines convergence

• Take the superspace of all metric spaces $S = \{s_i | (s_i, d_i) \text{ metric space}\}$.

Define relevant dimension for relevant $s_i \in S$.

• Put a suitable metric d_S on $S \Rightarrow (S, d_S)$ a super metric space.

 d_S defines some comparison (of physical relevance e.g. isometry).

1

d_S defines convergence

• Propose a coarse graining scheme in (S, d_S) :

4/24

• Take the superspace of all metric spaces $S = \{s_i | (s_i, d_i) \text{ metric space}\}$.

Define relevant dimension for relevant $s_i \in S$.

- Put a suitable metric d_S on $S \Rightarrow (S, d_S)$ a super metric space.
 - d_S defines some comparison (of physical relevance e.g. isometry).

1

d_S defines convergence

• Propose a coarse graining scheme in (*S*, *d*_{*S*}):

Start from a graph.

• Take the superspace of all metric spaces $S = \{s_i | (s_i, d_i) \text{ metric space}\}$.

Define relevant dimension for relevant $s_i \in S$.

- Put a suitable metric d_S on $S \Rightarrow (S, d_S)$ a super metric space.
 - d_S defines some comparison (of physical relevance e.g. isometry).

1

d_S defines convergence

• Propose a coarse graining scheme in (*S*, *d*_{*S*}):

- Start from a graph.
- ▶ Produce a sequence $\{(G_i, d_{G_i})\} \subset (S, d_S)$.

• Take the superspace of all metric spaces $S = \{s_i | (s_i, d_i) \text{ metric space}\}$.

Define relevant dimension for relevant $s_i \in S$.

• Put a suitable metric d_S on $S \Rightarrow (S, d_S)$ a super metric space.

 d_S defines some comparison (of physical relevance e.g. isometry).

1

d_S defines convergence

• Propose a coarse graining scheme in (*S*, *d*_{*S*}):

- Start from a graph.
- ▶ Produce a sequence $\{(G_i, d_{G_i})\} \subset (S, d_S)$.

Similar Existence of a fixed point: $\{(G_i, d_{G_i})\}$ converges to (X, d_X) w.r.t. d_S ?

∜

• Take the superspace of all metric spaces $S = \{s_i | (s_i, d_i) \text{ metric space}\}$.

Define relevant dimension for relevant $s_i \in S$.

• Put a suitable metric d_S on $S \Rightarrow (S, d_S)$ a super metric space.

 d_S defines some comparison (of physical relevance e.g. isometry).

∜

∜

d_S defines convergence

• Propose a coarse graining scheme in (*S*, *d*_{*S*}):

- Start from a graph.
- ▶ Produce a sequence $\{(G_i, d_{G_i})\} \subset (S, d_S)$.

Existence of a fixed point: {(*G_i*, *d<sub>G_i*)} converges to (*X*, *d_X*) w.r.t. *d_S*?
 dim (*X*) = 3(+1)?
</sub>

• Take the superspace of all metric spaces $S = \{s_i | (s_i, d_i) \text{ metric space}\}$.

Define relevant dimension for relevant $s_i \in S$.

• Put a suitable metric d_S on $S \Rightarrow (S, d_S)$ a super metric space.

 d_S defines some comparison (of physical relevance e.g. isometry).

∜

d_S defines convergence

• Propose a coarse graining scheme in (*S*, *d*_{*S*}):

- Start from a graph.
- ► Produce a sequence $\{(G_i, d_{G_i})\} \subset (S, d_S)$.

Solution Existence of a fixed point: $\{(G_i, d_{G_i})\}$ converges to (X, d_X) w.r.t. d_S ?

∜

- **2** dim (X) = 3(+1)?
- X a manifold (at least topological)?

Setting The Stage: Some Graph Theoretic Definitions

A graph G = (V, E); vertices $v_i \in V$; edges $e_{ij} \in E \subset V \times V$; if $e_{ij} \neq e_{ji}$ directed graph.

Locally bounded valence: valence finite $\forall v_i \in G$ **Globally bounded valence**: valence $< \infty$ on *G*

A graph G = (V, E); vertices $v_i \in V$; edges $e_{ij} \in E \subset V \times V$; if $e_{ij} \neq e_{ji}$ directed graph. Locally bounded valence: valence finite $\forall v_i \in G$ Globally bounded valence: valence $< \infty$ on G

Path γ : an edge sequence without repetition of vertices, except of initial/terminal vertex.

Connected graph: $\exists \gamma$ for each $v_i, v_j \in G$. **Length of path** $I(\gamma)$: number of edges occurring in the path. **Geodesic path**: path of minimal length between two vertices

$$d(v_i, v_j) := \min_{\gamma} \{ I(\gamma), \gamma \text{ connects } v_i \text{ with } v_j \}$$

A graph G = (V, E); vertices $v_i \in V$; edges $e_{ij} \in E \subset V \times V$; if $e_{ij} \neq e_{ji}$ directed graph. Locally bounded valence: valence finite $\forall v_i \in G$ Globally bounded valence: valence $< \infty$ on G

Path γ : an edge sequence without repetition of vertices, except of initial/terminal vertex.

Connected graph: $\exists \gamma$ for each $v_i, v_j \in G$. **Length of path** $I(\gamma)$: number of edges occurring in the path. **Geodesic path**: path of minimal length between two vertices

$$d(v_i, v_j) := \min_{\gamma} \{ I(\gamma), \gamma \text{ connects } v_i \text{ with } v_j \}$$

With geodesic path as metric: Any (not)connected graph G is a (psedo)metric space (G, d)

1

A graph G = (V, E); vertices $v_i \in V$; edges $e_{ij} \in E \subset V \times V$; if $e_{ij} \neq e_{ji}$ directed graph. Locally bounded valence: valence finite $\forall v_i \in G$ Globally bounded valence: valence $< \infty$ on G

Path γ : an edge sequence without repetition of vertices, except of initial/terminal vertex.

Connected graph: $\exists \gamma$ for each $v_i, v_j \in G$. **Length of path** $I(\gamma)$: number of edges occurring in the path. **Geodesic path**: path of minimal length between two vertices

$$d(v_i, v_j) := \min_{\gamma} \{ l(\gamma), \gamma \text{ connects } v_i \text{ with } v_j \}$$

With geodesic path as metric: Any (not)connected graph G is a (psedo)metric space (G, d)

Ball of radius *r* centered at $x \in M$ in a metric space (M, d):

$$B(x,r) = \{y \in M | d(x,y) \leq r\}$$

Coarse Graining

- Provide a scheme of coarse graining.
- How to ignore details, so to be able to check if two spaces are coarsely similar?

Isometric embedding: A distant preserving map between two metric spaces

 $f: (X, d_X) \to (Y, d_Y)$ such that $d_X(x_1, x_2) = d_Y(f(x_1), f(x_2))$

Isometric embedding: A distant preserving map between two metric spaces

 $f: (X, d_X) \to (Y, d_Y)$ such that $d_X(x_1, x_2) = d_Y(f(x_1), f(x_2))$

Quai-isometric embedding: A map *f* from a metric space, $f: (M_1, d_1) \rightarrow (M_2, d_2)$, , i.e. if there exist constants, $\lambda \ge 1, \epsilon \ge 0$, such that $\forall x, y \in M_1 : \frac{1}{\lambda} d_1(x, y) - \epsilon \le d_2(f(x), f(y)) \le \lambda d_1(x, y) + \epsilon$,

i.e. $\forall x, y \in M_1$, the distance between their images is (up to the additive constant ϵ) within a factor of λ of their original distance.

8/24

Isometric embedding: A distant preserving map between two metric spaces

 $f: (X, d_X) \to (Y, d_Y)$ such that $d_X(x_1, x_2) = d_Y(f(x_1), f(x_2))$

Quai-isometric embedding: A map *f* from a metric space, $f: (M_1, d_1) \rightarrow (M_2, d_2)$, , i.e. if there exist constants, $\lambda \ge 1, \epsilon \ge 0$, such that $\forall x, y \in M_1 : \frac{1}{\lambda} d_1(x, y) - \epsilon \le d_2(f(x), f(y)) \le \lambda d_1(x, y) + \epsilon$,

i.e. $\forall x, y \in M_1$, the distance between their images is (up to the additive constant ϵ) within a factor of λ of their original distance.

Quasi-isomery: a quasi-isometric embedding *f* in which

$$\forall z \in M_2 \land \exists x \in M_1 : d_2(z, f(x)) \leq C.$$

i.e. every $z \in M_2$ is within the constant distance *C* of an image point.

Isometric embedding: A distant preserving map between two metric spaces

 $f: (X, d_X) \to (Y, d_Y)$ such that $d_X(x_1, x_2) = d_Y(f(x_1), f(x_2))$

Quai-isometric embedding: A map *f* from a metric space, $f: (M_1, d_1) \rightarrow (M_2, d_2)$, , i.e. if there exist constants, $\lambda \ge 1, \epsilon \ge 0$, such that $\forall x, y \in M_1 : \frac{1}{\lambda} d_1(x, y) - \epsilon \le d_2(f(x), f(y)) \le \lambda d_1(x, y) + \epsilon$,

i.e. $\forall x, y \in M_1$, the distance between their images is (up to the additive constant ϵ) within a factor of λ of their original distance.

Quasi-isomery: a quasi-isometric embedding *f* in which

$$\forall z \in M_2 \land \exists x \in M_1 : d_2(z, f(x)) \leq C.$$

i.e. every $z \in M_2$ is within the constant distance *C* of an image point.

Quasi-isometry is an equivalence relation on metric spaces that ignores their small-scale details in favor of their coarse structure.

Saeed Rastgoo (UAM-I, Mexico)

Discrete to continuum: the Gromov-Hausdorff spac

Quasi-isometry example:

Equilateral triangle lattice

9/24

Quasi-isometry example:

Equilateral triangle lattice

The integer lattice \mathbb{Z}^n is quasi-isometric to \mathbb{R}^n :

$$f: \mathbb{Z}^n \to \mathbb{R}^n$$

: $(x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_n), \qquad x_i \in \mathbb{Z}$

Distances are preserved.

2) *n*-tuples
$$\in \mathbb{R}^n$$
 are within $\sqrt{\frac{n}{4}}$ of *n*-tuples $\in \mathbb{Z}^n$.

Comparison And Fixed Point

- Construct super metric space.
- Provide a measure of comparing different (coarse grained) spaces.
- A sequence of spaces are coarsely similar? Converge to a fixed point?

In (M, d), Hausdorff Distance $d_H(X, Y)$ of $X, Y \subset M \land X, Y \neq \emptyset$:

 $d_{H}(X, Y) = \inf \left\{ \epsilon \geq 0 | X \subseteq U_{\epsilon}(Y), Y \subseteq U_{\epsilon}(X) \right\}$

In (M, d), Hausdorff Distance $d_H(X, Y)$ of $X, Y \subset M \land X, Y \neq \emptyset$:

$$d_{H}(X, Y) = \inf \{ \epsilon \geq 0 | X \subseteq U_{\epsilon}(Y), Y \subseteq U_{\epsilon}(X) \}$$

$\epsilon\text{-neighborhood of a subset}$

In (M, d), ϵ -neighborhood of $X \subset M$: union of all ϵ -balls around all $x \in X$

$$U_{\epsilon}(X) = \bigcup_{x \in X} \{z \in M | d(z, x) \leq \epsilon\}$$

All points within ϵ of the set X, or generalized ball of radius ϵ around X.

In (M, d), Hausdorff Distance $d_H(X, Y)$ of $X, Y \subset M \land X, Y \neq \emptyset$:

 $d_{H}(X, Y) = \inf \left\{ \epsilon \geq 0 | X \subseteq U_{\epsilon}(Y), Y \subseteq U_{\epsilon}(X) \right\}$

In (M, d), Hausdorff Distance $d_H(X, Y)$ of $X, Y \subset M \land X, Y \neq \emptyset$:

$$d_{H}(X, Y) = \inf \left\{ \epsilon \geq 0 | X \subseteq U_{\epsilon}(Y), Y \subseteq U_{\epsilon}(X) \right\}$$

 Set of all non-empty compact (non-compact) subsets of a metric space + d_H ⇒ metric (pseudometric) space

In (M, d), Hausdorff Distance $d_H(X, Y)$ of $X, Y \subset M \land X, Y \neq \emptyset$:

$$d_{H}(X, Y) = \inf \left\{ \epsilon \geq 0 | X \subseteq U_{\epsilon}(Y), Y \subseteq U_{\epsilon}(X) \right\}$$

 Set of all non-empty compact (non-compact) subsets of a metric space + *d_H* ⇒ metric (pseudometric) space

How to compare two metric spaces? Gromov-Hausdorff distance

In (M, d), Hausdorff Distance $d_H(X, Y)$ of $X, Y \subset M \land X, Y \neq \emptyset$:

$$d_{H}(X, Y) = \inf \left\{ \epsilon \geq 0 | X \subseteq U_{\epsilon}(Y), Y \subseteq U_{\epsilon}(X) \right\}$$

 Set of all non-empty compact (non-compact) subsets of a metric space + *d_H* ⇒ metric (pseudometric) space

How to compare two metric spaces? Gromov-Hausdorff distance

 Roughly speaking, define something similar to d_H is the superset of all metric spaces, or

In (M, d), Hausdorff Distance $d_H(X, Y)$ of $X, Y \subset M \land X, Y \neq \emptyset$:

$$d_{H}(X, Y) = \inf \left\{ \epsilon \geq 0 | X \subseteq U_{\epsilon}(Y), Y \subseteq U_{\epsilon}(X) \right\}$$

 Set of all non-empty compact (non-compact) subsets of a metric space + d_H ⇒ metric (pseudometric) space

How to compare two metric spaces? Gromov-Hausdorff distance

- Roughly speaking, define something similar to d_H is the superset of all metric spaces, or
- Make them subspace of another metric space.

d_{GH} : Distance of metric spaces, convergence

The Gromov-Hausdorff Distance d_{GH} of compact $(X, d_X), (Y, d_Y)$

$$d_{GH}(X, Y) = \inf \, d_{H}^{Z} \left(f(X), g(Y) \right)$$

of all metric spaces Z and isometric embeddings $f: X \rightarrow Z, g: Y \rightarrow Z$

d_{GH} : Distance of metric spaces, convergence

The Gromov-Hausdorff Distance d_{GH} of compact $(X, d_X), (Y, d_Y)$

$$d_{GH}(X, Y) = \inf d_{H}^{Z}(f(X), g(Y))$$

of all metric spaces Z and isometric embeddings $f: X \rightarrow Z, g: Y \rightarrow Z$

• Measures how far two compact metric spaces are from being isometric: Two compact spaces, X, Y, are isometric iff $d_{GH}(X, Y) = 0$.
The Gromov-Hausdorff Distance d_{GH} of compact $(X, d_X), (Y, d_Y)$

$$d_{GH}(X,Y) = \inf d_{H}^{Z}(f(X),g(Y))$$

of all metric spaces Z and isometric embeddings $f: X \rightarrow Z, g: Y \rightarrow Z$

- Measures how far two compact metric spaces are from being isometric: Two compact spaces, X, Y, are isometric iff $d_{GH}(X, Y) = 0$.
- Turns the set of all isometry classes of compact metric spaces into a metric space: The **Gromov-Hausdorff space**

The Gromov-Hausdorff Distance d_{GH} of compact $(X, d_X), (Y, d_Y)$

$$d_{GH}(X, Y) = \inf d_{H}^{Z}(f(X), g(Y))$$

of all metric spaces Z and isometric embeddings $f: X \rightarrow Z, g: Y \rightarrow Z$

- Measures how far two compact metric spaces are from being isometric: Two compact spaces, X, Y, are isometric iff $d_{GH}(X, Y) = 0$.
- Turns the set of all isometry classes of compact metric spaces into a metric space: The **Gromov-Hausdorff space**
- Defines a notion of convergence for sequences of compact metric spaces: The **Gromov-Hausdorff convergence**

The Gromov-Hausdorff Distance d_{GH} of compact $(X, d_X), (Y, d_Y)$

$$d_{GH}(X,Y) = \inf d_{H}^{Z}(f(X),g(Y))$$

of all metric spaces Z and isometric embeddings $f: X \rightarrow Z, g: Y \rightarrow Z$

- Measures how far two compact metric spaces are from being isometric: Two compact spaces, X, Y, are isometric iff $d_{GH}(X, Y) = 0$.
- Turns the set of all isometry classes of compact metric spaces into a metric space: The **Gromov-Hausdorff space**
- Defines a notion of convergence for sequences of compact metric spaces: The **Gromov-Hausdorff convergence**
- Hausdorff limit: A metric space to which such a sequence converges

The Gromov-Hausdorff Distance d_{GH} of compact $(X, d_X), (Y, d_Y)$

$$d_{GH}(X,Y) = \inf d_{H}^{Z}(f(X),g(Y))$$

of all metric spaces Z and isometric embeddings $f: X \rightarrow Z, g: Y \rightarrow Z$

- Measures how far two compact metric spaces are from being isometric: Two compact spaces, X, Y, are isometric iff $d_{GH}(X, Y) = 0$.
- Turns the set of all isometry classes of compact metric spaces into a metric space: The **Gromov-Hausdorff space**
- Defines a notion of convergence for sequences of compact metric spaces: The **Gromov-Hausdorff convergence**
- Hausdorff limit: A metric space to which such a sequence converges

How to deal with (i.e. define convergence for) non-compact spaces? Pointed convergence...

Pointed convergence: Given a sequence $(X_i, x_i \in X_i)$ of (locally compact complete) metric spaces with distinguished points, it converges to (X, x) if for any R > 0 the sequence of closed *R*-balls, $B(x_i, R)$, converges to B(x, R) in *X* in d_{GH} sense.

Pointed convergence: Given a sequence $(X_i, x_i \in X_i)$ of (locally compact complete) metric spaces with distinguished points, it converges to (X, x) if for any R > 0 the sequence of closed *R*-balls, $B(x_i, R)$, converges to B(x, R) in *X* in d_{GH} sense.

Pointed convergence: Given a sequence $(X_i, x_i \in X_i)$ of (locally compact complete) metric spaces with distinguished points, it converges to (X, x) if for any R > 0 the sequence of closed *R*-balls, $B(x_i, R)$, converges to B(x, R) in *X* in d_{GH} sense.

Especially useful in uniformly compact spaces.

Pointed convergence: Given a sequence $(X_i, x_i \in X_i)$ of (locally compact complete) metric spaces with distinguished points, it converges to (X, x) if for any R > 0 the sequence of closed *R*-balls, $B(x_i, R)$, converges to B(x, R) in *X* in d_{GH} sense.

Especially useful in uniformly compact spaces.

Set (or sequence) of compact $\{(X_i, d_i)\}$ are uniformly compact if:

- Diameters D_i uniformly bounded: $\exists R \in \mathbb{R} | D_i \leq R, \forall X_i$.
- For each *ε* > 0, *X_i* is coverable by *N_ε* < ∞ balls of radius *ε* independent of the index *i*.

Growth

Growth function $\beta(G, v_i, r)$ in a graph *G* is the number of vertices in a ball of radius *r*:

$$\beta(G, v_i, r) := |B_G(v_i, r)|$$

G has polynomial growth: $\beta(G, v_i, r) \leq r^{\overline{D}} \approx Ar^{\overline{D}}$ for $\overline{D} \geq 0$. *G* has uniform polynomial growth (uniform polynomial growth):

$$Ar^d \leq eta(G, v_i, r) \leq Br^d$$

and A, B, d > 0. (for locally finite graph, is indep. of v_i) Degree of polynomial growth:

$$\bar{D}(G) = \limsup_{r} \frac{\ln(\beta(G, r))}{\ln(r)}$$

may not be an integer.

Start from a graph G₀ with unif. polyn. growth (e.g. Cayley; local. fin. vert. transit.)

- Start from a graph *G*₀ with unif. polyn. growth (e.g. Cayley; local. fin. vert. transit.)
- 2 Produce $G_i \stackrel{\text{quasi-isometry}}{\longrightarrow} G_{i+1}$. Globally bounded valence.

- Start from a graph G₀ with unif. polyn. growth (e.g. Cayley; local. fin. vert. transit.)
- **2** Produce $G_i \xrightarrow{\text{quasi-isometry}} G_{i+1}$. Globally bounded valence.
 - Quasi-isomery preserves growth deg.
 - **2** G_i has unif. polyn. growth $\Rightarrow G_{i+1}$ has uniform polynomial growth

- Start from a graph *G*₀ with unif. polyn. growth (e.g. Cayley; local. fin. vert. transit.)
- 2 Produce $G_i \xrightarrow{\text{quasi-isometry}} G_{i+1}$. Globally bounded valence.
 - Quasi-isomery preserves growth deg.
 - **2** G_i has unif. polyn. growth $\Rightarrow G_{i+1}$ has uniform polynomial growth
- Solution If G_0 has unif. polyn. grow., and $G_i \xrightarrow{\text{quasi-isometry}} G_{i+1}$: The balls $B(x_i, R)$ of a sequence $\{G_i\}$ are uniformly compact.

- Start from a graph *G*₀ with unif. polyn. growth (e.g. Cayley; local. fin. vert. transit.)
- 2 Produce $G_i \stackrel{\text{quasi-isometry}}{\longrightarrow} G_{i+1}$. Globally bounded valence.
 - Quasi-isomery preserves growth deg.
 - **2** G_i has unif. polyn. growth $\Rightarrow G_{i+1}$ has uniform polynomial growth
- Solution If G_0 has unif. polyn. grow., and $G_i \xrightarrow{\text{quasi-isometry}} G_{i+1}$: The balls $B(x_i, R)$ of a sequence $\{G_i\}$ are uniformly compact.
- If ∀*R* and *ϵ* > 0, balls *B*(*x_i*, *R*) of a given sequence {(*X_i*, *x_i*)} are uniformly compact, then (a subsequence of spaces of) {(*X_i*, *x_i*)} converges in pointed *d_{GH}* sense.

- Start from a graph *G*₀ with unif. polyn. growth (e.g. Cayley; local. fin. vert. transit.)
- 2 Produce $G_i \xrightarrow{\text{quasi-isometry}} G_{i+1}$. Globally bounded valence.
 - Quasi-isomery preserves growth deg.
 - **2** G_i has unif. polyn. growth $\Rightarrow G_{i+1}$ has uniform polynomial growth
- Solution If G_0 has unif. polyn. grow., and $G_i \xrightarrow{\text{quasi-isometry}} G_{i+1}$: The balls $B(x_i, R)$ of a sequence $\{G_i\}$ are uniformly compact.
- If ∀*R* and *ϵ* > 0, balls *B*(*x_i*, *R*) of a given sequence {(*X_i*, *x_i*)} are uniformly compact, then (a subsequence of spaces of) {(*X_i*, *x_i*)} converges in pointed *d_{GH}* sense.

Fixed point: The sequence of $\{G_i\}$ with initial condition G_0 of uniform polynomial growth, and $G_i \xrightarrow{\text{quasi-isometry}} G_{i+1}$ (has a subsequence that) converges in pointed d_{GH} sense.

Dimension

- Introduce a candidate.
- Conditions for integer dimension?
- Behavior of dimension under coarse graining?

A few simple observations about dimension:

A few simple observations about dimension:

• Dimension often related to certain "degree of connectivity", # of neighborhoods of a point

A few simple observations about dimension:

- Dimension often related to certain "degree of connectivity", # of neighborhoods of a point
- Graphs not embedded in any background: generally have spectral/fractal dimensions

A few simple observations about dimension:

- Dimension often related to certain "degree of connectivity", # of neighborhoods of a point
- Graphs not embedded in any background: generally have spectral/fractal dimensions
- Embedded graphs have dimension of the background

A few simple observations about dimension:

- Dimension often related to certain "degree of connectivity", # of neighborhoods of a point
- Graphs not embedded in any background: generally have spectral/fractal dimensions
- Embedded graphs have dimension of the background

Dimension? Limiting behavior of growth function a good candidate: (upper and lower) **Internal scaling dimension**

$$\overline{D}_{s}(v_{i}) := \limsup_{r \to \infty} \frac{\ln \left(\beta \left(v_{i}, r\right)\right)}{\ln(r)} , \quad \underline{D}_{s}(v_{i}) := \liminf_{r \to \infty} \frac{\ln \left(\beta \left(v_{i}, r\right)\right)}{\ln(r)}$$

in general different and non-integer.

Some properties of internal scaling dimension:

• Related to connectivity, # of neighbors, and how it grows.

Some properties of internal scaling dimension:

- Related to connectivity, # of neighbors, and how it grows.
- In embedded graphs, regular lattices:

 $\overline{D}_{s}(v_{i}) = \underline{D}_{s}(v_{i}) = D_{s}(v_{i}) \quad \forall v_{i} \in V(G)$

Some properties of internal scaling dimension:

- Related to connectivity, # of neighbors, and how it grows.
- In embedded graphs, regular lattices:

 $\overline{D}_{s}(v_{i}) = \underline{D}_{s}(v_{i}) = D_{s}(v_{i}) \quad \forall v_{i} \in V(G)$

Valence locally finite in G: D
_s(v_i) & D_s(v_i) independent of reference v_i.

- Related to connectivity, # of neighbors, and how it grows.
- In embedded graphs, regular lattices: $\overline{D}_s(v_i) = \underline{D}_s(v_i) = D_s(v_i) \quad \forall v_i \in V(G)$
- Valence locally finite in G: D
 _s(v_i) & D_s(v_i) independent of reference v_i.
- $\overline{D}_s(v_i)$ and $\underline{D}_s(v_i)$ invariant under *k*-local edge operations (add/remove edges $G_1 \rightarrow G_2$, only done to e_{ij} where $v_j \in B_{G_1}(v_i, k) \Rightarrow v_j \in B_{G_2}(v_i, k)$)

- Related to connectivity, # of neighbors, and how it grows.
- In embedded graphs, regular lattices: $\overline{D}_s(v_i) = \underline{D}_s(v_i) = D_s(v_i) \quad \forall v_i \in V(G)$
- Valence locally finite in G: D
 _s(v_i) & D_s(v_i) independent of reference v_i.
- D
 _s(v_i) and D
 _s(v_i) invariant under k-local edge operations (add/remove edges G₁ → G₂, only done to e_{ij} where v_j ∈ B_{G1} (v_i, k) ⇒ v_j ∈ B_{G2} (v_i, k))
- In *G* with (uniform) polynomial growth: internal scaling dimension=degree of polynomial growth.

- Related to connectivity, # of neighbors, and how it grows.
- In embedded graphs, regular lattices: $\overline{D}_s(v_i) = \underline{D}_s(v_i) = D_s(v_i) \quad \forall v_i \in V(G)$
- Valence locally finite in G: D
 _s(v_i) & D_s(v_i) independent of reference v_i.
- D
 _s(v_i) and D
 _s(v_i) invariant under k-local edge operations (add/remove edges G₁ → G₂, only done to e_{ij} where v_j ∈ B_{G1} (v_i, k) ⇒ v_j ∈ B_{G2} (v_i, k))
- In *G* with (uniform) polynomial growth: internal scaling dimension=degree of polynomial growth.
- Stability of dimension under coarse graining: Degree of polynomial growth and thus internal scaling dimension, preserved under quasi-isometry: $G_i \xrightarrow{\text{quasi-isometry}} G_{i+1}$

- Related to connectivity, # of neighbors, and how it grows.
- In embedded graphs, regular lattices: $\overline{D}_s(v_i) = \underline{D}_s(v_i) = D_s(v_i) \quad \forall v_i \in V(G)$
- Valence locally finite in G: D
 _s(v_i) & D_s(v_i) independent of reference v_i.
- D
 _s(v_i) and D
 _s(v_i) invariant under k-local edge operations (add/remove edges G₁ → G₂, only done to e_{ij} where v_j ∈ B_{G1} (v_i, k) ⇒ v_j ∈ B_{G2} (v_i, k))
- In *G* with (uniform) polynomial growth: internal scaling dimension=degree of polynomial growth.
- **Stability of dimension under coarse graining**: Degree of polynomial growth and thus internal scaling dimension, preserved under quasi-isometry: $G_i \xrightarrow{\text{quasi-isometry}} G_{i+1}$
- Integer dimension: Vertex transitive graphs with polynomial growth have integer dim

Under this coarse graining scheme:

Internal scaling dimension is stable under quasi-isometry (coarse graining)

Under this coarse graining scheme:

- Internal scaling dimension is stable under quasi-isometry (coarse graining)
- To have integer final dim, G_0 should have integer dim = initial condition
 - Vertex transitive graphs a candidate class, includes Cayley.

Under this coarse graining scheme:

- Internal scaling dimension is stable under quasi-isometry (coarse graining)
- To have integer final dim, G_0 should have integer dim = initial condition
 - Vertex transitive graphs a candidate class, includes Cayley.
- All the layers have the same dim (Good or bad? Weakness or prediction?)

Under this coarse graining scheme:

- Internal scaling dimension is stable under quasi-isometry (coarse graining)
- To have integer final dim, G_0 should have integer dim = initial condition
 - Vertex transitive graphs a candidate class, includes Cayley.
- All the layers have the same dim (Good or bad? Weakness or prediction?)

Bottom line: starting from a vertex transitive graph G_0 with uniform polynomial growth, and coarse graining by $G_i \xrightarrow{\text{quasi-isometry}} G_{i+1}$, all G_i guaranteed to have integer dim.

lf

Initial condition: G₀ vertex transitive graph with uniform polynomial growth (or any graph with uniform polynomial growth or integer dim)

lf

- Initial condition: G₀ vertex transitive graph with uniform polynomial growth (or any graph with uniform polynomial growth or integer dim)
- Coarse graining: some kind of quasi-isometry

lf

- Initial condition: G₀ vertex transitive graph with uniform polynomial growth (or any graph with uniform polynomial growth or integer dim)
- Coarse graining: some kind of quasi-isometry
- Means of comparison and convergence: d_{GH}

lf

- Initial condition: G₀ vertex transitive graph with uniform polynomial growth (or any graph with uniform polynomial growth or integer dim)
- Coarse graining: some kind of quasi-isometry
- Means of comparison and convergence: d_{GH}

A fixed point (Hausdorff limit) with an integer dim is guaranteed
Continuum Limit

• An idea how to get a topological/PL manifold out of a graph.

- Main theorem: A D-dimensional simplicial complex is a PL-manifold if the link of every vertex in the complex is topologically a (D – 1)-sphere [Thurston]
 - Link: given a vertex v in a simplicial complex, consider the set of all simplices σ_i which have v on their boundary; then the link of v is the union of all other simplices on the boundary of those σ_i which do not contain v.

- Main theorem: A D-dimensional simplicial complex is a PL-manifold if the link of every vertex in the complex is topologically a (D – 1)-sphere [Thurston]
 - Link: given a vertex v in a simplicial complex, consider the set of all simplices σ_i which have v on their boundary; then the link of v is the union of all other simplices on the boundary of those σ_i which do not contain v.
 - Essentially, prove that each point has a neighborhood in the complex that is homeomorphic to a ball.

- Main theorem: A D-dimensional simplicial complex is a PL-manifold if the link of every vertex in the complex is topologically a (D – 1)-sphere [Thurston]
 - Link: given a vertex v in a simplicial complex, consider the set of all simplices σ_i which have v on their boundary; then the link of v is the union of all other simplices on the boundary of those σ_i which do not contain v.
 - Essentially, prove that each point has a neighborhood in the complex that is homeomorphic to a ball.

Argument steps:

Given *G*, find the corresponding (Voronoi) cell complex.

- Main theorem: A D-dimensional simplicial complex is a PL-manifold if the link of every vertex in the complex is topologically a (D – 1)-sphere [Thurston]
 - Link: given a vertex v in a simplicial complex, consider the set of all simplices σ_i which have v on their boundary; then the link of v is the union of all other simplices on the boundary of those σ_i which do not contain v.
 - Essentially, prove that each point has a neighborhood in the complex that is homeomorphic to a ball.

Argument steps:

- Given *G*, find the corresponding (Voronoi) cell complex.
- Produce a simplicial complex that is PL equivalent to this cell complex
 - barycentric decomposition

22/24

- Main theorem: A D-dimensional simplicial complex is a PL-manifold if the link of every vertex in the complex is topologically a (D – 1)-sphere [Thurston]
 - Link: given a vertex v in a simplicial complex, consider the set of all simplices σ_i which have v on their boundary; then the link of v is the union of all other simplices on the boundary of those σ_i which do not contain v.
 - Essentially, prove that each point has a neighborhood in the complex that is homeomorphic to a ball.

Argument steps:

- Given *G*, find the corresponding (Voronoi) cell complex.
- Produce a simplicial complex that is PL equivalent to this cell complex
 - barycentric decomposition
- Is link of every vertex in the complex is topologically a (D-1)-sphere?

- Start from a graph with simple dynamics (more flexible version of cellular automata)
- Excitations 1D edges

- Start from a graph with simple dynamics (more flexible version of cellular automata)
- Excitations 1D edges

Corase graining (Ising-like): specific type of quasi-isometry, *k*-local edge deletion:

• In G_i , find complete graphs $K_n^{(i)}$.

- Start from a graph with simple dynamics (more flexible version of cellular automata)
- Excitations 1D edges

Corase graining (Ising-like): specific type of quasi-isometry, *k*-local edge deletion:

- In G_i , find complete graphs $K_n^{(i)}$.
- G_{i+1} will have
 - $K_n^{(i)}$ of G_i as vertices $v_j(G_{i+1})$

- Start from a graph with simple dynamics (more flexible version of cellular automata)
- Excitations 1D edges

Corase graining (Ising-like): specific type of quasi-isometry, *k*-local edge deletion:

- In G_i , find complete graphs $K_n^{(i)}$.
- G_{i+1} will have
 - $K_n^{(i)}$ of G_i as vertices $v_j(G_{i+1})$

Edges between v_i(G_{i+1}) and v_i(G_{i+1}) if corresponding K⁽ⁱ⁾_n's have sufficient vertex overlap in G_i

- Start from a graph with simple dynamics (more flexible version of cellular automata)
- Excitations 1D edges

Corase graining (Ising-like): specific type of quasi-isometry, *k*-local edge deletion:

- In G_i , find complete graphs $K_n^{(i)}$.
- G_{i+1} will have
 - $K_n^{(i)}$ of G_i as vertices $v_j(G_{i+1})$

• Each (subcollection of) layer(s) potentially has own topology/geometry

- Start from a graph with simple dynamics (more flexible version of cellular automata)
- Excitations 1D edges

Corase graining (Ising-like): specific type of quasi-isometry, *k*-local edge deletion:

- In G_i , find complete graphs $K_n^{(i)}$.
- G_{i+1} will have
 - $K_n^{(i)}$ of G_i as vertices $v_j(G_{i+1})$

- Edges between v_j(G_{i+1}) and v_l(G_{i+1}) if corresponding K⁽ⁱ⁾_n 's have sufficient vertex overlap in G_i
- Each (subcollection of) layer(s) potentially has own topology/geometry
- Each (supposedly) smooth spacetime point has internal structure/DoF

- Start from a graph with simple dynamics (more flexible version of cellular automata)
- Excitations 1D edges

Corase graining (Ising-like): specific type of quasi-isometry, *k*-local edge deletion:

- In G_i , find complete graphs $K_n^{(i)}$.
- G_{i+1} will have
 - $K_n^{(i)}$ of G_i as vertices $v_j(G_{i+1})$

Edges between v_j(G_{i+1}) and v_l(G_{i+1}) if corresponding K⁽ⁱ⁾_n 's have sufficient vertex overlap in G_i

- Each (subcollection of) layer(s) potentially has own topology/geometry
- Each (supposedly) smooth spacetime point has internal structure/DoF
- Points far w.r.t. smooth spacetime metric may internally be close

- Start from a graph with simple dynamics (more flexible version of cellular automata)
- Excitations 1D edges

Corase graining (Ising-like): specific type of quasi-isometry, *k*-local edge deletion:

- In G_i , find complete graphs $K_n^{(i)}$.
- G_{i+1} will have
 - $K_n^{(i)}$ of G_i as vertices $v_j(G_{i+1})$

- Each (subcollection of) layer(s) potentially has own topology/geometry
- Each (supposedly) smooth spacetime point has internal structure/DoF
- Points far w.r.t. smooth spacetime metric may internally be close
 - Entanglement and non-locality?
 - ER=EPR, BH info paradox?

Summary/Future directions

What is done up to now:

- In super space of all metric spaces, there are sequences of graphs that have a fixed point w.r.t. quasi-isometry and *d*_{GH}.
- Starting from a large class of graphs (vertex transitive & uniform polynomial growth), a fixed point (Hausdorff limit) with integer dim is guaranteed.
- Convergence and integer dim are compatible; seemingly go hand in hand
- Completely background independent, bottom-up and generic (no decomposition of a manifold)

Summary/Future directions

Future direction (a lot!):

- Explore smoothness, metric in fixed point resembles spacetime metric?
- Beyond polynomial growth? exponential growth etc.
- Apply to spin networks/foams. Edge color play a rule? Changes under coarse graining? LQG an effective theory?
- Explore relation to other coarse graining methods
- Expand to more methods of coarse graining? Also use more of Coarse Geometry methods
- Is metric space analysis enough? need to check more structure?
- Connections between graph of groups and Cayley graphs, and spin networks/foams?
- Random graphs
- Less restriction on dim (different fractal dim for each level)?