From discrete to continuum: Lessons from the Gromov-Hausdorff space

Saeed Rastgoo (UAM-I, Mexico)

Based on an ongoing work with Manfred Requardt (University of Göttingen)

Fourth EFI workshop, Tux, Austria, February 18, 2016
Introduction:
The Birds Eye View Of The Idea
Shared Semiclassical Limit Challenges

Semiclassical challenge of theories with discrete/quantum spacetime

Bottom-up: already discrete \(\downarrow\) coarse grain

Top-down: quantize \(\downarrow\) coarse grain

\[\exists \text{ Fixed Point (FP) of coarse graining?}\]

\[\text{Dim of FP = 3+1?}\]

\[\text{FP \approx topol./diff. manifold?}\]

FP satisfies spacetime symmetries, GR EoM etc.?
Bird’s eye view

Convergence

Compare

Fixed point

Coarse Graining

Change of topology, geometry, metric, etc.

Compare

Convergence

Coarse Graining

Compare

Coarse Graining

Compare

Coarse Graining

Saeed Rastgoo (UAM-I, Mexico)
Bird’s eye view

Take the superspace of all metric spaces \(S = \{ s_i \mid (s_i, d_i) \text{ metric space} \} \).

- Define relevant dimension for relevant \(s_i \in S \).
Bird’s eye view

- Take the superspace of all metric spaces \(S = \{ s_i | (s_i, d_i) \text{ metric space} \} \).
 - Define relevant dimension for relevant \(s_i \in S \).
- Put a suitable metric \(d_S \) on \(S \Rightarrow (S, d_S) \) a super metric space.
Bird’s eye view

- Take the superspace of all metric spaces $S = \{s_i| (s_i, d_i) \text{ metric space}\}$.
 - Define relevant dimension for relevant $s_i \in S$.

 \[\Downarrow \]

- Put a suitable metric d_S on $S \Rightarrow (S, d_S)$ a super metric space.
 - d_S defines some comparison (of physical relevance e.g. isometry).
Bird’s eye view

- Take the superspace of all metric spaces $S = \{ s_i | (s_i, d_i) \text{ metric space} \}$.
 - Define relevant dimension for relevant $s_i \in S$.

- Put a suitable metric d_S on $S \Rightarrow (S, d_S)$ a super metric space.
 - d_S defines some comparison (of physical relevance e.g. isometry).
 - d_S defines convergence
Bird’s eye view

- Take the superspace of all metric spaces $S = \{s_i | (s_i, d_i) \text{ metric space}\}$.
 - Define relevant dimension for relevant $s_i \in S$.

 \Downarrow

- Put a suitable metric d_S on $S \Rightarrow (S, d_S)$ a super metric space.
 - d_S defines some comparison (of physical relevance e.g. isometry).
 - d_S defines convergence.

 \Downarrow

- Propose a coarse graining scheme in (S, d_S):
Bird’s eye view

- Take the superspace of all metric spaces $S = \{ s_i \mid (s_i, d_i) \text{ metric space} \}$.
 - Define relevant dimension for relevant $s_i \in S$.

- Put a suitable metric d_S on $S \Rightarrow (S, d_S)$ a super metric space.
 - d_S defines some comparison (of physical relevance e.g. isometry).
 - d_S defines convergence.

- Propose a coarse graining scheme in (S, d_S):
 - Start from a graph.
Bird’s eye view

- Take the superspace of all metric spaces \(S = \{s_i| (s_i, d_i) \text{ metric space}\}. \)
 - Define relevant dimension for relevant \(s_i \in S. \)

\[\downarrow \]

- Put a suitable metric \(d_S \) on \(S \Rightarrow (S, d_S) \text{ a super metric space.} \)
 - \(d_S \) defines some comparison (of physical relevance e.g. isometry).
 - \(d_S \) defines convergence

\[\downarrow \]

- Propose a coarse graining scheme in \((S, d_S) \):
 - Start from a graph.
 - Produce a sequence \(\{(G_i, d_{G_i})\} \subset (S, d_S). \)
Bird’s eye view

- Take the superspace of all metric spaces $S = \{s_i| (s_i, d_i) \text{ metric space}\}$.
 - Define relevant dimension for relevant $s_i \in S$.

- Put a suitable metric d_S on $S \Rightarrow (S, d_S)$ a super metric space.
 - d_S defines some comparison (of physical relevance e.g. isometry).
 - d_S defines convergence

- Propose a coarse graining scheme in (S, d_S):
 - Start from a graph.
 - Produce a sequence $\{(G_i, d_{G_i})\} \subset (S, d_S)$.

- Existence of a fixed point: $\{(G_i, d_{G_i})\}$ converges to (X, d_X) w.r.t. d_S?
Bird’s eye view

- Take the superspace of all metric spaces $S = \{s_i \mid (s_i, d_i) \text{ metric space}\}$.
 - Define relevant dimension for relevant $s_i \in S$.

 \Downarrow

- Put a suitable metric d_S on $S \Rightarrow (S, d_S)$ a super metric space.
 - d_S defines some comparison (of physical relevance e.g. isometry).
 - d_S defines convergence

 \Downarrow

- Propose a coarse graining scheme in (S, d_S):
 - Start from a graph.
 - Produce a sequence $\{(G_i, d_{G_i})\} \subset (S, d_S)$.

 \Downarrow

- Existence of a fixed point: $\{(G_i, d_{G_i})\}$ converges to (X, d_X) w.r.t. d_S?
- $\dim(X) = 3(+1)$?
Bird’s eye view

- Take the superspace of all metric spaces \(S = \{ s_i \mid (s_i, d_i) \text{ metric space} \} \).
 - Define relevant dimension for relevant \(s_i \in S \).

\[\implies \]

- Put a suitable metric \(d_S \) on \(S \Rightarrow (S, d_S) \) a super metric space.
 - \(d_S \) defines some comparison (of physical relevance e.g. isometry).
 - \(d_S \) defines convergence

\[\implies \]

- Propose a coarse graining scheme in \((S, d_S) \):
 - Start from a graph.
 - Produce a sequence \(\{(G_i, d_{G_i})\} \subset (S, d_S) \).

\[\implies \]

1. Existence of a fixed point: \(\{(G_i, d_{G_i})\} \) converges to \((X, d_X) \) w.r.t. \(d_S \)?
2. \(\dim (X) = 3(+1) \)?
3. \(X \) a manifold (at least topological)?
Setting The Stage:
Some Graph Theoretic Definitions
Some basic graph concepts - 1

A graph $G = (V, E)$; vertices $v_i \in V$; edges $e_{ij} \in E \subset V \times V$; if $e_{ij} \neq e_{ji}$ directed graph.

Locally bounded valence: valence finite $\forall v_i \in G$

Globally bounded valence: valence $< \infty$ on G
Some basic graph concepts - 1

A graph $G = (V, E)$; vertices $v_i \in V$; edges $e_{ij} \in E \subseteq V \times V$; if $e_{ij} \neq e_{ji}$

directed graph.

Locally bounded valence: valence finite $\forall v_i \in G$

Globally bounded valence: valence $< \infty$ on G

Path γ: an edge sequence without repetition of vertices, except of initial/terminal vertex.

Connected graph: $\exists \gamma$ for each $v_i, v_j \in G$.

Length of path $l(\gamma)$: number of edges occurring in the path.

Geodesic path: path of minimal length between two vertices

$$d(v_i, v_j) := \min_{\gamma} \{l(\gamma), \gamma \text{ connects } v_i \text{ with } v_j\}$$
Some basic graph concepts - 1

A graph $G = (V, E)$; vertices $v_i \in V$; edges $e_{ij} \in E \subset V \times V$; if $e_{ij} \neq e_{ji}$
directed graph.

Locally bounded valence: valence finite $\forall v_i \in G$
Globally bounded valence: valence $< \infty$ on G

Path γ: an edge sequence without repetition of vertices, except of initial/terminal vertex.
Connected graph: $\exists \gamma$ for each $v_i, v_j \in G$.
Length of path $l(\gamma)$: number of edges occurring in the path.
Geodesic path: path of minimal length between two vertices

$$d(v_i, v_j) := \min_{\gamma} \{ l(\gamma), \gamma \text{ connects } v_i \text{ with } v_j \}$$

With geodesic path as metric: Any (not)connected graph G is a (pseudo)metric space (G, d)
Some basic graph concepts - 1

A graph $G = (V, E)$; vertices $v_i \in V$; edges $e_{ij} \in E \subseteq V \times V$; if $e_{ij} \neq e_{ji}$ directed graph.

Locally bounded valence: valence finite $\forall v_i \in G$

Globally bounded valence: valence $< \infty$ on G

Path γ: an edge sequence without repetition of vertices, except of initial/terminal vertex.

Connected graph: $\exists \gamma$ for each $v_i, v_j \in G$.

Length of path $l(\gamma)$: number of edges occurring in the path.

Geodesic path: path of minimal length between two vertices

$$d(v_i, v_j) := \min_{\gamma} \{ l(\gamma), \gamma \text{ connects } v_i \text{ with } v_j \}$$

With geodesic path as metric: Any (not)connected graph G is a (psedo)metric space (G, d)

Ball of radius r centered at $x \in M$ in a metric space (M, d):

$$B(x, r) = \{ y \in M | d(x, y) \leq r \}$$
Coarse Graining

- Provide a scheme of coarse graining.
- How to ignore details, so to be able to check if two spaces are coarsely similar?
A class of coarse grainings based on isometry

Isometric embedding: A distant preserving map between two metric spaces

\[f : (X, d_X) \to (Y, d_Y) \text{ such that } d_X(x_1, x_2) = d_Y(f(x_1), f(x_2)) \]
A class of coarse grainings based on isometry

Isometric embedding: A distant preserving map between two metric spaces

\[f : (X, d_X) \to (Y, d_Y) \text{ such that } d_X(x_1, x_2) = d_Y(f(x_1), f(x_2)) \]

Quasi-isometric embedding: A map \(f \) from a metric space,

\[f : (M_1, d_1) \to (M_2, d_2), \] i.e. if there exist constants, \(\lambda \geq 1, \epsilon \geq 0 \), such that

\[\forall x, y \in M_1 : \frac{1}{\lambda} d_1(x, y) - \epsilon \leq d_2(f(x), f(y)) \leq \lambda d_1(x, y) + \epsilon, \]

i.e. \(\forall x, y \in M_1 \), the distance between their images is (up to the additive constant \(\epsilon \)) within a factor of \(\lambda \) of their original distance.
A class of coarse grainings based on isometry

Isometric embedding: A distant preserving map between two metric spaces

\[f : (X, d_X) \rightarrow (Y, d_Y) \text{ such that } d_X(x_1, x_2) = d_Y(f(x_1), f(x_2)) \]

Quasi-isometric embedding: A map \(f \) from a metric space,
\[f : (M_1, d_1) \rightarrow (M_2, d_2), \] i.e. if there exist constants, \(\lambda \geq 1, \epsilon \geq 0 \), such that

\[\forall x, y \in M_1 : \frac{1}{\lambda} d_1(x, y) - \epsilon \leq d_2(f(x), f(y)) \leq \lambda d_1(x, y) + \epsilon, \]

i.e. \(\forall x, y \in M_1 \), the distance between their images is (up to the additive constant \(\epsilon \)) within a factor of \(\lambda \) of their original distance.

Quasi-isomery: a quasi-isometric embedding \(f \) in which

\[\forall z \in M_2 \land \exists x \in M_1 : d_2(z, f(x)) \leq C. \]

i.e. every \(z \in M_2 \) is within the constant distance \(C \) of an image point.
A class of coarse grainings based on isometry

Isometric embedding: A distant preserving map between two metric spaces

\[f : (X, d_X) \rightarrow (Y, d_Y) \text{ such that } d_X(x_1, x_2) = d_Y(f(x_1), f(x_2)) \]

Quasi-isometric embedding: A map \(f \) from a metric space, \(f : (M_1, d_1) \rightarrow (M_2, d_2) \), i.e. if there exist constants, \(\lambda \geq 1, \epsilon \geq 0 \), such that

\[\forall x, y \in M_1 : \frac{1}{\lambda} d_1(x, y) - \epsilon \leq d_2(f(x), f(y)) \leq \lambda d_1(x, y) + \epsilon, \]

i.e. \(\forall x, y \in M_1 \), the distance between their images is (up to the additive constant \(\epsilon \)) within a factor of \(\lambda \) of their original distance.

Quasi-isometry: a quasi-isometric embedding \(f \) in which

\[\forall z \in M_2 \land \exists x \in M_1 : d_2(z, f(x)) \leq C. \]

i.e. every \(z \in M_2 \) is within the constant distance \(C \) of an image point.

Quasi-isometry is an equivalence relation on metric spaces that ignores their small-scale details in favor of their coarse structure.
Quasi-isometry example:

Equilateral triangle lattice
Quasi-isometry example:

Equilateral triangle lattice

The integer lattice \(\mathbb{Z}^n \) is quasi-isometric to \(\mathbb{R}^n \):

\[
f : \mathbb{Z}^n \to \mathbb{R}^n
\]

\[
: (x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_n), \quad x_i \in \mathbb{Z}
\]

1. Distances are preserved.
2. \(n \)-tuples \(\in \mathbb{R}^n \) are within \(\sqrt{\frac{n}{4}} \) of \(n \)-tuples \(\in \mathbb{Z}^n \).
Comparison And Fixed Point

- Construct super metric space.
- Provide a measure of comparing different (coarse grained) spaces.
- A sequence of spaces are coarsely similar? Converge to a fixed point?
d_H: Distance of metric subspaces

In (M, d), **Hausdorff Distance** $d_H(X, Y)$ of $X, Y \subset M \land X, Y \neq \emptyset$:

$$d_H(X, Y) = \inf \{\epsilon \geq 0 | X \subseteq U_\epsilon(Y), Y \subseteq U_\epsilon(X)\}$$
d_H: Distance of metric subspaces

In (M, d), **Hausdorff Distance** $d_H(X, Y)$ of $X, Y \subset M$ and $X, Y \neq \emptyset$:

$$d_H(X, Y) = \inf \{ \epsilon \geq 0 \mid X \subseteq U_\epsilon(Y), Y \subseteq U_\epsilon(X) \}$$

ϵ-neighborhood of a subset

In (M, d), ϵ-neighborhood of $X \subset M$: union of all ϵ-balls around all $x \in X$

$$U_\epsilon(X) = \bigcup_{x \in X} \{ z \in M \mid d(z, x) \leq \epsilon \}$$

All points within ϵ of the set X, or generalized ball of radius ϵ around X.
\(d_H: \text{Distance of metric subspaces}\)

In \((M, d)\), **Hausdorff Distance** \(d_H(X, Y)\) of \(X, Y \subset M\) \(\land X, Y \neq \emptyset\):

\[
d_H (X, Y) = \inf \{\epsilon \geq 0 | X \subseteq U_\epsilon(Y), Y \subseteq U_\epsilon(X)\}
\]
d_H: Distance of metric subspaces

In (M, d), **Hausdorff Distance** $d_H(X, Y)$ of $X, Y \subset M \land X, Y \neq \emptyset$:

$$d_H(X, Y) = \inf \{ \epsilon \geq 0 | X \subseteq U_\epsilon(Y), Y \subseteq U_\epsilon(X) \}$$

- Set of all non-empty compact (non-compact) subsets of a metric space + $d_H \Rightarrow$ metric (pseudometric) space
d_H: Distance of metric subspaces

In (M, d), **Hausdorff Distance** $d_H(X, Y)$ of $X, Y \subset M \land X, Y \neq \emptyset$:

$$d_H(X, Y) = \inf \{ \epsilon \geq 0 | X \subseteq U_\epsilon(Y), Y \subseteq U_\epsilon(X) \}$$

- Set of all non-empty compact (non-compact) subsets of a metric space $+$
 $d_H \Rightarrow$ metric (pseudometric) space

How to compare two metric spaces? Gromov-Hausdorff distance
d_H: Distance of metric subspaces

In (M, d), **Hausdorff Distance** $d_H(X, Y)$ of $X, Y \subset M \land X, Y \neq \emptyset$:

$$d_H(X, Y) = \inf \{ \epsilon \geq 0 \mid X \subseteq U_\epsilon(Y), Y \subseteq U_\epsilon(X) \}$$

- Set of all non-empty compact (non-compact) subsets of a metric space + $d_H \Rightarrow$ metric (pseudometric) space

How to compare two metric spaces? Gromov-Hausdorff distance

- Roughly speaking, define something similar to d_H is the superset of all metric spaces, or
d_H: Distance of metric subspaces

In (M, d), **Hausdorff Distance** $d_H(X, Y)$ of $X, Y \subset M \land X, Y \neq \emptyset$:

$$d_H(X, Y) = \inf \{\epsilon \geq 0 | X \subseteq U_\epsilon(Y), Y \subseteq U_\epsilon(X)\}$$

- Set of all non-empty compact (non-compact) subsets of a metric space + $d_H \Rightarrow$ metric (pseudometric) space

How to compare two metric spaces? Gromov-Hausdorff distance

- Roughly speaking, define something similar to d_H is the superset of all metric spaces, or

- Make them subspace of another metric space.
The **Gromov-Hausdorff Distance** d_{GH} of compact $(X, d_X), (Y, d_Y)$

$$d_{GH} (X, Y) = \inf d_Z^H (f(X), g(Y))$$

of all metric spaces Z and isometric embeddings $f : X \to Z$, $g : Y \to Z$
The **Gromov-Hausdorff Distance** d_{GH} of compact $(X, d_X), (Y, d_Y)$

$$d_{GH}(X, Y) = \inf d_H^Z(f(X), g(Y))$$

of all metric spaces Z and isometric embeddings $f : X \to Z, g : Y \to Z$

- Measures how far two compact metric spaces are from being isometric:
 Two compact spaces, X, Y, are isometric iff $d_{GH}(X, Y) = 0$.

d_{GH}: Distance of metric spaces, convergence
The **Gromov-Hausdorff Distance** \(d_{GH} \) of compact \((X, d_X)\), \((Y, d_Y)\)

\[
d_{GH}(X, Y) = \inf d_H^Z (f(X), g(Y))
\]

of all metric spaces \(Z \) and isometric embeddings \(f : X \to Z, \ g : Y \to Z \)

- Measures how far two compact metric spaces are from being isometric:
 Two compact spaces, \(X, Y \), are isometric iff \(d_{GH}(X, Y) = 0 \).
- Turns the set of all isometry classes of compact metric spaces into a metric space: The **Gromov-Hausdorff space**
d_{GH}: Distance of metric spaces, convergence

The **Gromov-Hausdorff Distance** d_{GH} of compact $(X, d_X), (Y, d_Y)$

$$d_{GH} (X, Y) = \inf d^Z_H (f(X), g(Y))$$

of all metric spaces Z and isometric embeddings $f : X \to Z, g : Y \to Z$

- Measures how far two compact metric spaces are from being isometric: Two compact spaces, X, Y, are isometric iff $d_{GH}(X, Y) = 0$.
- Turns the set of all isometry classes of compact metric spaces into a metric space: The **Gromov-Hausdorff space**
- Defines a notion of convergence for sequences of compact metric spaces: The **Gromov-Hausdorff convergence**
The **Gromov-Hausdorff Distance** \(d_{GH} \) of compact \((X, d_X), (Y, d_Y)\)

\[
d_{GH}(X, Y) = \inf d^Z_H (f(X), g(Y))
\]

of all metric spaces \(Z \) and isometric embeddings \(f : X \to Z, g : Y \to Z \)

- Measures how far two compact metric spaces are from being isometric: Two compact spaces, \(X, Y \), are isometric iff \(d_{GH}(X, Y) = 0 \).
- Turns the set of all isometry classes of compact metric spaces into a metric space: The **Gromov-Hausdorff space**
- Defines a notion of convergence for sequences of compact metric spaces: The **Gromov-Hausdorff convergence**
- **Hausdorff limit**: A metric space to which such a sequence converges
\(d_{GH} \): Distance of metric spaces, convergence

The **Gromov-Hausdorff Distance** \(d_{GH} \) of compact \((X, d_X), (Y, d_Y)\)

\[
d_{GH}(X, Y) = \inf d^Z_H(f(X), g(Y))
\]

of all metric spaces \(Z \) and isometric embeddings \(f : X \to Z, g : Y \to Z \)

- Measures how far two compact metric spaces are from being isometric:
 Two compact spaces, \(X, Y \), are isometric iff \(d_{GH}(X, Y) = 0 \).
- Turns the set of all isometry classes of compact metric spaces into a metric space: The **Gromov-Hausdorff space**
- Defines a notion of convergence for sequences of compact metric spaces: The **Gromov-Hausdorff convergence**
- **Hausdorff limit**: A metric space to which such a sequence converges

How to deal with (i.e. define convergence for) non-compact spaces?
Pointed convergence...
Pointed convergence, uniform compactness

Pointed convergence: Given a sequence \((X_i, x_i \in X_i)\) of (locally compact complete) metric spaces with distinguished points, it converges to \((X, x)\) if for any \(R > 0\) the sequence of closed \(R\)-balls, \(B(x_i, R)\), converges to \(B(x, R)\) in \(X\) in \(d_{GH}\) sense.
Pointed convergence, uniform compactness

Pointed convergence: Given a sequence \((X_i, x_i \in X_i)\) of (locally compact complete) metric spaces with distinguished points, it converges to \((X, x)\) if for any \(R > 0\) the sequence of closed \(R\)-balls, \(B(x_i, R)\), converges to \(B(x, R)\) in \(X\) in \(d_{GH}\) sense.
Pointed convergence, uniform compactness

Pointed convergence: Given a sequence \((X_i, x_i \in X_i)\) of (locally compact complete) metric spaces with distinguished points, it converges to \((X, x)\) if for any \(R > 0\) the sequence of closed \(R\)-balls, \(B(x_i, R)\), converges to \(B(x, R)\) in \(X\) in \(d_{GH}\) sense.

Especially useful in uniformly compact spaces.
Pointed convergence, uniform compactness

Pointed convergence: Given a sequence \((X_i, x_i \in X_i)\) of (locally compact complete) metric spaces with distinguished points, it converges to \((X, x)\) if for any \(R > 0\) the sequence of closed \(R\)-balls, \(B(x_i, R)\), converges to \(B(x, R)\) in \(X\) in \(d_{GH}\) sense.

Especially useful in uniformly compact spaces.

Set (or sequence) of compact \(\{(X_i, d_i)\}\) are uniformly compact if:

- Diameters \(D_i\) uniformly bounded: \(\exists R \in \mathbb{R} \mid D_i \leq R, \forall X_i\).
- For each \(\varepsilon > 0\), \(X_i\) is coverable by \(N_{\varepsilon} < \infty\) balls of radius \(\varepsilon\) independent of the index \(i\).
Growth

Growth function \(\beta(G, v_i, r) \) in a graph \(G \) is the number of vertices in a ball of radius \(r \):

\[
\beta(G, v_i, r) := |B_G(v_i, r)|
\]

\(G \) has **polynomial growth**: \(\beta(G, v_i, r) \lesssim r^\bar{D} \approx Ar^\bar{D} \) for \(\bar{D} \geq 0 \).

\(G \) has **uniform polynomial growth** (uniform polynomial growth):

\[
Ar^d \leq \beta(G, v_i, r) \leq Br^d
\]

and \(A, B, d > 0 \). (for locally finite graph, is indep. of \(v_i \))

Degree of polynomial growth:

\[
\bar{D}(G) = \limsup_r \frac{\ln(\beta(G, r))}{\ln(r)}
\]

may not be an integer.
Existence of fixed point: chain of argument

1 Start from a graph G_0 with unif. polyn. growth (e.g. Cayley; local. fin. vert. transit.)
Existence of fixed point: chain of argument

1. Start from a graph G_0 with unif. polyn. growth (e.g. Cayley; local. fin. vert. transit.)

2. Produce $G_i \xrightarrow{\text{quasi-isometry}} G_{i+1}$. Globally bounded valence.
Existence of fixed point: chain of argument

1. Start from a graph G_0 with unif. polyn. growth (e.g. Cayley; local. fin. vert. transit.)

2. Produce $G_i \xrightarrow{\text{quasi-isometry}} G_{i+1}$. Globally bounded valence.
 - 1. Quasi-isometry preserves growth deg.
 - 2. G_i has unif. polyn. growth \Rightarrow G_{i+1} has uniform polynomial growth
Existence of fixed point: chain of argument

1. Start from a graph G_0 with unif. polyn. growth (e.g. Cayley; local. fin. vert. transit.)

2. Produce $G_i \xrightarrow{\text{quasi-isometry}} G_{i+1}$. Globally bounded valence.
 - Quasi-isomery preserves growth deg.
 - G_i has unif. polyn. growth \Rightarrow G_{i+1} has uniform polynomial growth

3. If G_0 has unif. polyn. grow., and $G_i \xrightarrow{\text{quasi-isometry}} G_{i+1}$: The balls $B(x_i, R)$ of a sequence $\{G_i\}$ are uniformly compact.
Existence of fixed point: chain of argument

1. Start from a graph G_0 with unif. polyn. growth (e.g. Cayley; local. fin. vert. transit.)

2. Produce $G_i \xrightarrow{\text{quasi-isometry}} G_{i+1}$. Globally bounded valence.
 - Quasi-isometry preserves growth deg.
 - G_i has unif. polyn. growth \Rightarrow G_{i+1} has uniform polynomial growth

3. If G_0 has unif. polyn. grow., and $G_i \xrightarrow{\text{quasi-isometry}} G_{i+1}$: The balls $B(x_i, R)$ of a sequence $\{G_i\}$ are uniformly compact.

4. If $\forall R$ and $\epsilon > 0$, balls $B(x_i, R)$ of a given sequence $\{(X_i, x_i)\}$ are uniformly compact, then (a subsequence of spaces of) $\{(X_i, x_i)\}$ converges in pointed d_{GH} sense.
Existence of fixed point: chain of argument

1. Start from a graph G_0 with unif. polyn. growth (e.g. Cayley; local. fin. vert. transit.)

2. Produce $G_i \xrightarrow{\text{quasi-isometry}} G_{i+1}$. Globally bounded valence.
 - Quasi-isomery preserves growth deg.
 - G_i has unif. polyn. growth \Rightarrow G_{i+1} has uniform polynomial growth

3. If G_0 has unif. polyn. grow., and $G_i \xrightarrow{\text{quasi-isometry}} G_{i+1}$: The balls $B(x_i, R)$ of a sequence $\{G_i\}$ are uniformly compact.

4. If $\forall R$ and $\epsilon > 0$, balls $B(x_i, R)$ of a given sequence $\{(X_i, x_i)\}$ are uniformly compact, then (a subsequence of spaces of) $\{(X_i, x_i)\}$ converges in pointed d_{GH} sense.

Fixed point: The sequence of $\{G_i\}$ with initial condition G_0 of uniform polynomial growth, and $G_i \xrightarrow{\text{quasi-isometry}} G_{i+1}$ (has a subsequence that) converges in pointed d_{GH} sense.
Dimension

- Introduce a candidate.
- Conditions for integer dimension?
- Behavior of dimension under coarse graining?
A first look at dimension: a definition

A few simple observations about dimension:
A first look at dimension: a definition

A few simple observations about dimension:

- Dimension often related to certain “degree of connectivity”, # of neighborhoods of a point
A first look at dimension: a definition

A few simple observations about dimension:

- Dimension often related to certain “degree of connectivity”, # of neighborhoods of a point
- Graphs not embedded in any background: generally have spectral/fractal dimensions
A first look at dimension: a definition

A few simple observations about dimension:

- Dimension often related to certain “degree of connectivity”, # of neighborhoods of a point
- Graphs not embedded in any background: generally have spectral/fractal dimensions
- Embedded graphs have dimension of the background
A first look at dimension: a definition

A few simple observations about dimension:

- Dimension often related to certain “degree of connectivity”, # of neighborhoods of a point
- Graphs not embedded in any background: generally have spectral/fractal dimensions
- Embedded graphs have dimension of the background

Dimension? Limiting behavior of growth function a good candidate: (upper and lower) **Internal scaling dimension**

\[
\overline{D}_s(v_i) := \limsup_{r \to \infty} \frac{\ln(\beta(v_i, r))}{\ln(r)}, \quad \underline{D}_s(v_i) := \liminf_{r \to \infty} \frac{\ln(\beta(v_i, r))}{\ln(r)}
\]

in general different and non-integer.
Stability under coarse graining, integerness

Some properties of internal scaling dimension:

- Related to connectivity, # of neighbors, and how it grows.
Stability under coarse graining, integerness

Some properties of internal scaling dimension:

- Related to connectivity, # of neighbors, and how it grows.
- In embedded graphs, regular lattices:

\[\overline{D}_s(v_i) = D_s(v_i) = D_s(v_i) \quad \forall v_i \in V(G) \]
Stability under coarse graining, integerness

Some properties of internal scaling dimension:

- Related to connectivity, # of neighbors, and how it grows.
- In embedded graphs, regular lattices:
 \[D_s(v_i) = D_s(v_i) = D_s(v_i) \quad \forall v_i \in V(G) \]
- Valence locally finite in \(G \): \(\overline{D}_s(v_i) \) & \(D_s(v_i) \) independent of reference \(v_i \).
Stability under coarse graining, integerness

Some properties of internal scaling dimension:

- Related to connectivity, # of neighbors, and how it grows.
- In embedded graphs, regular lattices:
 \[D_s(v_i) = D_s(v_i) = D_s(v_i) \quad \forall v_i \in V(G) \]
- Valence locally finite in \(G \): \(D_s(v_i) \) & \(D_s(v_i) \) independent of reference \(v_i \).
- \(D_s(v_i) \) and \(D_s(v_i) \) invariant under \(k \)-local edge operations (add/remove edges \(G_1 \rightarrow G_2 \), only done to \(e_{ij} \) where \(v_j \in B_{G_1}(v_i; k) \Rightarrow v_j \in B_{G_2}(v_i; k) \))
Stability under coarse graining, integerness

Some properties of internal scaling dimension:

- Related to connectivity, # of neighbors, and how it grows.
- In embedded graphs, regular lattices:
 \[D_s(v_i) = D_s(v_i) = D_s(v_i) \quad \forall v_i \in V(G) \]
- Valence locally finite in \(G \): \(D_s(v_i) \) & \(D_s(v_i) \) independent of reference \(v_i \).
- \(D_s(v_i) \) and \(D_s(v_i) \) invariant under \(k \)-local edge operations (add/remove edges \(G_1 \rightarrow G_2 \), only done to \(e_{ij} \) where \(v_j \in B_{G_1}(v_i, k) \Rightarrow v_j \in B_{G_2}(v_i, k) \))
- In \(G \) with (uniform) polynomial growth: internal scaling dimension=degree of polynomial growth.
Stability under coarse graining, integerness

Some properties of internal scaling dimension:

- Related to connectivity, # of neighbors, and how it grows.
- In embedded graphs, regular lattices:
 \[\overline{D}_s(v_i) = D_s(v_i) = D_s(v_i) \quad \forall v_i \in V(G) \]
- Valence locally finite in \(G \): \(\overline{D}_s(v_i) \) & \(D_s(v_i) \) independent of reference \(v_i \).
- \(\overline{D}_s(v_i) \) and \(D_s(v_i) \) invariant under \(k \)-local edge operations (add/remove edges \(G_1 \rightarrow G_2 \), only done to \(e_{ij} \) where \(v_j \in B_{G_1}(v_i, k) \Rightarrow v_j \in B_{G_2}(v_i, k) \))
- In \(G \) with (uniform) polynomial growth: internal scaling dimension=degree of polynomial growth.

Stability of dimension under coarse graining: Degree of polynomial growth and thus internal scaling dimension, preserved under quasi-isometry: \(G_i \xrightarrow{\text{quasi-isometry}} G_{i+1} \)
Stability under coarse graining, integerness

Some properties of internal scaling dimension:

- Related to connectivity, # of neighbors, and how it grows.
- In embedded graphs, regular lattices:
 \[\overline{D}(v_i) = D(v_i) = d(v_i) \quad \forall v_i \in V(G) \]
- Valence locally finite in \(G \): \(\overline{D}(v_i) \) & \(D(v_i) \) independent of reference \(v_i \).
- \(\overline{D}(v_i) \) and \(D(v_i) \) invariant under \(k \)-local edge operations (add/remove edges \(G_1 \to G_2 \), only done to \(e_{ij} \) where \(v_j \in B_{G_1}(v_i, k) \to v_j \in B_{G_2}(v_i, k) \))
- In \(G \) with (uniform) polynomial growth: internal scaling dimension=degree of polynomial growth.

Stability of dimension under coarse graining: Degree of polynomial growth and thus internal scaling dimension, preserved under quasi-isometry: \(G_i \xrightarrow{\text{quasi-isometry}} G_{i+1} \)

Integer dimension: Vertex transitive graphs with polynomial growth have integer dim
Dimension round up

Under this coarse graining scheme:

- Internal scaling dimension is stable under quasi-isometry (coarse graining)
Dimension round up

Under this coarse graining scheme:

- Internal scaling dimension is stable under quasi-isometry (coarse graining)
- To have integer final dim, G_0 should have integer dim = initial condition
 - Vertex transitive graphs a candidate class, includes Cayley.
Dimension round up

Under this coarse graining scheme:

- Internal scaling dimension is stable under quasi-isometry (coarse graining)
- To have integer final dim, G_0 should have integer dim = initial condition
 - Vertex transitive graphs a candidate class, includes Cayley.
- All the layers have the same dim (Good or bad? Weakness or prediction?)
Dimension round up

Under this coarse graining scheme:

- Internal scaling dimension is stable under quasi-isometry (coarse graining)
- To have integer final dim, G_0 should have integer dim = initial condition
 - Vertex transitive graphs a candidate class, includes Cayley.
- All the layers have the same dim (Good or bad? Weakness or prediction?)

Bottom line: starting from a vertex transitive graph G_0 with uniform polynomial growth, and coarse graining by $G_i \xrightarrow{\text{quasi-isometry}} G_{i+1}$, all G_i guaranteed to have integer dim.
If

Initial condition: G_0 vertex transitive graph with uniform polynomial growth (or any graph with uniform polynomial growth or integer dim)
Final word on fixed point and integ. dim

If

1. **Initial condition**: G_0 vertex transitive graph with uniform polynomial growth (or any graph with uniform polynomial growth or integer dim)

2. **Coarse graining**: some kind of quasi-isometry
If

1. **Initial condition**: G_0 vertex transitive graph with uniform polynomial growth (or any graph with uniform polynomial growth or integer dim)
2. **Coarse graining**: some kind of quasi-isometry
3. **Means of comparison and convergence**: d_{GH}
Final word on fixed point and integ. dim

If

1. **Initial condition**: G_0 vertex transitive graph with uniform polynomial growth (or any graph with uniform polynomial growth or integer dim)
2. **Coarse graining**: some kind of quasi-isometry
3. **Means of comparison and convergence**: d_{GH}

A fixed point (Hausdorff limit) with an integer dim is guaranteed
Continuum Limit

- An idea how to get a topological/PL manifold out of a graph.
The main steps of the method

Main theorem: A D-dimensional simplicial complex is a PL-manifold if the link of every vertex in the complex is topologically a $(D - 1)$-sphere [Thurston]

- **Link:** given a vertex v in a simplicial complex, consider the set of all simplices σ_i which have v on their boundary; then the link of v is the union of all other simplices on the boundary of those σ_i which do not contain v.

Essentially, prove that each point has a neighborhood in the complex that is homeomorphic to a ball.
The main steps of the method

- **Main theorem**: A D-dimensional simplicial complex is a PL-manifold if the link of every vertex in the complex is topologically a $(D - 1)$-sphere [Thurston]

 ▶ Link: given a vertex v in a simplicial complex, consider the set of all simplices σ_i which have v on their boundary; then the link of v is the union of all other simplices on the boundary of those σ_i which do not contain v.

 ▶ Essentially, prove that each point has a neighborhood in the complex that is homeomorphic to a ball.
The main steps of the method

- **Main theorem**: A D-dimensional simplicial complex is a PL-manifold if the link of every vertex in the complex is topologically a $(D-1)$-sphere [Thurston]

 - Link: given a vertex v in a simplicial complex, consider the set of all simplices σ_i which have v on their boundary; then the link of v is the union of all other simplices on the boundary of those σ_i which do not contain v.
 - Essentially, prove that each point has a neighborhood in the complex that is homeomorphic to a ball.

Argument steps:

1. Given G, find the corresponding (Voronoi) cell complex.
The main steps of the method

- **Main theorem**: A D-dimensional simplicial complex is a PL-manifold if the link of every vertex in the complex is topologically a $(D - 1)$-sphere [Thurston]
 - Link: given a vertex v in a simplicial complex, consider the set of all simplices σ_i which have v on their boundary; then the link of v is the union of all other simplices on the boundary of those σ_i which do not contain v.
 - Essentially, prove that each point has a neighborhood in the complex that is homeomorphic to a ball.

Argument steps:

1. Given G, find the corresponding (Voronoi) cell complex.
2. Produce a simplicial complex that is PL equivalent to this cell complex
 - barycentric decomposition
The main steps of the method

Main theorem: A D-dimensional simplicial complex is a PL-manifold if the link of every vertex in the complex is topologically a $(D - 1)$-sphere [Thurston]

- Link: given a vertex v in a simplicial complex, consider the set of all simplices σ_i which have v on their boundary; then the link of v is the union of all other simplices on the boundary of those σ_i which do not contain v.
- Essentially, prove that each point has a neighborhood in the complex that is homeomorphic to a ball.

Argument steps:

1. Given G, find the corresponding (Voronoi) cell complex.
2. Produce a simplicial complex that is PL equivalent to this cell complex
 - barycentric decomposition
3. Is link of every vertex in the complex is topologically a $(D - 1)$-sphere?
Brief review of SDCN

- Start from a graph with simple dynamics (more flexible version of cellular automata)
- Excitations 1D edges
Brief review of SDCN

- Start from a graph with simple dynamics (more flexible version of cellular automata)
- Excitations 1D edges

Corase graining (Ising-like): specific type of quasi-isometry, k-local edge deletion:

1. In G_i, find complete graphs $K_n^{(i)}$.

![Diagram showing K_3, K_5, and K_6 graphs]
Brief review of SDCN

- Start from a graph with simple dynamics (more flexible version of cellular automata)
- Excitations 1D edges

Coarse graining (Ising-like): specific type of quasi-isometry, k-local edge deletion:

1. In G_i, find complete graphs $K_n^{(i)}$.
2. G_{i+1} will have
 1. $K_n^{(i)}$ of G_i as vertices $v_j(G_{i+1})$
Brief review of SDCN

- Start from a graph with simple dynamics (more flexible version of cellular automata)
- Excitations 1D edges

Corase graining (Ising-like): specific type of quasi-isometry, k-local edge deletion:

1. In G_i, find complete graphs $K_{n}^{(i)}$.
2. G_{i+1} will have
 - $K_{n}^{(i)}$ of G_i as vertices $v_j(G_{i+1})$
 - Edges between $v_j(G_{i+1})$ and $v_l(G_{i+1})$ if corresponding $K_{n}^{(i)}$'s have sufficient vertex overlap in G_i
Brief review of SDCN

- Start from a graph with simple dynamics (more flexible version of cellular automata)
- Excitations 1D edges

Corase graining (Ising-like): specific type of quasi-isometry, k-local edge deletion:

1. In G_i, find complete graphs $K_n^{(i)}$.
2. G_{i+1} will have
 1. $K_n^{(i)}$ of G_i as vertices $v_j(G_{i+1})$
 2. Edges between $v_j(G_{i+1})$ and $v_l(G_{i+1})$ if corresponding $K_n^{(i)}$’s have sufficient vertex overlap in G_i

Each (subcollection of) layer(s) potentially has own topology/geometry
Brief review of SDCN

- Start from a graph with simple dynamics (more flexible version of cellular automata)
- Excitations 1D edges

Corase graining (Ising-like): specific type of quasi-isometry, k-local edge deletion:

1. In G_i, find complete graphs $K_n^{(i)}$.
2. G_{i+1} will have
 1. $K_n^{(i)}$ of G_i as vertices $v_j(G_{i+1})$
 2. Edges between $v_j(G_{i+1})$ and $v_l(G_{i+1})$ if corresponding $K_n^{(i)}$'s have sufficient vertex overlap in G_i

- Each (subcollection of) layer(s) potentially has own topology/geometry
- Each (supposedly) smooth spacetime point has internal structure/DoF
Brief review of SDCN

- Start from a graph with simple dynamics (more flexible version of cellular automata)
- Excitations 1D edges

Corase graining (Ising-like): specific type of quasi-isometry, k-local edge deletion:

1. In G_i, find complete graphs $K_n^{(i)}$.
2. G_{i+1} will have
 1. $K_n^{(i)}$ of G_i as vertices $v_j(G_{i+1})$
 2. Edges between $v_j(G_{i+1})$ and $v_l(G_{i+1})$ if corresponding $K_n^{(i)}$'s have sufficient vertex overlap in G_i

- Each (subcollection of) layer(s) potentially has own topology/geometry
- Each (supposedly) smooth spacetime point has internal structure/DoF
- Points far w.r.t. smooth spacetime metric may internally be close
Brief review of SDCN

- Start from a graph with simple dynamics (more flexible version of cellular automata)
- Excitations 1D edges

Corase graining (Ising-like): specific type of quasi-isometry, k-local edge deletion:

1. In G_i, find complete graphs $K_n^{(i)}$.
2. G_{i+1} will have
 1. $K_n^{(i)}$ of G_i as vertices $v_j(G_{i+1})$
 2. Edges between $v_j(G_{i+1})$ and $v_l(G_{i+1})$ if corresponding $K_n^{(i)}$’s have sufficient vertex overlap in G_i

- Each (subcollection of) layer(s) potentially has own topology/geometry
- Each (supposedly) smooth spacetime point has internal structure/DoF
- Points far w.r.t. smooth spacetime metric may internally be close
 - Entanglement and non-locality?
 - ER=EPR, BH info paradox?
Summary/Future directions

What is done up to now:

- In super space of all metric spaces, there are sequences of graphs that have a fixed point w.r.t. quasi-isometry and d_{GH}.
- Starting from a large class of graphs (vertex transitive & uniform polynomial growth), a fixed point (Hausdorff limit) with integer dim is guaranteed.
- Convergence and integer dim are compatible; seemingly go hand in hand.
- Completely background independent, bottom-up and generic (no decomposition of a manifold)
Summary/Future directions

Future direction (a lot!):

- Explore smoothness, metric in fixed point resembles spacetime metric?
- Beyond polynomial growth? exponential growth etc.
- Apply to spin networks/foams. Edge color play a rule? Changes under coarse graining? LQG an effective theory?
- Explore relation to other coarse graining methods
- Expand to more methods of coarse graining? Also use more of Coarse Geometry methods
- Is metric space analysis enough? need to check more structure?
- Connections between graph of groups and Cayley graphs, and spin networks/foams?
- Random graphs
- Less restriction on dim (different fractal dim for each level)?