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Essense of Renormalization - 1
Physical system S

Model M of S . Renormalization operates on M

Fix a minimum scale `. Determines elementary constituents s of S
si : state of a constituent ⇒ a microscopic state of S : a configuration
{si}, i = 1, . . . ,N
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Ingredients M:
State space E = {{si}} of configurations

Macroscopic quantities A ({si}) associated configurations
Structure rule: function F ({si}), maybe written using a set of parameters
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Essence of Renormalization - 2
Renormalization: iteration of renormalization transformation, Ren, in the space of
models (SPM) or theory space
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Essence of Renormalization - 2
Renormalization: iteration of renormalization transformation, Ren, in the space of
models (SPM) or theory space

Renormalization transformation, Ren (a symmetry transformation):

I Decimation (coarse graining): regroup constituents in packets {si}′

F Change resolution `→ b`: loss of information at scales < b`
F Reduces # of DoF N by b`

F Rule {si}′ = Tb ({si}): should preserve info and props. crucial at large scales
(which ones?)

I Change of scale X → X
b
: restores effective min scale after decimation

I Transform F → F ′ = Rb (F ): to compensate for above, and correctly describe
statistics or evolution of Tb ({si})

F Rb: Renormalization Operator

This succession of models: trajectories in SPM, renormalization flow
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I Transform F → F ′ = Rb (F ): to compensate for above, and correctly describe
statistics or evolution of Tb ({si})

F Rb: Renormalization Operator

This succession of models: trajectories in SPM, renormalization flow

Different schemes of renormalization, e.g.
Kadanoff: renormalisation within a given ensemble of parameters K ,

Fk → Fk′ with renormalized parametersK ′ = Rb (K )

RG: functional ensemble F = {F}, where Rb : F → F changes form of F

F → F ′ = Rb (φ)
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Renormalization as symmetry: Covariance and Invariance
Covariance under renormalization:

Physical reality not altered if change manner of observing it
I M, M ′ should describe the same physical reality, only on different scales
I RG: symmetry group leaves the system under study invariant
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Invariance by renormalization:
I Property A remains invariant: A = Renb (A).

F Selfsimilarity of A.
F W.r.t. to A, system observed at scale bc, identical to the one observed at scale

c, only expanded by b.
I Fixed points of Ren: associated with an exact scale invariance of A

Saeed Rastgoo (UAM-I, Mexico) Emergent continuous ST via a geometric RG Tux Worskshop, Feb. 15, 17 4 / 14



Renormalization as symmetry: Covariance and Invariance
Covariance under renormalization:

Physical reality not altered if change manner of observing it
I M, M ′ should describe the same physical reality, only on different scales
I RG: symmetry group leaves the system under study invariant

Invariance by renormalization:
I Property A remains invariant: A = Renb (A).

F Selfsimilarity of A.
F W.r.t. to A, system observed at scale bc, identical to the one observed at scale

c, only expanded by b.
I Fixed points of Ren: associated with an exact scale invariance of A

Renb (M∗) = M∗ ⇔ M∗ a fixed point: scale invariant

Set of models converging to, or diverging from M∗ under Renb: a
hypersurface of SPM, called universality class C (M∗).
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The Geometric RG Method in a Nutshell

[G0]∞ [K(G0)]∞ [K2(G0)]∞ [. . .]∞ [Kn(G0)]∞

G0
K //

φλ→0

OO

K(G0)
K //

φλ→0

OO

K2(G0)
K //

φλ→0

OO

· · · K //

φλ→0

OO

Kn(G0)

φλ→0

OO

1 S: space of all non-compact, locally compact metric spaces (space of
models) ⊃ uncolored graphs (colored, in future)

2 Init. condition graph, (G0, d0) ∈ S; d0 a graph metric: fundamental layer of
spacetime

3 Geometric renormalization process consists of:

1 Coarse graining K : (Gi , di ) → (Gi+1, di+1) where Kj(G0) = Gj

2 Rescaling φλ : (Gi , di ) → (Gi , λdi ) on each (Gi , di ) Not exactly like RG!
1 limλ→0 φλ ((Gi , di )) =

(
Gi,∞, di,∞

)
: continuum limit of (Gi , di )

4 Lower chain: coarse graining chain (discrete spaces)
5 Upper chain: continuum limit chain
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Graph distance
d(vi , vj)= Min # of edges connecting vi , vj .
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Why a graph?
Gi : network of elementary entities (vertices) interacting (edges)
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2 Init. condition graph, (G0, d0) ∈ S; d0 a graph metric: fundamental layer of
spacetime

3 Geometric renormalization process consists of:

1 Coarse graining K : (Gi , di ) → (Gi+1, di+1) where Kj(G0) = Gj

2 Rescaling φλ : (Gi , di ) → (Gi , λdi ) on each (Gi , di ) Not exactly like RG!
1 limλ→0 φλ ((Gi , di )) =

(
Gi,∞, di,∞

)
: continuum limit of (Gi , di )

4 Lower chain: coarse graining chain (discrete spaces)
5 Upper chain: continuum limit chain

Two flows
Two parts of the model:

1 Horizontal discrete SPM
2 Vertical rescaling flow
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K applied consecutively until either:
Phase transition: land in basin of attraction of a continuum limit (w.r.t. φλ)

End in a fixed point, or a set of accumulation points (non-generic scenario)
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Coarse Graining K
Motivation: Wilsonian renormalization, block spin (Ising, etc.).

Generalization: Quasi-isomery...
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Coarse Graining K
Motivation: Wilsonian renormalization, block spin (Ising, etc.).
Generalization: Quasi-isomery...

Given metric spaces X ,Y ∈ S, a map f : X → Y , where ∃λ ≥ 1, ε ≥ 0 such that
∀x1, x2 ∈ X

1
λ
dX (x1, x2)− ε ≤ dY (f (x1), f (x2)) ≤ λdX (x1, x2) + ε, ∀x1, x2 ∈ X

and
∀y ∈ Y : ∃x ∈ X : dY (y , f (x)) ≤ C .

is a quasi-isometry, i.e.
distance of the images under f , within a factor λ, and up to a constant, of
their original distances, and
every point y ∈ Y lies within a constant distance C ≥ 0 of an image point.
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1
λ
dX (x1, x2)− ε ≤ dY (f (x1), f (x2)) ≤ λdX (x1, x2) + ε, ∀x1, x2 ∈ X

and
∀y ∈ Y : ∃x ∈ X : dY (y , f (x)) ≤ C .

is a quasi-isometry, i.e.
distance of the images under f , within a factor λ, and up to a constant, of
their original distances, and
every point y ∈ Y lies within a constant distance C ≥ 0 of an image point.

It is a rough isometry when λ = 1.

Coarse graining
Our coarse grainings are either

1 Quai-isometry, or
2 Rough isometry
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Examples of K
Pure quasi-isometry: k-local insertion/deletion of edges – preserves
k-neighborhoods of vertices.

Saeed Rastgoo (UAM-I, Mexico) Emergent continuous ST via a geometric RG Tux Worskshop, Feb. 15, 17 7 / 14



Examples of K
Pure quasi-isometry: k-local insertion/deletion of edges – preserves
k-neighborhoods of vertices.

Rough isometry: “clique graph” transformation G −→ C(G )

Vertices V (C(G )): cliques of G ,
Edge between vCi , v

C
j ∈ V (C(G )) if cliques have minimal internal # of vertex

overlap in G .
Alternative: edge if vCi , v

C
j ∈ V (C(G )) have minimal internal # of edge

between them in G .
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C
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overlap in G .
Alternative: edge if vCi , v

C
j ∈ V (C(G )) have minimal internal # of edge
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Clique
Clique: a complete subgraph (maximally connected). Here K7:
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A Measure of Similarity (and Convergence): dGH
Gromov-Hausdorff distance dGH (X ,Y ) between two compact metric spaces (can
be extended to the members of S):

Measures how far X ,Y are from being isometric,
I isometric iff dGH(X ,Y ) = 0, non-isometric iff dGH(X ,Y ) = ∞.

Defines a notion of convergence for sequences of metric spaces.
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Gromov-Hausdorff distance dGH (X ,Y ) between two compact metric spaces (can
be extended to the members of S):

Measures how far X ,Y are from being isometric,
I isometric iff dGH(X ,Y ) = 0, non-isometric iff dGH(X ,Y ) = ∞.

Defines a notion of convergence for sequences of metric spaces.

Hausdorff and Gromov-Hausdorff distances
In a metric space (M, d), Hausdorff distance dH(X ,Y ) of
X ,Y ⊂ M ∧ X ,Y 6= ∅:

dH (X ,Y ) = inf {ε ≥ 0|X ⊆ Uε(Y ),Y ⊆ Uε(X )}

with Uε(X ) union of all ε-balls around all x ∈ X

Uε(X ) =
⋃
x∈X

{z ∈ M|d(z , x) ≤ ε} .

The Gromov-Hausdorff distance dGH of two compact metric spaces
(X , dX ) , (Y , dY )

dGH (X ,Y ) = inf dZ
H (f (X ), g(Y ))

of all metric spaces Z and all isometric embeddings f : X → Z , g : Y → Z .
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Gromov-Hausdorff distance dGH (X ,Y ) between two compact metric spaces (can
be extended to the members of S):

Measures how far X ,Y are from being isometric,
I isometric iff dGH(X ,Y ) = 0, non-isometric iff dGH(X ,Y ) = ∞.

Defines a notion of convergence for sequences of metric spaces.

For X K−→ Y : if
If K a pure quasi-isometry ⇒ dGH (X ,Y ) =∞. Spaces structurally different.

If K rough isometry ⇒ dGH (X ,Y ) = finite. Spaces structurally similar.
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For X K−→ Y : if
If K a pure quasi-isometry ⇒ dGH (X ,Y ) =∞. Spaces structurally different.
If K rough isometry ⇒ dGH (X ,Y ) = finite. Spaces structurally similar.

Convergence criteria can used horizontally (for coarse graining sequence), or
vertically (e.g. existence of a continuum limit)
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Gromov-Hausdorff distance dGH (X ,Y ) between two compact metric spaces (can
be extended to the members of S):

Measures how far X ,Y are from being isometric,
I isometric iff dGH(X ,Y ) = 0, non-isometric iff dGH(X ,Y ) = ∞.

Defines a notion of convergence for sequences of metric spaces.

For X K−→ Y : if
If K a pure quasi-isometry ⇒ dGH (X ,Y ) =∞. Spaces structurally different.
If K rough isometry ⇒ dGH (X ,Y ) = finite. Spaces structurally similar.

Convergence criteria can used horizontally (for coarse graining sequence), or
vertically (e.g. existence of a continuum limit)

Convergence and uniform compactness
Theorem: If for all r and ε > 0 the balls B(xi , r) of a given sequence of proper
metric spaces {(Xi , xi ∈ Xi )} are uniformly compact, then a subsequence of spaces
converges in the pointed GH sense.

Set (or sequence) of compact {(Xi , di )} are uniformly compact if:
Diameters diam(Xi ) = sup {di (x , y) : xi , yi ∈ Xi} are uniformly bounded:
∃R ∈ R|diam(Xi ) ≤ R, ∀Xi .
For each ε > 0, Xi is coverable by Nε <∞ balls of radius ε independent of
the index i .

Saeed Rastgoo (UAM-I, Mexico) Emergent continuous ST via a geometric RG Tux Worskshop, Feb. 15, 17 8 / 14



Rescaling φλ and Continuum Limit Properties
Rescaling map:

φλ : (X , dX ) 7−→ (X , λdX )

λ parametrizes the distance between the points on the different scales.
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Rescaling φλ and Continuum Limit Properties
Rescaling map:

φλ : (X , dX ) 7−→ (X , λdX )

λ parametrizes the distance between the points on the different scales.

limλ→∞ φλ reveals fine structure of X : magnifying infinitesimal
neighborhoods of the points of X ,

limλ→0 φλ corresponds to the large scale structure of X :

lim
λ→0

φλ ((X , dX )) = lim
λ→0

(X , λdX ) = (X∞, dX ,∞) ,

important for us!
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Some Properties of the Continuum Limit
If spaces are purely quasi-isometric, dGH (X ,Y ) =∞, then also

dGH(X∞,Y∞) =∞,

i.e have different continuum limits.
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dGH(X∞,Y∞) =∞,

i.e have different continuum limits.

If spaces are roughly isometric, dGH (X ,Y ) <∞, they have an identical
continuum limit (X∞, dX ,∞),

dGH(X∞,Y∞) = 0.
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Some Properties of the Continuum Limit
If spaces are purely quasi-isometric, dGH (X ,Y ) =∞, then also

dGH(X∞,Y∞) =∞,

i.e have different continuum limits.

If spaces are roughly isometric, dGH (X ,Y ) <∞, they have an identical
continuum limit (X∞, dX ,∞),

dGH(X∞,Y∞) = 0.

Set
{

(X ′, dX ′)

∣∣∣∣dGH (X ′,X ) <∞
}

is basin of attraction, of attractor

(X∞, dX ,∞), under φλ. They all have the same continuum limit (X∞, dX ,∞).
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(X∞, dX ,∞), under φλ. They all have the same continuum limit (X∞, dX ,∞).

(X∞, dX ,∞) is scale invariant under φλ i.e. dGH(X∞, λX∞) = 0.

Graphs of uniform polynomial growth have a continuum limit.

Uniform polynomial growth
Growth function β(G , vi , r) in a graph G is the # of vertices in a ball of
radius r around vi :

β(G , vi , r) := |BG (vi , r)|

G has polynomial growth: β(G , vi , r) . r D̄ ≈ Ar D̄ for D̄ ≥ 0.
G has uniform polynomial growth:

Ard ≤ β(G , vi , r) ≤ Brd

and A,B, d > 0. (for locally finite graph, is independent of vi )
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Uniform polynomial growth
Growth function β(G , vi , r) in a graph G is the # of vertices in a ball of
radius r around vi :

β(G , vi , r) := |BG (vi , r)|

G has polynomial growth: β(G , vi , r) . r D̄ ≈ Ar D̄ for D̄ ≥ 0.
G has uniform polynomial growth:

Ard ≤ β(G , vi , r) ≤ Brd

and A,B, d > 0. (for locally finite graph, is independent of vi )
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Full Picture and Summary
Combination of two operations

[G0]∞ [K(G0)]∞ [K2(G0)]∞ [. . .]∞ [Kn(G0)]∞

G0
K //

φλ→0

OO

K(G0)
K //

φλ→0

OO

K2(G0)
K //

φλ→0

OO

· · · K //

φλ→0

OO

Kn(G0)

φλ→0

OO

with Gi = Ki (G0), etc.
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with Gi = Ki (G0), etc.

Generic initial conditions, K is generically pure quasi-isometry:

I two consecutive members, dGH (Gi ,Gi+1) = ∞ : structurally different, carry
different metrics

I their continuum limits also different dGH (Gi,∞,Gi+1,∞) = ∞
But, are homeomorphic; can even be chosen to be the same topological space
Implication: different levels of spacetime have different distance functions,
even if they are the same set (entanglement explanation? ER=EPR?)
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OO

K2(G0)
K //

φλ→0

OO

· · · K //

φλ→0

OO

Kn(G0)

φλ→0

OO

with Gi = Ki (G0), etc.

Renormalization goes on until either:
1 Phase transition: K becomes rough isometry (hidden self-similarities, etc.)

1 Continuum limits will be the same, dGH(Gi,∞,Gi+1,∞) = 0: all isometric, in
the basin of attraction of Gi,∞.

2 Coarse graining chain reaches a stable fixed point/set of accumulation points

1 If the spaces are uniformly compact, (Gromov’s compactness theorem). Not
generic
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Brief Comments on Dimension
For graphs with polynomial growth, a dimension is

D(G ) = lim
r→∞

log β(G , vi , r)

log r

coincides with
degree of polynomial growth, and
usual dim. for embedded spaces and lattices.
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log r

coincides with
degree of polynomial growth, and
usual dim. for embedded spaces and lattices.

Integer D: graphs with locally finite vertex degree, connected, and vertex
transitive.

If G1,G2 quasi-isometric, with a globally bounded vertex degree ⇒ have the
same D

D stable under quasi-isometry K
Change of D under renormalization? use not quasi-isometric K, but
translocal, i.e. change k-neighborhoods
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Future Directions
Future: color, dynamics, connecting to other approaches, ...

Add color (internal DoF of vertices and edges)
Color makes it possible to introduce dynamics
Makes it possible to connect with LQG, etc.
Makes it possible to connect with coarse graining methods of using projective
Hilbert space
Emergent color? Emergent symmetries?
How it affects distance?

More details: “Emergent Space-Time via a Geometric Renormalization Method ”,
SR, M. Requardt, Phys. Rev. D 94, 124019 (2016).
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Rescaling φλ and continuum limit properties

Take lattice Zn embedded in Rn, take the scaling limit

φl : (Zn, dZn) 7−→ (Zn, λdZn) , λ = 2−l

with dZn a suitable metric on Zn. Then

lim
λ→0

(Zn, λdZn) = Rn,

in pointed GH-sense. For a fixed ball around x = 0, and for l →∞ the ball is
more and more filled with points stemming from lattices having edge length 2−l .

Saeed Rastgoo (UAM-I, Mexico) Emergent continuous ST via a geometric RG Tux Worskshop, Feb. 15, 17 14 / 14


