Emergent continuous spacetime via a geometric renormalization method

Saeed Rastgoo (UAM-I, Mexico)

In collaboration with Manfred Requardt (University of Göttingen)

Fifth Tux Worskshop on Quantum Gravity, Tux, Austria, February 15, 2017

• Physical system S

- \bullet Physical system S
- Model M of S. Renormalization operates on M

- Physical system S
- Model M of S. Renormalization operates on M
- Fix a minimum scale ℓ . Determines elementary constituents s of S

- Physical system S
- Model M of S. Renormalization operates on M
- Fix a minimum scale ℓ . Determines elementary constituents s of S
- s_i : state of a constituent \Rightarrow a microscopic state of S: a configuration $\{s_i\}, i = 1, ..., N$

- Physical system S
- Model M of S. Renormalization operates on M
- Fix a minimum scale ℓ . Determines elementary constituents s of S
- s_i : state of a constituent \Rightarrow a microscopic state of S: a configuration $\{s_i\}, i = 1, ..., N$

Ingredients *M*:

• State space $E = \{\{s_i\}\}$ of configurations

- Physical system S
- Model M of S. Renormalization operates on M
- Fix a minimum scale ℓ . Determines elementary constituents s of S
- s_i : state of a constituent \Rightarrow a microscopic state of S: a configuration $\{s_i\}, i = 1, ..., N$

Ingredients M:

- State space $E = \{\{s_i\}\}$ of configurations
- Macroscopic quantities $A(\{s_i\})$ associated configurations

- Physical system S
- Model M of S. Renormalization operates on M
- Fix a minimum scale ℓ . Determines elementary constituents s of S
- s_i : state of a constituent \Rightarrow a microscopic state of S: a configuration $\{s_i\}, i = 1, ..., N$

Ingredients M:

- State space $E = \{\{s_i\}\}$ of configurations
- Macroscopic quantities $A(\{s_i\})$ associated configurations
- Structure rule: function $F({s_i})$, maybe written using a set of parameters $K = {K_j}$

- Physical system S
- Model M of S. Renormalization operates on M
- Fix a minimum scale ℓ . Determines elementary constituents s of S
- s_i : state of a constituent \Rightarrow a microscopic state of S: a configuration $\{s_i\}, i = 1, ..., N$

Ingredients M:

- State space $E = \{\{s_i\}\}$ of configurations
- Macroscopic quantities $A({s_i})$ associated configurations
- Structure rule: function $F({s_i})$, maybe written using a set of parameters $K = {K_j}$
 - ► *F* at equilibrium: the statistical weight of {*s_i*}
 - ▶ *F* out of equilibrium: evolution of configuration $\{s_i\}$ (e.g. Hamiltonian)

Renormalization: iteration of *renormalization transformation*, *Ren*, in the *space of models* (SPM) or *theory space*

• Renormalization transformation, *Ren* (a symmetry transformation):

- Renormalization transformation, *Ren* (a symmetry transformation):
 - Decimation (coarse graining): regroup constituents in packets {s_i}'

- Renormalization transformation, *Ren* (a symmetry transformation):
 - Decimation (coarse graining): regroup constituents in packets {s_i}'

- Renormalization transformation, *Ren* (a symmetry transformation):
 - Decimation (coarse graining): regroup constituents in packets {s_i}'
 - \star Change resolution $\ell
 ightarrow b\ell$: loss of information at scales $< b\ell$
 - * Reduces # of DoF N by b^{ℓ}

- Renormalization transformation, *Ren* (a symmetry transformation):
 - Decimation (coarse graining): regroup constituents in packets {s_i}'
 - * Change resolution $\ell \rightarrow b\ell$: loss of information at scales $< b\ell$
 - * Reduces # of DoF N by b^{ℓ}
 - * Rule $\{s_i\}' = T_b(\{s_i\})$: should preserve info and props. crucial at large scales (which ones?)

- Renormalization transformation, *Ren* (a symmetry transformation):
 - ▶ Decimation (coarse graining): regroup constituents in packets {s_i}'

 - * Reduces # of DoF N by b^{ℓ}
 - * Rule $\{s_i\}' = T_b(\{s_i\})$: should preserve info and props. crucial at large scales (which ones?)
 - Change of scale $X \to \frac{X}{b}$: restores effective min scale after decimation

- Renormalization transformation, *Ren* (a symmetry transformation):
 - ▶ Decimation (coarse graining): regroup constituents in packets {*s_i*}'

 - * Reduces # of DoF N by b^{ℓ}
 - * Rule $\{s_i\}' = T_b(\{s_i\})$: should preserve info and props. crucial at large scales (which ones?)
 - Change of scale $X \to \frac{X}{b}$: restores effective min scale after decimation
 - ▶ Transform $F \rightarrow F' = \hat{R}_b(F)$: to compensate for above, and correctly describe statistics or evolution of $T_b(\{s_i\})$
 - ★ R_b: Renormalization Operator

Renormalization: iteration of *renormalization transformation*. Ren in the space of Different schemes of renormalization, e.g.

• Kadanoff: renormalisation within a given ensemble of parameters K,

 $F_k \rightarrow F_{k'}$ with renormalized parameters $K' = R_b(K)$

• RG: functional ensemble $\mathcal{F} = \{F\}$, where $R_b : \mathcal{F} \to \mathcal{F}$ changes form of F

$$F \rightarrow F' = R_b(\phi)$$

- ▶ Transform $F \rightarrow F' = \tilde{R}_b(F)$: to compensate for above, and correctly describe statistics or evolution of $T_b(\{s_i\})$
 - * R_b : Renormalization Operator

- Renormalization transformation, *Ren* (a symmetry transformation):
 - ▶ Decimation (coarse graining): regroup constituents in packets {s_i}'

 - * Reduces # of DoF N by b^{ℓ}
 - * Rule $\{s_i\}' = T_b(\{s_i\})$: should preserve info and props. crucial at large scales (which ones?)
 - Change of scale $X \to \frac{X}{b}$: restores effective min scale after decimation
 - ▶ Transform $F \rightarrow F' = \tilde{R}_b(F)$: to compensate for above, and correctly describe statistics or evolution of $T_b(\{s_i\})$
 - * R_b : Renormalization Operator
- This succession of models: trajectories in SPM, renormalization flow

- Physical reality not altered if change manner of observing it
 - M, M' should describe the same physical reality, only on different scales
 - RG: symmetry group leaves the system under study invariant

- Physical reality not altered if change manner of observing it
 - M, M' should describe the same physical reality, only on different scales
 - ► RG: symmetry group leaves the system under study invariant
- Invariance by renormalization:
 - Property A remains invariant: $A = Ren_b(A)$.
 - * Selfsimilarity of A.
 - * W.r.t. to A, system observed at scale bc, identical to the one observed at scale c, only expanded by b.
 - Fixed points of *Ren*: associated with an exact scale invariance of *A*

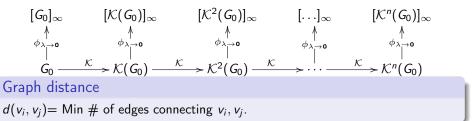
- Physical reality not altered if change manner of observing it
 - M, M' should describe the same physical reality, only on different scales
 - RG: symmetry group leaves the system under study invariant
- Invariance by renormalization:
 - Property A remains invariant: $A = Ren_b(A)$.
 - ★ Selfsimilarity of A.
 - * W.r.t. to A, system observed at scale bc, identical to the one observed at scale c, only expanded by b.
 - Fixed points of *Ren*: associated with an exact scale invariance of *A*
- $Ren_b(M^*) = M^* \Leftrightarrow M^*$ a fixed point: scale invariant

- Physical reality not altered if change manner of observing it
 - M, M' should describe the same physical reality, only on different scales
 - RG: symmetry group leaves the system under study invariant
- Invariance by renormalization:
 - Property A remains invariant: $A = Ren_b(A)$.
 - ★ Selfsimilarity of A.
 - * W.r.t. to A, system observed at scale bc, identical to the one observed at scale c, only expanded by b.
 - Fixed points of *Ren*: associated with an exact scale invariance of *A*
- $Ren_b(M^*) = M^* \Leftrightarrow M^*$ a fixed point: scale invariant
- Set of models converging to, or diverging from M^* under Ren_b : a hypersurface of *SPM*, called universality class $C(M^*)$.

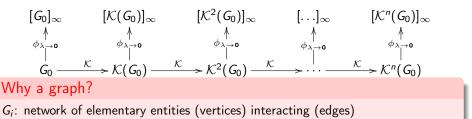
- Physical reality not altered if change manner of observing it
 - M, M' should describe the same physical reality, only on different scales
 - RG: symmetry group leaves the system under study invariant
- Invariance by renormalization:
 - Property A remains invariant: $A = Ren_b(A)$.
 - ★ Selfsimilarity of A.
 - * W.r.t. to A, system observed at scale bc, identical to the one observed at scale c, only expanded by b.
 - Fixed points of *Ren*: associated with an exact scale invariance of *A*
- $Ren_b(M^*) = M^* \Leftrightarrow M^*$ a fixed point: scale invariant
- Set of models converging to, or diverging from M^* under Ren_b : a hypersurface of SPM, called universality class $C(M^*)$.
- Part of $C(M^*)$ converging (flowing) to M^* : basin of attraction of M^* .

 S: space of all non-compact, locally compact metric spaces (space of models) ⊃ uncolored graphs (colored, in future)

- S: space of all non-compact, locally compact metric spaces (space of models) ⊃ uncolored graphs (colored, in future)
- Init. condition graph, (G₀, d₀) ∈ S; d₀ a graph metric: fundamental layer of spacetime



② Init. condition graph, $(G_0, d_0) \in S$; d_0 a graph metric: fundamental layer of spacetime



② Init. condition graph, $(G_0, d_0) \in S$; d_0 a graph metric: fundamental layer of spacetime

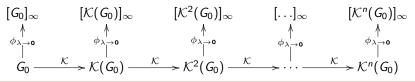
- S: space of all non-compact, locally compact metric spaces (space of models) ⊃ uncolored graphs (colored, in future)
- Init. condition graph, $(G_0, d_0) \in S$; d_0 a graph metric: fundamental layer of spacetime
- Geometric renormalization process consists of:
 - Coarse graining $\mathcal{K}: (G_i, d_i) \to (G_{i+1}, d_{i+1})$ where $\mathcal{K}^j(G_0) = G_j$

- S: space of all non-compact, locally compact metric spaces (space of models) ⊃ uncolored graphs (colored, in future)
- Init. condition graph, (G₀, d₀) ∈ S; d₀ a graph metric: fundamental layer of spacetime
- Geometric renormalization process consists of:
 - Coarse graining $\mathcal{K} : (G_i, d_i) \to (G_{i+1}, d_{i+1})$ where $\mathcal{K}^j(G_0) = G_j$
 - **2** Rescaling $\phi_{\lambda} : (G_i, d_i) \to (G_i, \lambda d_i)$ on each (G_i, d_i) Not exactly like RG!
 - $\lim_{\lambda\to 0} \phi_{\lambda}((G_i, d_i)) = (G_{i,\infty}, d_{i,\infty})$: continuum limit of (G_i, d_i)



- S: space of all non-compact, locally compact metric spaces (space of models) ⊃ uncolored graphs (colored, in future)
- **②** Init. condition graph, $(G_0, d_0) \in S$; d_0 a graph metric: fundamental layer of spacetime
- Geometric renormalization process consists of:
 - Coarse graining $\mathcal{K} : (G_i, d_i) \to (G_{i+1}, d_{i+1})$ where $\mathcal{K}^j(G_0) = G_j$
 - **2** Rescaling $\phi_{\lambda} : (G_i, d_i) \to (G_i, \lambda d_i)$ on each (G_i, d_i) Not exactly like RG!
 - $Iim_{\lambda \to 0} \phi_{\lambda} ((G_i, d_i)) = (G_{i,\infty}, d_{i,\infty}): \text{ continuum limit of } (G_i, d_i)$
- Lower chain: coarse graining chain (discrete spaces)

- S: space of all non-compact, locally compact metric spaces (space of models) ⊃ uncolored graphs (colored, in future)
- Init. condition graph, (G₀, d₀) ∈ S; d₀ a graph metric: fundamental layer of spacetime
- Geometric renormalization process consists of:
 - Coarse graining $\mathcal{K} : (G_i, d_i) \to (G_{i+1}, d_{i+1})$ where $\mathcal{K}^j(G_0) = G_j$
 - **2** Rescaling $\phi_{\lambda} : (G_i, d_i) \to (G_i, \lambda d_i)$ on each (G_i, d_i) Not exactly like RG!
 - $Iim_{\lambda \to 0} \phi_{\lambda} ((G_i, d_i)) = (G_{i,\infty}, d_{i,\infty}): \text{ continuum limit of } (G_i, d_i)$
- Lower chain: coarse graining chain (discrete spaces)
- Opper chain: continuum limit chain



Two flows

Two parts of the model:

- O Horizontal discrete SPM
- Overtical rescaling flow



 \mathcal{K} applied consecutively until either:

• Phase transition: land in basin of attraction of a continuum limit (w.r.t. ϕ_{λ})

 \mathcal{K} applied consecutively until either:

- Phase transition: land in basin of attraction of a continuum limit (w.r.t. ϕ_{λ})
- End in a fixed point, or a set of accumulation points (non-generic scenario)

$\mathsf{Coarse}\ \mathsf{Graining}\ \mathcal{K}$

• Motivation: Wilsonian renormalization, block spin (Ising, etc.).

- Motivation: Wilsonian renormalization, block spin (Ising, etc.).
- Generalization: Quasi-isomery...

- Motivation: Wilsonian renormalization, block spin (Ising, etc.).
- Generalization: Quasi-isomery...

Given metric spaces $X, Y \in S$, a map $f : X \to Y$, where $\exists \lambda \ge 1, \epsilon \ge 0$ such that $\forall x_1, x_2 \in X$

$$\frac{1}{\lambda}d_X(x_1,x_2) - \epsilon \leq d_Y(f(x_1),f(x_2)) \leq \lambda d_X(x_1,x_2) + \epsilon, \qquad \forall x_1,x_2 \in X$$

and

$$\forall y \in Y : \exists x \in X : d_Y(y, f(x)) \leq C.$$

is a quasi-isometry, i.e.

- distance of the images under f, within a factor λ , and up to a constant, of their original distances, and
- every point $y \in Y$ lies within a constant distance $C \ge 0$ of an image point.

- Motivation: Wilsonian renormalization, block spin (Ising, etc.).
- Generalization: Quasi-isomery...

Given metric spaces $X, Y \in S$, a map $f : X \to Y$, where $\exists \lambda \ge 1, \epsilon \ge 0$ such that $\forall x_1, x_2 \in X$

$$\frac{1}{\lambda}d_X(x_1,x_2) - \epsilon \leq d_Y(f(x_1),f(x_2)) \leq \lambda d_X(x_1,x_2) + \epsilon, \qquad \forall x_1,x_2 \in X$$

and

$$\forall y \in Y : \exists x \in X : d_Y(y, f(x)) \leq C.$$

is a quasi-isometry, i.e.

- distance of the images under f, within a factor λ, and up to a constant, of their original distances, and
- every point $y \in Y$ lies within a constant distance $C \ge 0$ of an image point.

It is a rough isometry when $\lambda = 1$.

- Motivation: Wilsonian renormalization, block spin (Ising, etc.).
- Generalization: Quasi-isomery...

Given metric spaces $X, Y \in S$, a map $f : X \to Y$, where $\exists \lambda \ge 1, \epsilon \ge 0$ such that Coarse graining

Our coarse grainings are either

- Quai-isometry, or
- O Rough isometry

 $J \subset \cdot \cdot - \neg \subset \cdot \cdot \cdot \circ \iota (J), \iota (\gamma) = \circ \cdot$

is a quasi-isometry, i.e.

- distance of the images under f, within a factor λ , and up to a constant, of their original distances, and
- every point $y \in Y$ lies within a constant distance $C \ge 0$ of an image point.

It is a rough isometry when $\lambda = 1$.

Examples of ${\mathcal K}$

Pure quasi-isometry: k-local insertion/deletion of edges – preserves k-neighborhoods of vertices.

Examples of ${\mathcal K}$

Pure quasi-isometry: k-local insertion/deletion of edges – preserves k-neighborhoods of vertices.

Rough isometry: "clique graph" transformation $G \longrightarrow C(G)$

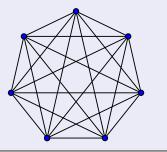
Examples of \mathcal{K}

Pure quasi-isometry: k-local insertion/deletion of edges – preserves k-neighborhoods of vertices.

Rough isometry: "clique graph" transformation $G \longrightarrow C(G)$

Clique

Clique: a complete subgraph (maximally connected). Here K7:



Examples of \mathcal{K}

Pure quasi-isometry: k-local insertion/deletion of edges – preserves k-neighborhoods of vertices.

Rough isometry: "clique graph" transformation $G \longrightarrow C(G)$

• Vertices $V(\mathcal{C}(G))$: cliques of G,

Examples of \mathcal{K}

Pure quasi-isometry: k-local insertion/deletion of edges – preserves k-neighborhoods of vertices.

Rough isometry: "clique graph" transformation $G \longrightarrow C(G)$

- Vertices $V(\mathcal{C}(G))$: cliques of G,
- Edge between v^C_i, v^C_j ∈ V(C(G)) if cliques have minimal internal # of vertex overlap in G.

Examples of $\mathcal K$

Pure quasi-isometry: k-local insertion/deletion of edges – preserves k-neighborhoods of vertices.

Rough isometry: "clique graph" transformation $G \longrightarrow C(G)$

- Vertices $V(\mathcal{C}(G))$: cliques of G,
- Edge between v^C_i, v^C_j ∈ V(C(G)) if cliques have minimal internal # of vertex overlap in G.
- Alternative: edge if v^C_i, v^C_j ∈ V(C(G)) have minimal internal # of edge between them in G.

Gromov-Hausdorff distance $d_{GH}(X, Y)$ between two compact metric spaces (can be extended to the members of S):

Gromov-Hausdorff distance $d_{GH}(X, Y)$ between two compact metric spaces (can be extended to the members of S):

- Measures how far X, Y are from being isometric,
 - ▶ isometric iff $d_{GH}(X, Y) = 0$, non-isometric iff $d_{GH}(X, Y) = \infty$.

Gromov-Hausdorff distance $d_{GH}(X, Y)$ between two compact metric spaces (can be extended to the members of S):

- Measures how far X, Y are from being isometric,
 - ▶ isometric iff $d_{GH}(X, Y) = 0$, non-isometric iff $d_{GH}(X, Y) = \infty$.
- Defines a notion of convergence for sequences of metric spaces.

Gromov-Hausdorff distance $d_{GH}(X, Y)$ between two compact metric spaces (can be extended to the members of S):

Hausdorff and Gromov-Hausdorff distances

• In a metric space (M, d), Hausdorff distance $d_H(X, Y)$ of $X, Y \subset M \land X, Y \neq \emptyset$:

 $d_H(X,Y) = \inf \{ \epsilon \ge 0 | X \subseteq U_{\epsilon}(Y), Y \subseteq U_{\epsilon}(X) \}$

with $U_{\epsilon}(X)$ union of all ϵ -balls around all $x \in X$

$$U_{\epsilon}(X) = \bigcup_{x \in X} \left\{ z \in M | d(z, x) \leq \epsilon \right\}.$$

Gromov-Hausdorff distance $d_{GH}(X, Y)$ between two compact metric spaces (can be extended to the members of S):

Hausdorff and Gromov-Hausdorff distances

• In a metric space (M, d), Hausdorff distance $d_H(X, Y)$ of $X, Y \subset M \land X, Y \neq \emptyset$:

 $d_H(X,Y) = \inf \{ \epsilon \ge 0 | X \subseteq U_{\epsilon}(Y), Y \subseteq U_{\epsilon}(X) \}$

with $U_{\epsilon}(X)$ union of all ϵ -balls around all $x \in X$

$$U_{\epsilon}(X) = \bigcup_{x \in X} \{z \in M | d(z, x) \leq \epsilon\}.$$

• The Gromov-Hausdorff distance d_{GH} of two compact metric spaces $(X, d_X), (Y, d_Y)$

$$d_{GH}(X,Y) = \inf d_{H}^{Z}(f(X),g(Y))$$

of all metric spaces Z and all isometric embeddings $f: X \rightarrow Z$, $g: Y \rightarrow Z$.

Gromov-Hausdorff distance $d_{GH}(X, Y)$ between two compact metric spaces (can be extended to the members of S):

- Measures how far X, Y are from being isometric,
 - ▶ isometric iff $d_{GH}(X, Y) = 0$, non-isometric iff $d_{GH}(X, Y) = \infty$.

• Defines a notion of convergence for sequences of metric spaces.

For $X \xrightarrow{\mathcal{K}} Y$: if

• If \mathcal{K} a pure quasi-isometry $\Rightarrow d_{GH}(X, Y) = \infty$. Spaces structurally different.

Gromov-Hausdorff distance $d_{GH}(X, Y)$ between two compact metric spaces (can be extended to the members of S):

- Measures how far X, Y are from being isometric,
 - ▶ isometric iff $d_{GH}(X, Y) = 0$, non-isometric iff $d_{GH}(X, Y) = \infty$.

• Defines a notion of convergence for sequences of metric spaces.

For $X \xrightarrow{\mathcal{K}} Y$: if

- If \mathcal{K} a pure quasi-isometry $\Rightarrow d_{GH}(X, Y) = \infty$. Spaces structurally different.
- If \mathcal{K} rough isometry $\Rightarrow d_{GH}(X, Y) = \text{finite. Spaces structurally similar.}$

Gromov-Hausdorff distance $d_{GH}(X, Y)$ between two compact metric spaces (can be extended to the members of S):

• Measures how far X, Y are from being isometric,

▶ isometric iff $d_{GH}(X, Y) = 0$, non-isometric iff $d_{GH}(X, Y) = \infty$.

• Defines a notion of convergence for sequences of metric spaces.

For $X \xrightarrow{\mathcal{K}} Y$: if

- If \mathcal{K} a pure quasi-isometry $\Rightarrow d_{GH}(X, Y) = \infty$. Spaces structurally different.
- If \mathcal{K} rough isometry $\Rightarrow d_{GH}(X, Y) = \text{finite. Spaces structurally similar.}$

Convergence criteria can used horizontally (for coarse graining sequence), or vertically (e.g. existence of a continuum limit)

Gromov-Hausdorff distance $d_{GH}(X, Y)$ between two compact metric spaces (can be extended to the members of S):

• Measures how far X, Y are from being isometric,

▶ isometric iff $d_{GH}(X, Y) = 0$, non-isometric iff $d_{GH}(X, Y) = \infty$.

• Defines a notion of convergence for sequences of metric spaces.

For $X \xrightarrow{\mathcal{K}} Y$: if

Convergence and uniform compactness

Theorem: If for all r and $\epsilon > 0$ the balls $B(x_i, r)$ of a given sequence of proper metric spaces $\{(X_i, x_i \in X_i)\}$ are uniformly compact, then a subsequence of spaces converges in the pointed GH sense.

Set (or sequence) of compact $\{(X_i, d_i)\}$ are uniformly compact if:

- Diameters diam $(X_i) = \sup \{ d_i(x, y) : x_i, y_i \in X_i \}$ are uniformly bounded: $\exists R \in \mathbb{R} | \operatorname{diam}(X_i) \leq R, \forall X_i.$
- For each *ϵ* > 0, *X_i* is coverable by *N_ϵ* < ∞ balls of radius *ϵ* independent of the index *i*.

Rescaling ϕ_{λ} and Continuum Limit Properties

Rescaling map:

$$\phi_{\lambda}: (X, d_X) \longmapsto (X, \lambda d_X)$$

 λ parametrizes the distance between the points on the different scales.

Rescaling ϕ_{λ} and Continuum Limit Properties

Rescaling map:

$$\phi_{\lambda}: (X, d_X) \longmapsto (X, \lambda d_X)$$

 λ parametrizes the distance between the points on the different scales.

 lim_{λ→∞} φ_λ reveals fine structure of X: magnifying infinitesimal neighborhoods of the points of X,

Rescaling ϕ_{λ} and Continuum Limit Properties

Rescaling map:

$$\phi_{\lambda}: (X, d_X) \longmapsto (X, \lambda d_X)$$

 λ parametrizes the distance between the points on the different scales.

- lim_{λ→∞} φ_λ reveals fine structure of X: magnifying infinitesimal neighborhoods of the points of X,
- $\lim_{\lambda\to 0} \phi_{\lambda}$ corresponds to the large scale structure of X:

$$\lim_{\lambda\to 0}\phi_{\lambda}\left((X,d_{X})\right)=\lim_{\lambda\to 0}(X,\lambda d_{X})=\left(X_{\infty},d_{X,\infty}\right),$$

important for us!

If spaces are purely quasi-isometric, $d_{GH}(X, Y) = \infty$, then also

 $d_{GH}(X_{\infty},Y_{\infty})=\infty,$

i.e have different continuum limits.

If spaces are purely quasi-isometric, $d_{GH}(X,Y) = \infty$, then also

$$d_{GH}(X_{\infty},Y_{\infty})=\infty,$$

i.e have different continuum limits.

If spaces are roughly isometric, $d_{GH}(X, Y) < \infty$, they have an identical continuum limit $(X_{\infty}, d_{X,\infty})$,

 $d_{GH}(X_{\infty}, Y_{\infty}) = 0.$

If spaces are purely quasi-isometric, $d_{GH}(X, Y) = \infty$, then also

$$d_{GH}(X_{\infty}, Y_{\infty}) = \infty,$$

i.e have different continuum limits.

If spaces are roughly isometric, $d_{GH}(X, Y) < \infty$, they have an identical continuum limit $(X_{\infty}, d_{X,\infty})$,

 $d_{GH}(X_{\infty}, Y_{\infty}) = 0.$

Set $\left\{ (X', d_{X'}) \left| d_{GH}(X', X) < \infty \right\}$ is basin of attraction, of attractor $(X_{\infty}, d_{X,\infty})$, under ϕ_{λ} . They all have the same continuum limit $(X_{\infty}, d_{X,\infty})$.

If spaces are purely quasi-isometric, $d_{GH}(X,Y) = \infty$, then also

$$d_{GH}(X_{\infty}, Y_{\infty}) = \infty,$$

i.e have different continuum limits.

If spaces are roughly isometric, $d_{GH}(X, Y) < \infty$, they have an identical continuum limit $(X_{\infty}, d_{X,\infty})$,

$$d_{GH}(X_{\infty}, Y_{\infty}) = 0.$$

Set $\left\{ (X', d_{X'}) \middle| d_{GH}(X', X) < \infty \right\}$ is basin of attraction, of attractor $(X_{\infty}, d_{X,\infty})$, under ϕ_{λ} . They all have the same continuum limit $(X_{\infty}, d_{X,\infty})$. $(X_{\infty}, d_{X,\infty})$ is scale invariant under ϕ_{λ} i.e. $d_{GH}(X_{\infty}, \lambda X_{\infty}) = 0$.

If spaces are purely quasi-isometric, $d_{GH}(X,Y) = \infty$, then also

$$d_{GH}(X_{\infty},Y_{\infty})=\infty,$$

i.e have different continuum limits.

If spaces are roughly isometric, $d_{GH}(X, Y) < \infty$, they have an identical continuum limit $(X_{\infty}, d_{X,\infty})$,

$$d_{GH}(X_{\infty}, Y_{\infty}) = 0.$$

Set $\{(X', d_{X'}) | d_{GH}(X', X) < \infty\}$ is basin of attraction, of attractor $(X_{\infty}, d_{X,\infty})$, under ϕ_{λ} . They all have the same continuum limit $(X_{\infty}, d_{X,\infty})$. $(X_{\infty}, d_{X,\infty})$ is scale invariant under ϕ_{λ} i.e. $d_{GH}(X_{\infty}, \lambda X_{\infty}) = 0$. Graphs of uniform polynomial growth have a continuum limit.

If spaces are purely quasi-isometric, $d_{GH}(X,Y) = \infty$, then also

 $d_{GH}(X_{\infty},Y_{\infty})=\infty,$

Uniform polynomial growth

Growth function β(G, v_i, r) in a graph G is the # of vertices in a ball of radius r around v_i:

 $\beta(G, v_i, r) := |B_G(v_i, r)|$

Graphs of uniform polynomial growth have a continuum limit.

If spaces are purely quasi-isometric, $d_{GH}(X,Y) = \infty$, then also

 $d_{GH}(X_{\infty},Y_{\infty})=\infty,$

Uniform polynomial growth

Growth function β(G, v_i, r) in a graph G is the # of vertices in a ball of radius r around v_i:

$$\beta(G, v_i, r) := |B_G(v_i, r)|$$

• G has polynomial growth: $\beta(G, v_i, r) \lesssim r^{\bar{D}} \approx Ar^{\bar{D}}$ for $\bar{D} \ge 0$.

Graphs of uniform polynomial growth have a continuum limit.

If spaces are purely quasi-isometric, $d_{GH}(X,Y) = \infty$, then also

 $d_{GH}(X_{\infty},Y_{\infty})=\infty,$

Uniform polynomial growth

Growth function β(G, v_i, r) in a graph G is the # of vertices in a ball of radius r around v_i:

$$\beta(G, v_i, r) := |B_G(v_i, r)|$$

- G has polynomial growth: $\beta(G, v_i, r) \lesssim r^{\bar{D}} \approx Ar^{\bar{D}}$ for $\bar{D} \ge 0$.
- G has uniform polynomial growth:

$$Ar^d \leq \beta(G, v_i, r) \leq Br^d$$

and A, B, d > 0. (for locally finite graph, is independent of v_i)

Graphs of uniform polynomial growth have a continuum limit.

Combination of two operations

Combination of two operations

with $G_i = \mathcal{K}^i(G_0)$, etc.

 \bullet Generic initial conditions, ${\cal K}$ is generically pure quasi-isometry:

Combination of two operations

- \bullet Generic initial conditions, ${\cal K}$ is generically pure quasi-isometry:
 - ▶ two consecutive members, $d_{GH}(G_i, G_{i+1}) = \infty$: structurally different, carry different metrics

Combination of two operations

- \bullet Generic initial conditions, ${\cal K}$ is generically pure quasi-isometry:
 - ▶ two consecutive members, $d_{GH}(G_i, G_{i+1}) = \infty$: structurally different, carry different metrics
 - ▶ their continuum limits also different $d_{GH}(G_{i,\infty}, G_{i+1,\infty}) = \infty$

Combination of two operations

- Generic initial conditions, \mathcal{K} is generically pure quasi-isometry:
 - ▶ two consecutive members, $d_{GH}(G_i, G_{i+1}) = \infty$: structurally different, carry different metrics
 - ▶ their continuum limits also different $d_{GH}(G_{i,\infty},G_{i+1,\infty}) = \infty$
- But, are homeomorphic; can even be chosen to be the same topological space

Combination of two operations

- Generic initial conditions, \mathcal{K} is generically pure quasi-isometry:
 - ▶ two consecutive members, $d_{GH}(G_i, G_{i+1}) = \infty$: structurally different, carry different metrics
 - ▶ their continuum limits also different $d_{GH}(G_{i,\infty},G_{i+1,\infty}) = \infty$
- But, are homeomorphic; can even be chosen to be the same topological space
- Implication: different levels of spacetime have different distance functions, even if they are the same set (entanglement explanation? ER=EPR?)

Combination of two operations

with $G_i = \mathcal{K}^i(G_0)$, etc.

Renormalization goes on until either:

9 Phase transition: \mathcal{K} becomes rough isometry (hidden self-similarities, etc.)

Continuum limits will be the same, d_{GH}(G_{i,∞}, G_{i+1,∞}) = 0: all isometric, in the basin of attraction of G_{i,∞}.

Combination of two operations

with $G_i = \mathcal{K}^i(G_0)$, etc.

Renormalization goes on until either:

9 Phase transition: \mathcal{K} becomes rough isometry (hidden self-similarities, etc.)

Continuum limits will be the same, d_{GH}(G_{i,∞}, G_{i+1,∞}) = 0: all isometric, in the basin of attraction of G_{i,∞}.

³ Coarse graining chain reaches a stable fixed point/set of accumulation points

• If the spaces are uniformly compact, (Gromov's compactness theorem). Not generic

For graphs with polynomial growth, a dimension is

$$D(G) = \lim_{r \to \infty} \frac{\log \beta(G, v_i, r)}{\log r}$$

- degree of polynomial growth, and
- usual dim. for embedded spaces and lattices.

For graphs with polynomial growth, a dimension is

$$D(G) = \lim_{r \to \infty} \frac{\log \beta(G, v_i, r)}{\log r}$$

- degree of polynomial growth, and
- usual dim. for embedded spaces and lattices.
- Integer *D*: graphs with locally finite vertex degree, connected, and vertex transitive.

For graphs with polynomial growth, a dimension is

$$D(G) = \lim_{r \to \infty} \frac{\log \beta(G, v_i, r)}{\log r}$$

- degree of polynomial growth, and
- usual dim. for embedded spaces and lattices.
- Integer *D*: graphs with locally finite vertex degree, connected, and vertex transitive.
- If G_1, G_2 quasi-isometric, with a globally bounded vertex degree \Rightarrow have the same D

For graphs with polynomial growth, a dimension is

$$D(G) = \lim_{r \to \infty} \frac{\log \beta(G, v_i, r)}{\log r}$$

- degree of polynomial growth, and
- usual dim. for embedded spaces and lattices.
- Integer *D*: graphs with locally finite vertex degree, connected, and vertex transitive.
- If G_1, G_2 quasi-isometric, with a globally bounded vertex degree \Rightarrow have the same D
- D stable under quasi-isometry ${\cal K}$

For graphs with polynomial growth, a dimension is

$$D(G) = \lim_{r \to \infty} \frac{\log \beta(G, v_i, r)}{\log r}$$

- degree of polynomial growth, and
- usual dim. for embedded spaces and lattices.
- Integer *D*: graphs with locally finite vertex degree, connected, and vertex transitive.
- If G_1, G_2 quasi-isometric, with a globally bounded vertex degree \Rightarrow have the same D
- D stable under quasi-isometry ${\cal K}$
- Change of *D* under renormalization? use not quasi-isometric \mathcal{K} , but translocal, i.e. change *k*-neighborhoods

Future Directions

Future: color, dynamics, connecting to other approaches, ...

- Add color (internal DoF of vertices and edges)
- Color makes it possible to introduce dynamics
- Makes it possible to connect with LQG, etc.
- Makes it possible to connect with coarse graining methods of using projective Hilbert space
- Emergent color? Emergent symmetries?
- How it affects distance?

More details: "*Emergent Space-Time via a Geometric Renormalization Method*", SR, M. Requardt, Phys. Rev. D 94, 124019 (2016).

Take lattice \mathbb{Z}^n embedded in \mathbb{R}^n , take the scaling limit

$$\phi_I: (\mathbb{Z}^n, d_{\mathbb{Z}^n}) \longmapsto (\mathbb{Z}^n, \lambda d_{\mathbb{Z}^n}), \qquad \lambda = 2^{-I}$$

with $d_{\mathbb{Z}^n}$ a suitable metric on \mathbb{Z}^n . Then

$$\lim_{\lambda\to 0} \left(\mathbb{Z}^n, \lambda d_{\mathbb{Z}^n}\right) = \mathbb{R}^n,$$

in pointed GH-sense. For a fixed ball around x = 0, and for $l \to \infty$ the ball is more and more filled with points stemming from lattices having edge length 2^{-l} .