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Introduction:
The Birds Eye View Of The Idea
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Bird’s eye view
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Bird’s eye view

@ Take the superspace of all metric spaces S = {s;| (s;, d;) metric space}.
Define relevant dimension for relevant s; € S.
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@ Put a suitable metric ds on S = (S, ds) a super metric space.
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@ Propose a coarse graining scheme in (S, ds):
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Bird’s eye view

@ Take the superspace of all metric spaces S = {s;| (s;, d;) metric space}.
Define relevant dimension for relevant s; € S.

I
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ds defines convergence
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@ Propose a coarse graining scheme in (S, ds):

Start from a graph.
Produce a sequence {(Gj, dg,)} C (S, ds).
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@ Existence of a fixed point: {(G;, dg,)} converges to (X, dx) w.r.t. ds?
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Define relevant dimension for relevant s; € S.
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@ Put a suitable metric ds on S = (S, ds) a super metric space.
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@ Existence of a fixed point: {(G;, dg,)} converges to (X, dx) w.r.t. ds?
Q dim (X) = 3(+1)?
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Bird’s eye view

@ Take the superspace of all metric spaces S = {s;| (s;, d;) metric space}.

Define relevant dimension for relevant s; € S.

I
@ Put a suitable metric ds on S = (S, ds) a super metric space.

ds defines some comparison (of physical relevance e.g. isometry).
ds defines convergence

4
@ Propose a coarse graining scheme in (S, ds):

Start from a graph.
Produce a sequence {(Gj, dg,)} C (S, ds).

I
@ Existence of a fixed point: {(G;, dg,)} converges to (X, dx) w.r.t. ds?
Q dim(X) =3(+1)?
@ X a manifold (at least topological)?
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Setting The Stage:

Some Graph Theoretic Definitions
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Some basic graph concepts - 1

A graph G = (V,E) ; vertices v; c V;edges g; c E C V x V;if g; # g;
directed graph.

Locally bounded valence: valence finite Vv; € G
Globally bounded valence: valence < oo on G
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Some basic graph concepts - 1

A graph G = (V,E) ; vertices v; c V;edges g; c E C V x V;if g; # g;
directed graph.

Locally bounded valence: valence finite Vv; € G

Globally bounded valence: valence < oo on G

Path ~: an edge sequence without repetition of vertices, except of
initial/terminal vertex.

Connected graph: 3y for each v;, v; € G.

Length of path /(v): number of edges occurring in the path.
Geodesic path: path of minimal length between two vertices

d(v;, v;) := min{/(),~ connects v; with v;}
v
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Length of path /(v): number of edges occurring in the path.
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d(v;, v;) := min{/(),~ connects v; with v;}
v

With geodesic path as metric: Any (not)connected graph G is a (psedo)metric
space (G, d)
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Some basic graph concepts - 1

A graph G = (V,E) ; vertices v; c V;edges g; c E C V x V;if g; # g;
directed graph.

Locally bounded valence: valence finite Vv; € G

Globally bounded valence: valence < oo on G

Path ~: an edge sequence without repetition of vertices, except of
initial/terminal vertex.

Connected graph: 3y for each v;, v; € G.

Length of path /(v): number of edges occurring in the path.
Geodesic path: path of minimal length between two vertices

d(v;, v;) := min{/(),~ connects v; with v;}
v

With geodesic path as metric: Any (not)connected graph G is a (psedo)metric
space (G, d)

Ball of radius r centered at x € M in a metric space (M, d):
B(x,r)={y e M[d(x,y) < r}

Saeed Rastgoo (UAM-I, Mexico) Discrete to continuum: the Gromov—-Hausdorff space 4th EFI, Tux, Feb. 18, 2016 6/24



Coarse Graining

@ Provide a scheme of coarse graining.

@ How to ignore details, so to be able to check if two spaces are
coarsely similar?
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A class of coarse grainings based on isometry

Isometric embedding: A distant preserving map between two metric spaces
f: (X, dx) — (Y, dy) such that dx(X1 R X2) = dy(f(X1), f(Xz))
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A class of coarse grainings based on isometry

Isometric embedding: A distant preserving map between two metric spaces

f:(X,dx) — (Y, dy) such that dx(xi, ) = dy(f(x1), f(x2))

Quai-isometric embedding: A map f from a metric space,
f: (M, dy) = (Ma,db), , i.e. if there exist constants, A > 1,¢ > 0, such that

1
WXy € My L dh(x,y) — € < (F(x). () < Adh(x,y) + e

i.e. Vx,y € My, the distance between their images is (up to the additive
constant €) within a factor of A of their original distance.
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i.e. Vx,y € My, the distance between their images is (up to the additive
constant €) within a factor of A of their original distance.

Quasi-isomery: a quasi-isometric embedding f in which
Vze M, A 3x e M;: db(z,f(x)) <C.

i.e. every z € M is within the constant distance C of an image point.
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f:(X,dx) — (Y, dy) such that dx(xi, ) = dy(f(x1), f(x2))

Quai-isometric embedding: A map f from a metric space,
f: (M, dy) = (Ma,db), , i.e. if there exist constants, A > 1,¢ > 0, such that

1
WXy € My L dh(x,y) — € < (F(x). () < Adh(x,y) + e

i.e. Vx,y € My, the distance between their images is (up to the additive
constant €) within a factor of A of their original distance.

Quasi-isomery: a quasi-isometric embedding f in which
Vze M, A 3x e M;: db(z,f(x)) <C.

i.e. every z € M is within the constant distance C of an image point.

Quasi-isometry is an equivalence relation on metric spaces that ignores
their small-scale details in favor of their coarse structure.
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Quasi-isometry example:

Equilateral triangle lattice
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Quasi-isometry example:

Equilateral triangle lattice

The integer lattice Z" is quasi-isometric to R":

f:z" - R"
Xty Xn) = (X1, -0y Xn), X € 7Z

@ Distances are preserved.
@ n-tuples € R" are within \/E of n-tuples € Z".
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Comparison And Fixed Point

@ Construct super metric space.
@ Provide a measure of comparing different (coarse grained) spaces.

@ A sequence of spaces are coarsely similar? Converge to a fixed
point?
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dy: Distance of metric subspaces

In (M, d), Hausdorff Distance dy(X, Y)of X, YC M A X, Y #{:
dy (X, Y)=inf{e > 0|[X C U(Y),Y C U(X)}
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dy: Distance of metric subspaces

In (M, d), Hausdorff Distance dy(X, Y)of X, YCM A X,Y #£0:
dy (X, Y) =inf{e > 0|X C U(Y), Y C UX)}

e-neighborhood of a subset
In (M, d), e-neighborhood of X C M: union of all e-balls around all x € X

U(X) = | J {z e Mld(z,x) < ¢}

xeX

All points within € of the set X, or generalized ball of radius e around X.
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dy: Distance of metric subspaces

In (M, d), Hausdorff Distance dy(X, Y)of X, YC M A X, Y #{:
dy (X, Y)=inf{e > 0|[X C U(Y),Y C U(X)}

@ Set of all non-empty compact (non-compact) subsets of a metric space +
dy = metric (pseudometric) space
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dy: Distance of metric subspaces
In (M, d), Hausdorff Distance dy(X,Y)of X,Y CM A X,Y #{:

du (X, Y) =inf{e > 0|X C U.(Y),Y C U(X)}

@ Set of all non-empty compact (non-compact) subsets of a metric space +
dy = metric (pseudometric) space

How to compare two metric spaces? Gromov-Hausdorff distance

Saeed Rastgoo (UAM-I, Mexico) Discrete to continuum: the Gromov-Hausdorff space 4th EFI, Tux, Feb. 18, 2016 11/24



dy: Distance of metric subspaces

In (M, d), Hausdorff Distance dy(X,Y)of X,YC M A X, Y # (:
dy (X, Y)=inf{e > 0|[X C U(Y),Y C U(X)}

@ Set of all non-empty compact (non-compact) subsets of a metric space +
dy = metric (pseudometric) space

How to compare two metric spaces? Gromov-Hausdorff distance

@ Roughly speaking, define something similar to dy is the superset of all
metric spaces, or
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dy: Distance of metric subspaces
In (M, d), Hausdorff Distance dy(X,Y)of X,Y CM A X,Y #{:

du (X, Y) =inf{e > 0|X C U.(Y),Y C U(X)}

@ Set of all non-empty compact (non-compact) subsets of a metric space +
dy = metric (pseudometric) space

How to compare two metric spaces? Gromov-Hausdorff distance

@ Roughly speaking, define something similar to dy is the superset of all
metric spaces, or

@ Make them subspace of another metric space.
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dgn: Distance of metric spaces, convergence

The Gromov-Hausdorff Distance dgy of compact (X, dx), (Y, dy)
den (X, Y) = inf df (f(X),9(Y))

of all metric spaces Z and isometric embeddings f: X - Z,g: Y - Z
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dgn: Distance of metric spaces, convergence

The Gromov-Hausdorff Distance dgy of compact (X, dx), (Y, dy)
der (X, Y) = inf df (f(X), g(Y))

of all metric spaces Z and isometric embeddings f: X - Z,g: Y - Z

@ Measures how far two compact metric spaces are from being isometric:
Two compact spaces, X, Y, are isometric iff dgy(X, Y) = 0.
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dgn: Distance of metric spaces, convergence

The Gromov-Hausdorff Distance dgy of compact (X, dx), (Y, dy)
der (X, Y) = inf df (f(X), g(Y))

of all metric spaces Z and isometric embeddings f: X - Z,g: Y - Z

@ Measures how far two compact metric spaces are from being isometric:

Two compact spaces, X, Y, are isometric iff dgy(X, Y) = 0.

@ Turns the set of all isometry classes of compact metric spaces into a
metric space: The Gromov-Hausdorff space
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dgn: Distance of metric spaces, convergence

The Gromov-Hausdorff Distance dgy of compact (X, dx), (Y, dy)

dan (X, Y) = inf o (f(X), g(Y))

of all metric spaces Z and isometric embeddings f: X - Z,g: Y - Z
@ Measures how far two compact metric spaces are from being isometric:
Two compact spaces, X, Y, are isometric iff dgy(X, Y) = 0.
@ Turns the set of all isometry classes of compact metric spaces into a
metric space: The Gromov-Hausdorff space
@ Defines a notion of convergence for sequences of compact metric
spaces: The Gromov-Hausdorff convergence
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dgn: Distance of metric spaces, convergence

The Gromov-Hausdorff Distance dgy of compact (X, dx), (Y, dy)
der (X, Y) = inf df (f(X), g(Y))

of all metric spaces Z and isometric embeddings f: X - Z,g: Y - Z

@ Measures how far two compact metric spaces are from being isometric:

Two compact spaces, X, Y, are isometric iff dgy(X, Y) = 0.

@ Turns the set of all isometry classes of compact metric spaces into a
metric space: The Gromov-Hausdorff space

@ Defines a notion of convergence for sequences of compact metric
spaces: The Gromov-Hausdorff convergence

@ Hausdorff limit: A metric space to which such a sequence converges
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dgn: Distance of metric spaces, convergence

The Gromov-Hausdorff Distance dgy of compact (X, dx), (Y, dy)
der (X, Y) = inf df (f(X), g(Y))

of all metric spaces Z and isometric embeddings f: X - Z,g: Y - Z

@ Measures how far two compact metric spaces are from being isometric:

Two compact spaces, X, Y, are isometric iff dgy(X, Y) = 0.

@ Turns the set of all isometry classes of compact metric spaces into a
metric space: The Gromov-Hausdorff space

@ Defines a notion of convergence for sequences of compact metric
spaces: The Gromov-Hausdorff convergence

@ Hausdorff limit: A metric space to which such a sequence converges

How to deal with (i.e. define convergence for) non-compact spaces?
Pointed convergence...
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Pointed convergence, uniform compactness

Pointed convergence: Given a sequence (X, x; € X;) of (locally compact
complete) metric spaces with distinguished points, it converges to (X, x) if for

any R > 0 the sequence of closed R-balls, B(x;, R), converges to B(x, R) in X
in dgy sense.
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Pointed convergence: Given a sequence (X, x; € X;) of (locally compact
complete) metric spaces with distinguished points, it converges to (X, x) if for

any R > 0 the sequence of closed R-balls, B(x;, R), converges to B(x, R) in X
in dgy sense.

Especially useful in uniformly compact spaces.
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Pointed convergence, uniform compactness

Pointed convergence: Given a sequence (X, x; € X;) of (locally compact
complete) metric spaces with distinguished points, it converges to (X, x) if for
any R > 0 the sequence of closed R-balls, B(x;, R), converges to B(x, R) in X
in dgy sense.

Especially useful in uniformly compact spaces.

Set (or sequence) of compact {(X;, d;)} are uniformly compact if:
@ Diameters D; uniformly bounded: 3R € R|D; < R, VX.

@ For each e > 0, X; is coverable by N, < oo balls of radius ¢ independent
of the index i.
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Growth

Growth function 3(G, v;, r) in a graph G is the number of vertices in a ball of
radius r:

B(G,vi,r) = |Bg(vi, )|

G has polynomial growth: 3(G, v;,r) < rP ~ ArP for D > 0.

G has uniform polynomial growth (uniform polynomial growth):
Ard < 3(G, vi,r) < Br?

and A, B, d > 0. (for locally finite graph, is indep. of v})

Degree of polynomial growth:

D(G) =lim sup (ﬁ((rG)r))

may not be an integer.
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Existence of fixed point: chain of argument

@ Start from a graph Gy with unif. polyn. growth (e.g. Cayley; local. fin.
vert. transit.)
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Existence of fixed point: chain of argument

@ Start from a graph Gy with unif. polyn. growth (e.g. Cayley; local. fin.
vert. transit.)

i-i 1
@ Produce G; "% G;,4. Globally bounded valence.
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Existence of fixed point: chain of argument

@ Start from a graph Gy with unif. polyn. growth (e.g. Cayley; local. fin.
vert. transit.)

i-i 1
@ Produce G; "% G;,4. Globally bounded valence.

@ Quasi-isomery preserves growth deg.
@ G has unif. polyn. growth = G4 has uniform polynomial growth
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Existence of fixed point: chain of argument

@ Start from a graph Gy with unif. polyn. growth (e.g. Cayley; local. fin.
vert. transit.)
@ Produce G "™ G,, ;. Globally bounded valence.

@ Quasi-isomery preserves growth deg.
@ G has unif. polyn. growth = G4 has uniform polynomial growth

@ If Go has unif. polyn. grow., and G; "% G..; : The balls B(x;, R) of
a sequence {G;} are uniformly compact.
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Existence of fixed point: chain of argument

@ Start from a graph Gy with unif. polyn. growth (e.g. Cayley; local. fin.
vert. transit.)
@ Produce G "™ G,, ;. Globally bounded valence.
@ Quasi-isomery preserves growth deg.
@ G has unif. polyn. growth = G4 has uniform polynomial growth
@ If Go has unif. polyn. grow., and G; "% G..; : The balls B(x;, R) of
a sequence {G;} are uniformly compact.

Q IfvYRand e > 0, balls B(x;, R) of a given sequence {(Xj, x;)} are uniformly
compact, then (a subsequence of spaces of) {(Xj, x;)} converges in
pointed dgy sense.
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Existence of fixed point: chain of argument

@ Start from a graph Gy with unif. polyn. growth (e.g. Cayley; local. fin.
vert. transit.)

Q@ Produce G; ““ ™ G..,. Globally bounded valence.
@ Quasi-isomery preserves growth deg.
@ G has unif. polyn. growth = G4 has uniform polynomial growth
@ If Go has unif. polyn. grow., and G; "% G..; : The balls B(x;, R) of
a sequence {G;} are uniformly compact.

©Q IfYRand e > 0, balls B(x;, R) of a given sequence {(Xj, x;)} are uniformly
compact, then (a subsequence of spaces of) {(Xj, x;)} converges in
pointed dgy sense.

Fixed point: The sequence of {G;} with initial condition G, of uniform

polynomial growth, and G;
converges in pointed dgy sense.

L)
IO Giy 1 (has a subsequence that)
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Dimension

@ Introduce a candidate.
@ Conditions for integer dimension?
@ Behavior of dimension under coarse graining?
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A first look at dimension: a definition

A few simple observations about dimension:
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A few simple observations about dimension:

@ Dimension often related to certain “degree of connectivity”, # of
neighborhoods of a point
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@ Dimension often related to certain “degree of connectivity”, # of
neighborhoods of a point

@ Graphs not embedded in any background: generally have spectral/fractal
dimensions
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A first look at dimension: a definition

A few simple observations about dimension:

@ Dimension often related to certain “degree of connectivity”, # of
neighborhoods of a point

@ Graphs not embedded in any background: generally have spectral/fractal
dimensions

@ Embedded graphs have dimension of the background

Dimension? Limiting behavior of growth function a good candidate: (upper
and lower) Internal scaling dimension

Ds(vi) := lim SUPM Dg(vi) :=lim infw

TS B o In(r)

in general different and non-integer.
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Stability under coarse graining, integerness

Some properties of internal scaling dimension:
@ Related to connectivity, # of neighbors, and how it grows.
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Stability under coarse graining, integerness

Some properties of internal scaling dimension:
@ Related to connectivity, # of neighbors, and how it grows.

@ In embedded graphs, regular lattices:
Ds(vi) = Dy(vi) = Ds(vi) Vv; € V(G)
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Stability under coarse graining, integerness

Some properties of internal scaling dimension:
@ Related to connectivity, # of neighbors, and how it grows.
@ In embedded graphs, regular lattices:
Ds(vi) = Ds(vi) = Ds(vi) Vv, € V(G)
@ Valence locally finite in G: Ds(v;) & D4(v;) independent of reference v;.
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Stability under coarse graining, integerness

Some properties of internal scaling dimension:
@ Related to connectivity, # of neighbors, and how it grows.
@ In embedded graphs, regular lattices:
Ds(vi) = Ds(vi) = Ds(vi) Vv, € V(G)
@ Valence locally finite in G: Ds(v;) & D4(v;) independent of reference v;.

@ Dg(v;) and Dy(v;) invariant under k-local edge operations (add/remove
edges Gy — Gg, only done to e; where v; € Bg, (v, k) = Vv; € Bg, (vi, k))
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Stability under coarse graining, integerness

Some properties of internal scaling dimension:
@ Related to connectivity, # of neighbors, and how it grows.
@ In embedded graphs, regular lattices:
Ds(vi) = Dy(vi) = Ds(vi) v, € V(G)
@ Valence locally finite in G: Ds(v;) & D,(v;) independent of reference v;.

@ Ds(v;) and D4(v;) invariant under k-local edge operations (add/remove
edges Gy — G, only done to ej where v; € Bg, (Vi, k) = Vv; € Bg, (Vi, k))

@ In G with (uniform) polynomial growth: internal scaling dimension=degree
of polynomial growth.
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Stability under coarse graining, integerness

Some properties of internal scaling dimension:

@ Related to connectivity, # of neighbors, and how it grows.

@ In embedded graphs, regular lattices:
Ds(vi) = Dy(vi) = Ds(vi) Yvi € V(G)

@ Valence locally finite in G: Ds(v;) & D,(v;) independent of reference v;.

@ Ds(v;) and D4(v;) invariant under k-local edge operations (add/remove
edges Gy — G, only done to ej where v; € Bg, (Vi, k) = Vv; € Bg, (Vi, k))

@ In G with (uniform) polynomial growth: internal scaling dimension=degree
of polynomial growth.

@ Stability of dimension under coarse graining: Degree of polynomial
growth and thus internal scaling dimension, preserved under

quasi-isometry: G; =5 G4
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Stability under coarse graining, integerness

Some properties of internal scaling dimension:

@ Related to connectivity, # of neighbors, and how it grows.

@ In embedded graphs, regular lattices:
Ds(vi) = Dy(vi) = Ds(vi) v, € V(G)

@ Valence locally finite in G: Ds(v;) & D,(v;) independent of reference v;.

@ Ds(v;) and D4(v;) invariant under k-local edge operations (add/remove
edges Gy — G, only done to ej where v; € Bg, (Vi, k) = Vv; € Bg, (Vi, k))

@ In G with (uniform) polynomial growth: internal scaling dimension=degree
of polynomial growth.

@ Stability of dimension under coarse graining: Degree of polynomial

growth and thus internal scaling dimension, preserved under
quasi-isometry
— " Gy

quasi-isometry: G;
@ Integer dimension: Vertex transitive graphs with polynomial growth have
integer dim
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Dimension round up

Under this coarse graining scheme:

@ Internal scaling dimension is stable under quasi-isometry (coarse
graining)
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Dimension round up

Under this coarse graining scheme:
@ Internal scaling dimension is stable under quasi-isometry (coarse
graining)
@ To have integer final dim, Gy should have integer dim = initial condition
» Vertex transitive graphs a candidate class, includes Cayley.
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Dimension round up

Under this coarse graining scheme:
@ Internal scaling dimension is stable under quasi-isometry (coarse
graining)
@ To have integer final dim, Gy should have integer dim = initial condition
» Vertex transitive graphs a candidate class, includes Cayley.

@ All the layers have the same dim (Good or bad? Weakness or
prediction?)
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Dimension round up

Under this coarse graining scheme:
@ Internal scaling dimension is stable under quasi-isometry (coarse
graining)
@ To have integer final dim, Gy should have integer dim = initial condition
» Vertex transitive graphs a candidate class, includes Cayley.

@ All the layers have the same dim (Good or bad? Weakness or
prediction?)

Bottom line: starting from a vertex transitive graph Gp with uniform polynomial

growth, and coarse graining by G: ““ " G, ;, all G; guaranteed to have
integer dim.
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Final word on fixed point and integ. dim

If

@ Initial condition: G, vertex transitive graph with uniform polynomial
growth (or any graph with uniform polynomial growth or integer dim)
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Final word on fixed point and integ. dim

If

@ Initial condition: G, vertex transitive graph with uniform polynomial
growth (or any graph with uniform polynomial growth or integer dim)

@ Coarse graining: some kind of quasi-isometry

Saeed Rastgoo (UAM-I, Mexico) Discrete to continuum: the Gromov-Hausdorff space 4th EFI, Tux, Feb. 18, 2016

20/24



Final word on fixed point and integ. dim

If

@ Initial condition: G, vertex transitive graph with uniform polynomial
growth (or any graph with uniform polynomial growth or integer dim)

@ Coarse graining: some kind of quasi-isometry
© Means of comparison and convergence: dgy
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Final word on fixed point and integ. dim

If

@ Initial condition: G, vertex transitive graph with uniform polynomial
growth (or any graph with uniform polynomial growth or integer dim)

@ Coarse graining: some kind of quasi-isometry
© Means of comparison and convergence: dgy

‘ A fixed point (Hausdorff limit) with an integer dim is guaranteed ‘
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Continuum Limit

@ An idea how to get a topological/PL manifold out of a graph.
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The main steps of the method

@ Main theorem: A D-dimensional simplicial complex is a PL-manifold if
the link of every vertex in the complex is topologically a (D — 1)-sphere
[Thurston]

» Link: given a vertex v in a simplicial complex, consider the set of all
simplices o; which have v on their boundary; then the link of v is the union of
all other simplices on the boundary of those o; which do not contain v.
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The main steps of the method

@ Main theorem: A D-dimensional simplicial complex is a PL-manifold if
the link of every vertex in the complex is topologically a (D — 1)-sphere
[Thurston]

» Link: given a vertex v in a simplicial complex, consider the set of all
simplices o; which have v on their boundary; then the link of v is the union of
all other simplices on the boundary of those ¢; which do not contain v.

» Essentially, prove that each point has a neighborhood in the complex that is
homeomorphic to a ball.
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The main steps of the method

@ Main theorem: A D-dimensional simplicial complex is a PL-manifold if
the link of every vertex in the complex is topologically a (D — 1)-sphere
[Thurston]

» Link: given a vertex v in a simplicial complex, consider the set of all
simplices o; which have v on their boundary; then the link of v is the union of
all other simplices on the boundary of those o; which do not contain v.

» Essentially, prove that each point has a neighborhood in the complex that is
homeomorphic to a ball.

Argument steps:
@ Given G, find the corresponding (Voronoi) cell complex.
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The main steps of the method

@ Main theorem: A D-dimensional simplicial complex is a PL-manifold if
the link of every vertex in the complex is topologically a (D — 1)-sphere
[Thurston]

» Link: given a vertex v in a simplicial complex, consider the set of all
simplices o; which have v on their boundary; then the link of v is the union of
all other simplices on the boundary of those o; which do not contain v.

» Essentially, prove that each point has a neighborhood in the complex that is
homeomorphic to a ball.

Argument steps:
@ Given G, find the corresponding (Voronoi) cell complex.
@ Produce a simplicial complex that is PL equivalent to this cell complex
@ barycentric decomposition
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The main steps of the method

@ Main theorem: A D-dimensional simplicial complex is a PL-manifold if
the link of every vertex in the complex is topologically a (D — 1)-sphere
[Thurston]

» Link: given a vertex v in a simplicial complex, consider the set of all
simplices o; which have v on their boundary; then the link of v is the union of
all other simplices on the boundary of those o; which do not contain v.

» Essentially, prove that each point has a neighborhood in the complex that is
homeomorphic to a ball.

Argument steps:
@ Given G, find the corresponding (Voronoi) cell complex.
@ Produce a simplicial complex that is PL equivalent to this cell complex
@ barycentric decomposition
@ Is link of every vertex in the complex is topologically a (D — 1)-sphere?
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Brief review of SDCN

@ Start from a graph with simple dynamics (more flexible version of cellular
automata)

@ Excitations 1D edges
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Brief review of SDCN

@ Start from a graph with simple dynamics (more flexible version of cellular
automata)

@ Excitations 1D edges

Corase graining (Ising-like): specific type of quasi-isometry, k-local edge
deletion:

@ In G, find complete graphs K,Si).
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Brief review of SDCN

@ Start from a graph with simple dynamics (more flexible version of cellular
automata)

@ Excitations 1D edges

Corase graining (Ising-like): specific type of quasi-isometry, k-local edge
deletion:

@ In G, find complete graphs K,Si).
@ G.1 will have

@ KV of G; as vertices v;(Gi,1) o - -
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Brief review of SDCN

@ Start from a graph with simple dynamics (more flexible version of cellular
automata)

@ Excitations 1D edges

Corase graining (Ising-like): specific type of quasi-isometry, k-local edge

deletion:
@ In G, find complete graphs K
@ G.1 will have

@ KV of G; as vertices v;(Gi,1)
@ Edges between vj(Gj;1) and vi(Gi;1) |f correspondlng K\ s have sufﬂcnent
vertex overlap in G;
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Brief review of SDCN

@ Start from a graph with simple dynamics (more flexible version of cellular
automata)

@ Excitations 1D edges

Corase graining (Ising-like): specific type of quasi-isometry, k-local edge

deletion:
@ In G, find complete graphs K
@ G.1 will have

Qo K of G; as vertices v;(Giy1)
@ Edges between vj(Gj;1) and vi(Gi;1) |f correspondlng K\ s have sufﬂcnent
vertex overlap in G;

@ Each (subcollection of) layer(s) potentially has own topology/geometry
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Brief review of SDCN
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deletion:
@ In G, find complete graphs K
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Qo K of G; as vertices v;(Giy1)
@ Edges between vj(Gj;1) and vi(Gi;1) |f correspondlng K\ s have sufﬂcnent
vertex overlap in G;

@ Each (subcollection of) layer(s) potentially has own topology/geometry
@ Each (supposedly) smooth spacetime point has internal structure/DoF
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Brief review of SDCN

@ Start from a graph with simple dynamics (more flexible version of cellular
automata)

@ Excitations 1D edges

Corase graining (Ising-like): specific type of quasi-isometry, k-local edge

deletion:
@ In G, find complete graphs K
@ G.1 will have

Qo K of G; as vertices v;(Giy1)
@ Edges between vj(Gj;1) and vi(Gi;1) |f correspondlng K\ s have sufﬂcnent
vertex overlap in G;

@ Each (subcollection of) layer(s) potentially has own topology/geometry
@ Each (supposedly) smooth spacetime point has internal structure/DoF
@ Points far w.r.t. smooth spacetime metric may internally be close
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Brief review of SDCN

@ Start from a graph with simple dynamics (more flexible version of cellular
automata)

@ Excitations 1D edges

Corase graining (Ising-like): specific type of quasi-isometry, k-local edge
deletion:
@ In G;, find complete graphs KD
@ G.1 will have
Qo K of G; as vertices v;(Giy1) K e %

@ Edges between vj(Gj;1) and vi(Gj;+) if corresponding K. ’s have sufficient
vertex overlap in G;

@ Each (subcollection of) layer(s) potentially has own topology/geometry
@ Each (supposedly) smooth spacetime point has internal structure/DoF
@ Points far w.r.t. smooth spacetime metric may internally be close

» Entanglement and non-locality?
» ER=EPR, BH info paradox?
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Summary/Future directions

What is done up to now:

@ In super space of all metric spaces, there are sequences of graphs that
have a fixed point w.r.t. quasi-isometry and dgy.

@ Starting from a large class of graphs (vertex transitive & uniform
polynomial growth), a fixed point (Hausdorff limit) with integer dim is
guaranteed.

@ Convergence and integer dim are compatible; seemingly go hand in hand

@ Completely background independent, bottom-up and generic (no
decomposition of a manifold)
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Summary/Future directions

Future direction (a lot!):
@ Explore smoothness, metric in fixed point resembles spacetime metric?
@ Beyond polynomial growth? exponential growth etc.

@ Apply to spin networks/foams. Edge color play a rule? Changes under
coarse graining? LQG an effective theory?

@ Explore relation to other coarse graining methods

@ Expand to more methods of coarse graining? Also use more of Coarse
Geometry methods

@ Is metric space analysis enough? need to check more structure?

@ Connections between graph of groups and Cayley graphs, and spin
networks/foams?

@ Random graphs
@ Less restriction on dim (different fractal dim for each level)?

Saeed Rastgoo (UAM-I, Mexico) Discrete to continuum: the Gromov—-Hausdorff space 4th EFI, Tux, Feb. 18, 2016 24/24



