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°
@ Model M of S. Renormalization operates on M

@ Fix a minimum scale . Determines elementary constituents s of S
o

s;: state of a constituent = a microscopic state of S: a configuration
{si}, i=1,...,N

Ingredients M:

@ State space E = {{s;}} of configurations
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Essense of Renormalization - 1

Physical system S

°
@ Model M of S. Renormalization operates on M

@ Fix a minimum scale . Determines elementary constituents s of S
o

s;: state of a constituent = a microscopic state of S: a configuration
(s}, i=1,....N

Ingredients M:
@ State space E = {{s;}} of configurations
@ Macroscopic quantities A ({s;}) associated configurations

e Structure rule: function F ({s;}), maybe written using a set of parameters
K =1{Kj}
> F at equilibrium: the statistical weight of {s;}
» F out of equilibrium: evolution of configuration {s;} (e.g. Hamiltonian)
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Essence of Renormalization - 2

Renormalization: iteration of renormalization transformation, Ren, in the space of
models (SPM) or theory space
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@ Renormalization transformation, Ren (a symmetry transformation):
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» Decimation (coarse graining): regroup constituents in packets {s;}’
* Change resolution ¢ — b¢: loss of information at scales < b¢
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@ Renormalization transformation, Ren (a symmetry transformation):

» Decimation (coarse graining): regroup constituents in packets {s;}’

* Change resolution ¢ — b¢: loss of information at scales < b¢

* Reduces # of DoF N by b’

* Rule {s;} = T}, ({si}): should preserve info and props. crucial at large scales
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Essence of Renormalization - 2

Renormalization: iteration of renormalization transformation, Ren, in the space of
models (SPM) or theory space

@ Renormalization transformation, Ren (a symmetry transformation):

» Decimation (coarse graining): regroup constituents in packets {s;}’
* Change resolution ¢ — b¢: loss of information at scales < b¢
* Reduces # of DoF N by b’
* Rule {s;} = T}, ({si}): should preserve info and props. crucial at large scales
(which ones?)
» Change of scale X — %: restores effective min scale after decimation
» Transform F — F' = R, (F): to compensate for above, and correctly describe
statistics or evolution of T} ({si})
* Rp: Renormalization Operator
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Essence of Renormalization - 2

Rannrmalizatinn: iteratinn nf rennrmalizatinn trancfarmatinn Ren in tha cnare nf

Different schemes of renormalization, e.g.

o Kadanoff: renormalisation within a given ensemble of parameters K,
Fx — Fy with renormalized parameters K’ = R}, (K)

@ RG: functional ensemble F = {F}, where Ry : F — F changes form of F
F— F' = Ry (¢)

v

» Transform F — F' = R, (F): to compensate for above, and correctly describe
statistics or evolution of T} ({si})

* Rp: Renormalization Operator
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Essence of Renormalization - 2

Renormalization: iteration of renormalization transformation, Ren, in the space of
models (SPM) or theory space

@ Renormalization transformation, Ren (a symmetry transformation):

» Decimation (coarse graining): regroup constituents in packets {s;}’
* Change resolution ¢ — b¢: loss of information at scales < b¢
* Reduces # of DoF N by b¢
* Rule {s;} = T}, ({si}): should preserve info and props. crucial at large scales
(which ones?)
» Change of scale X — %: restores effective min scale after decimation

» Transform F — F' = R, (F): to compensate for above, and correctly describe
statistics or evolution of T} ({si})

* Rp: Renormalization Operator

@ This succession of models: trajectories in SPM, renormalization flow
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Renormalization as symmetry: Covariance and Invariance

Covariance under renormalization:
@ Physical reality not altered if change manner of observing it

» M, M’ should describe the same physical reality, only on different scales
» RG: symmetry group leaves the system under study invariant
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> RG: symmetry group leaves the system under study invariant

@ Invariance by renormalization:
> Property A remains invariant: A = Ren, (A).
* Selfsimilarity of A.

* W.r.t. to A, system observed at scale bc, identical to the one observed at scale
c, only expanded by b.

» Fixed points of Ren: associated with an exact scale invariance of A
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Covariance under renormalization:
@ Physical reality not altered if change manner of observing it

» M, M’ should describe the same physical reality, only on different scales
> RG: symmetry group leaves the system under study invariant

@ Invariance by renormalization:
> Property A remains invariant: A = Ren, (A).
* Selfsimilarity of A.

* W.r.t. to A, system observed at scale bc, identical to the one observed at scale
c, only expanded by b.

» Fixed points of Ren: associated with an exact scale invariance of A

e Ren, (M*) = M* & M* a fixed point: scale invariant

@ Set of models converging to, or diverging from M* under Reny: a
hypersurface of SPM, called universality class C (M*).
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Renormalization as symmetry: Covariance and Invariance

Covariance under renormalization:
@ Physical reality not altered if change manner of observing it

» M, M’ should describe the same physical reality, only on different scales
> RG: symmetry group leaves the system under study invariant

Invariance by renormalization:
> Property A remains invariant: A = Ren, (A).

* Selfsimilarity of A.
* W.r.t. to A, system observed at scale bc, identical to the one observed at scale
c, only expanded by b.

» Fixed points of Ren: associated with an exact scale invariance of A

Ren, (M*) = M* < M* a fixed point: scale invariant

Set of models converging to, or diverging from M* under Ren: a
hypersurface of SPM, called universality class C (M*).

Part of C (M*) converging (flowing) to M*: basin of attraction of M*.
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The Geometric RG Method in a Nutshell

[Goloo [K(Go)loo [K?(Go)]oo [+ Jeo [K"(Go)loo
¢,\‘—>o ¢/\‘—>o ¢>>\‘—>o dro0 du‘_,o
Go — = K(Go) — K K2(Gy) —& : ‘ : K L Kn(Go)

@ S: space of all non-compact, locally compact metric spaces (space of
models) D uncolored graphs (colored, in future)
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@ Init. condition graph, (Go, dp) € S; do a graph metric: fundamental layer of
spacetime

Saeed Rastgoo (UAM-I, Mexico)

Emergent continuous ST via a geometric RG

Tux Worskshop, Feb. 15, 17 5/ 14



The Geometric RG Method in a Nutshell

[Gol oo [K(Go)lso [K2(Go)loo [ oo [K"(Go)los
¢,\‘—>o ¢/\‘—>o ¢>>\‘—>o ¢.>\‘_,0 ¢>)\‘—>o
Gy ———= K(Go) —— K?(Gp) ——— - -- ——— K"(Go)
Graph distance
d(vj, v;)= Min # of edges connecting v;, v;. J

@ Init. condition graph, (Go, dy) € S; do a graph metric: fundamental layer of
spacetime
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The Geometric RG Method in a Nutshell

[Goloo [K(Go)loo [£?(Go)loo [ oo [K7(Go)loo
¢)\‘—>O ¢'/\‘—>0 ¢>\‘—>0 ¢'>\‘_,0 ¢)\‘—>0
Go ———> K(Gp) —"—> K*(Gp) ———> - ——K"(Gp)
Why a graph?
G;: network of elementary entities (vertices) interacting (edges) J

@ Init. condition graph, (Go, dy) € S; do a graph metric: fundamental layer of
spacetime
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The Geometric RG Method in a Nutshell

[Goloo [K(Go)loo [K?(Go)]oo [+ Jeo [K"(Go)loo
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@ S: space of all non-compact, locally compact metric spaces (space of
models) D uncolored graphs (colored, in future)

@ Init. condition graph, (Go, dp) € S; do a graph metric: fundamental layer of
spacetime

© Geometric renormalization process consists of:
@ Coarse graining K : (G;, d;) = (Git1, dit1) where K/ (Go) = G;
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@ S: space of all non-compact, locally compact metric spaces (space of
models) D uncolored graphs (colored, in future)
@ Init. condition graph, (Go, dp) € S; do a graph metric: fundamental layer of
spacetime
© Geometric renormalization process consists of:
@ Coarse graining K : (G;,di) = (Giy1, diy1) where K (Go) = G;
@ Rescaling ¢ : (Gi, di) — (Gi, Ad;) on each (Gj, d;) Not exactly like RG!
@ limx_09x ((Gi,d})) = (Gj 00, di,o0): continuum limit of (Gj, d;)
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@ S: space of all non-compact, locally compact metric spaces (space of
models) D uncolored graphs (colored, in future)

@ Init. condition graph, (Go, dp) € S; do a graph metric: fundamental layer of
spacetime

© Geometric renormalization process consists of:

@ Coarse graining K : (G;,di) = (Giy1, diy1) where K (Go) = G;
@ Rescaling ¢ : (Gi, di) — (Gi, Ad;) on each (Gj, d;) Not exactly like RG!

@ limx_09x ((Gi,d})) = (Gj 00, di,o0): continuum limit of (Gj, d;)
@ Lower chain: coarse graining chain (discrete spaces)

Saeed Rastgoo (UAM-I, Mexico) SOE TS TN T e Tux Worskshop, Feb. 15, 17 5 /14



The Geometric RG Method in a Nutshell
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@ S: space of all non-compact, locally compact metric spaces (space of
models) D uncolored graphs (colored, in future)

@ Init. condition graph, (Go, dp) € S; do a graph metric: fundamental layer of
spacetime
© Geometric renormalization process consists of:

@ Coarse graining K : (G;,di) = (Giy1, diy1) where K (Go) = G;
@ Rescaling ¢ : (Gi, di) — (Gi, Ad;) on each (Gj, d;) Not exactly like RG!

@ limx_09x ((Gi,d})) = (Gj 00, di,o0): continuum limit of (Gj, d;)
@ Lower chain: coarse graining chain (discrete spaces)

@ Upper chain: continuum limit chain
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The Geometric RG Method in a Nutshell

[Golso [K(Go)loo [K?(Go)loo [ ] [K"(Go)loo
¢7,\‘—>o ¢/\‘—>o 4’)\‘—»0 %to ¢>)\‘—>o
Go— = K(G) —E = K2(Gy) — - — K~ Kkn(Gy)
Two flows

Two parts of the model:
© Horizontal discrete SPM
© Vertical rescaling flow
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The Geometric RG Method in a Nutshell

[Goloo [K(Go)loo [K?(Go)]oo [+ Jeo [K"(Go)loo
¢,\‘—>o ¢/\‘—>o ¢>>\‘—>o ¢.j_,° du‘_,o
Go — = K(Go) — K K2(Gy) —& ‘ K L Kn(Go)

IC applied consecutively until either:

@ Phase transition: land in basin of attraction of a continuum limit (w.r.t. ¢»)
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The Geometric RG Method in a Nutshell

[Goloo [K(Go)loo [K?(Go)]oo [+ Jeo [K"(Go)loo
¢,\‘—>o ¢/\‘—>o ¢7>\‘—>o dro0 du‘_,o
Go — = K(Go) — K K2(Gy) —& : ‘ : K L Kn(Go)

IC applied consecutively until either:
@ Phase transition: land in basin of attraction of a continuum limit (w.r.t. ¢»)
e End in a fixed point, or a set of accumulation points (non-generic scenario)
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Coarse Graining K

@ Motivation: Wilsonian renormalization, block spin (Ising, etc.).
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Coarse Graining K

@ Motivation: Wilsonian renormalization, block spin (Ising, etc.).

o Generalization: Quasi-isomery...
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Coarse Graining KC

@ Motivation: Wilsonian renormalization, block spin (Ising, etc.).

o Generalization: Quasi-isomery...

Given metric spaces X,Y € S, amap f : X — Y, where 3\ > 1,¢ > 0 such that
Vx1,x2 € X

1

de(Xl,Xz) —e< dy(f(xl)7 f(X2)) < /\dx(Xl,Xg) + €, Vxy,xp € X

and
VyeY: Ixe X: dy(y,f(x)) <C.
is a quasi-isometry, i.e.

@ distance of the images under f, within a factor A, and up to a constant, of
their original distances, and

@ every point y € Y lies within a constant distance C > 0 of an image point.
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@ Motivation: Wilsonian renormalization, block spin (Ising, etc.).

o Generalization: Quasi-isomery...

Given metric spaces X,Y € S, amap f : X — Y, where 3\ > 1,¢ > 0 such that
Vx1,x2 € X

1

de(Xl,Xz) —e< dy(f(xl)7 f(X2)) < /\dx(Xl,Xg) + €, Vxy,xp € X

and
VyeY: Ixe X: dy(y,f(x)) <C.
is a quasi-isometry, i.e.

@ distance of the images under f, within a factor A, and up to a constant, of
their original distances, and

@ every point y € Y lies within a constant distance C > 0 of an image point.

It is a rough isometry when A = 1.
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Coarse Graining KC

@ Motivation: Wilsonian renormalization, block spin (Ising, etc.).

o Generalization: Quasi-isomery...

Given metric spaces X,Y € S, amap f : X — Y, where 3\ > 1,¢ > 0 such that
Coarse graining
Our coarse grainings are either

@ Quai-isometry, or

© Rough isometry

e o
is a quasi-isometry, i.e.

@ distance of the images under f, within a factor A, and up to a constant, of
their original distances, and

@ every point y € Y lies within a constant distance C > 0 of an image point.

It is a rough isometry when A = 1.
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Examples of IC

Pure quasi-isometry: k-local insertion/deletion of edges — preserves
k-neighborhoods of vertices.

Saeed Rastgoo (UAM-I, Mexico) SO T TR TN T lE Tux Worskshop, Feb. 15, 17 7/ 14



Examples of IC

Pure quasi-isometry: k-local insertion/deletion of edges — preserves
k-neighborhoods of vertices.

Rough isometry: “clique graph” transformation G — C(G)
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Examples of IC

Pure quasi-isometry: k-local insertion/deletion of edges — preserves
k-neighborhoods of vertices.

Rough isometry: “clique graph” transformation G — C(G)

Clique

Clique: a complete subgraph (maximally connected). Here K7:
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Examples of IC

Pure quasi-isometry: k-local insertion/deletion of edges — preserves
k-neighborhoods of vertices.

Rough isometry: “clique graph” transformation G — C(G)
@ Vertices V(C(G)): cliques of G,
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Examples of IC

Pure quasi-isometry: k-local insertion/deletion of edges — preserves
k-neighborhoods of vertices.

Rough isometry: “clique graph” transformation G — C(G)
@ Vertices V(C(G)): cliques of G,

o Edge between v¢, vjc € V(C(G)) if cliques have minimal internal # of vertex
overlap in G.
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Examples of IC

Pure quasi-isometry: k-local insertion/deletion of edges — preserves
k-neighborhoods of vertices.

Rough isometry: “clique graph” transformation G — C(G)
@ Vertices V(C(G)): cliques of G,

o Edge between v¢, vjc € V(C(G)) if cliques have minimal internal # of vertex
overlap in G.

o Alternative: edge if v/, v¢ € V(C(G)) have minimal internal # of edge
between them in G.
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A Measure of Similarity (and Convergence): dgy

Gromov-Hausdorff distance dgp (X, Y) between two compact metric spaces (can
be extended to the members of S):
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A Measure of Similarity (and Convergence): dgy

Gromov-Hausdorff distance dgp (X, Y) between two compact metric spaces (can
be extended to the members of S):
@ Measures how far X, Y are from being isometric,
» isometric iff dgy(X, Y) = 0, non-isometric iff dgu (X, Y) = oo.
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A Measure of Similarity (and Convergence): dgy

Gromov-Hausdorff distance dgp (X, Y) between two compact metric spaces (can
be extended to the members of S):

@ Measures how far X, Y are from being isometric,
» isometric iff dgy(X, Y) = 0, non-isometric iff dgu (X, Y) = oo.

@ Defines a notion of convergence for sequences of metric spaces.

Saeed Rastgoo (UAM-I, Mexico) SO T TN lE Tux Worskshop, Feb. 15, 17 8 /14



A Measure of Similarity (and Convergence): dgy

Gromov-Hausdorff distance dgp (X, Y) between two compact metric spaces (can
be extended to the members of S):

Hausdorff and Gromov-Hausdorff distances

@ In a metric space (M, d), Hausdorff distance dy(X, Y) of
X, YCM AX,Y#D:

duy (X, Y)=inf{e>0|X C U(Y),Y C U(X)}
with U.(X) union of all e-balls around all x € X

Ue(X) = | {z € M|d(z,x) < ¢}.

xeX
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A Measure of Similarity (and Convergence): dgy

Gromov-Hausdorff distance dgp (X, Y) between two compact metric spaces (can
be extended to the members of S):

Hausdorff and Gromov-Hausdorff distances

@ In a metric space (M, d), Hausdorff distance dy(X, Y) of
X, YCM AX,Y #0:

duy (X, Y)=inf{e>0|X C U(Y),Y C U(X)}
with U.(X) union of all e-balls around all x € X

Ue(X) = | {z € M|d(z,x) < ¢}.

xeX

@ The Gromov-Hausdorff distance dgy of two compact metric spaces
(Xa dX) ) (Ya dY)

den (X, Y) = inf dff (f(X),&(Y))

of all metric spaces Z and all isometric embeddings f : X =+ Z, g: Y — Z.

V.
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A Measure of Similarity (and Convergence): dgy

Gromov-Hausdorff distance dgp (X, Y) between two compact metric spaces (can
be extended to the members of S):

@ Measures how far X, Y are from being isometric,

» isometric iff dgy(X, Y) = 0, non-isometric iff dgu (X, Y) = oo.

@ Defines a notion of convergence for sequences of metric spaces.

For X X5 v if

o If K a pure quasi-isometry = dg (X, Y) = oo. Spaces structurally different.
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Gromov-Hausdorff distance dgp (X, Y) between two compact metric spaces (can
be extended to the members of S):

@ Measures how far X, Y are from being isometric,

» isometric iff dgu(X, Y) = 0, non-isometric iff deu(X, Y) = oc.

@ Defines a notion of convergence for sequences of metric spaces.

For X X5 v if

o If K a pure quasi-isometry = dg (X, Y) = oo. Spaces structurally different.
o If K rough isometry = dgy (X, Y) = finite. Spaces structurally similar.
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A Measure of Similarity (and Convergence): dgy
Gromov-Hausdorff distance dgp (X, Y) between two compact metric spaces (can
be extended to the members of S):
@ Measures how far X, Y are from being isometric,
» isometric iff dgu(X, Y) = 0, non-isometric iff deu(X, Y) = oc.

@ Defines a notion of convergence for sequences of metric spaces.

For X X5 v: if
o If K a pure quasi-isometry = dg (X, Y) = oo. Spaces structurally different.
o If K rough isometry = dgy (X, Y) = finite. Spaces structurally similar.

Convergence criteria can used horizontally (for coarse graining sequence), or
vertically (e.g. existence of a continuum limit)
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A Measure of Similarity (and Convergence): dgy

Gromov-Hausdorff distance dgp (X, Y) between two compact metric spaces (can
be extended to the members of S):
@ Measures how far X, Y are from being isometric,
» isometric iff dgu(X, Y) = 0, non-isometric iff deu(X, Y) = oc.

@ Defines a notion of convergence for sequences of metric spaces.

For X X5 vi if
Convergence and uniform compactness

Theorem: If for all r and € > 0 the balls B(x;, r) of a given sequence of proper
metric spaces {(Xj, x; € X;)} are uniformly compact, then a subsequence of spaces
converges in the pointed GH sense.

Set (or sequence) of compact {(X;, d;)} are uniformly compact if:
o Diameters diam(X;) = sup {di(x, y) : x;, y; € X;} are uniformly bounded:
IR € R|diam(X;) < R, VX;.
@ For each € > 0, X; is coverable by N. < oo balls of radius € independent of
the index i.

o
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Rescaling ¢, and Continuum Limit Properties

Rescali :
escaling map o = (X, dx) — (X, Adx)

A parametrizes the distance between the points on the different scales.
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Rescaling ¢, and Continuum Limit Properties

Rescali :
escaling map o 1 (X, dx) — (X, Adx)

A parametrizes the distance between the points on the different scales.

@ limy_ oo ¢ reveals fine structure of X: magnifying infinitesimal
neighborhoods of the points of X,
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Rescaling ¢ and Continuum Limit Properties

Rescali 3
escaling map b (X, dx) — (X, Adx)

A parametrizes the distance between the points on the different scales.

@ limy_ oo ¢ reveals fine structure of X: magnifying infinitesimal
neighborhoods of the points of X,

@ limy_,0 ¢, corresponds to the large scale structure of X:

lim 65 (X, dx)) = lim (X, Adx) = (Xoo, dx.oc)

important for us!
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Some Properties of the Continuum Limit

If spaces are purely quasi-isometric, dgy (X, Y) = oo, then also
dGH(Xoov Yoo) = 00,

i.e have different continuum limits.

Saeed Rastgoo (UAM-I, Mexico) ST T T lE Tux Worskshop, Feb. 15, 17 10 / 14



Some Properties of the Continuum Limit

If spaces are purely quasi-isometric, dgy (X, Y) = oo, then also

dGH(Xoov Yoo) = o0,

i.e have different continuum limits.

If spaces are roughly isometric, dey (X, Y) < 0o, they have an identical
continuum limit (Xoo, dx,o0),

der(Xso, Yoo) = 0.
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Some Properties of the Continuum Limit

If spaces are purely quasi-isometric, dgy (X, Y) = oo, then also
dGH(Xoov Yoo) = 0Q,

i.e have different continuum limits.

If spaces are roughly isometric, dey (X, Y) < 0o, they have an identical
continuum limit (Xoo, dx,o0),

der(Xso, Yoo) = 0.

Set {(X’, dx) ‘dGH (X', X) < oo} is basin of attraction, of attractor

(Xso, dx,00), under ¢5. They all have the same continuum limit (Xoo, dx,c0)-
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Some Properties of the Continuum Limit

If spaces are purely quasi-isometric, dgy (X, Y) = oo, then also
dGH(Xoov Yoo) = 0Q,

i.e have different continuum limits.

If spaces are roughly isometric, dey (X, Y) < 0o, they have an identical
continuum limit (Xoo, dx,o0),

der(Xso, Yoo) = 0.

Set ¢ (X', dx/) |der (X', X) < oo ¢ is basin of attraction, of attractor

(Xso, dx,00), under ¢5. They all have the same continuum limit (Xoo, dx,c0)-

(Xoo, dx,c0) is scale invariant under ¢ i.e. dgr(Xso, AXs) = 0.
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Some Properties of the Continuum Limit

If spaces are purely quasi-isometric, dgy (X, Y) = oo, then also
dGH(Xoov Yoo) = 0Q,

i.e have different continuum limits.

If spaces are roughly isometric, dey (X, Y) < 0o, they have an identical
continuum limit (Xoo, dx,o0),

der(Xso, Yoo) = 0.

Set ¢ (X', dx/) |der (X', X) < oo ¢ is basin of attraction, of attractor

(Xso, dx,00), under ¢5. They all have the same continuum limit (Xoo, dx,c0)-

(Xoo, dx,c0) is scale invariant under ¢ i.e. dgr(Xso, AXs) = 0.

Graphs of uniform polynomial growth have a continuum limit.
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Some Properties of the Continuum Limit

If spaces are purely quasi-isometric, dgy (X, Y) = oo, then also
dGH(Xoov Yoo) = 00,

Uniform polynomial growth

o Growth function 5(G, v;, r) in a graph G is the # of vertices in a ball of
radius r around v;:

B(G, Vi, r) = |BG(Vi7 r)|

Ny -

Graphs of uniform polynomial growth have a continuum limit.

Saeed Rastgoo (UAM-I, Mexico) ST T T lE Tux Worskshop, Feb. 15, 17 10 / 14




Some Properties of the Continuum Limit

If spaces are purely quasi-isometric, dgy (X, Y) = oo, then also
dGH(Xoov Yoo) = 0Q,

Uniform polynomial growth

o Growth function 5(G, v;, r) in a graph G is the # of vertices in a ball of
radius r around v;:

B(G,vi, r) :=|Bg(v;, r)]
@ G has polynomial growth: 8(G, v, r) < P ~ ArP for D > 0.

N ey -

Graphs of uniform polynomial growth have a continuum limit.
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Some Properties of the Continuum Limit

If spaces are purely quasi-isometric, dgy (X, Y) = oo, then also
dGH(Xoov Yoo) = 0Q,

Uniform polynomial growth

o Growth function 5(G, v;, r) in a graph G is the # of vertices in a ball of
radius r around v;:

B(G,vi, r) :=|Bg(v;, r)]
@ G has polynomial growth: 8(G, v, r) < P ~ ArP for D > 0.

@ G has uniform polynomial growth:

Ar? < B(G,v;,r) < Brd

and A, B,d > 0. (for locally finite graph, is independent of v;)

N

Graphs of uniform polynomial growth have a continuum limit.
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Full Picture and Summary

Combination of two operations

[Gooo [K(Go)]oo [K?(Go)lso
¢',\¢;o ¢>j;o ¢>>\¢\—>o

Go — = K(Go) — X K2(Go)

[l

K

[K7(Go)leo

¢>\~>0

with G; = K:i(Go), etc.

K"(Go)
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Full Picture and Summary

Combination of two operations

[Goloo [K(Go)loo [K2(Go)lso [ oo [K"(Go)loo
¢',\¢;o ¢>j;o ¢>>\¢\—>o ¢j\_,o Pr—0

Go — = K(Go) — X K2(Go)

|
K L Kn(Go)

with G; = ICI(Go), etc.

@ Generic initial conditions, K is generically pure quasi-isometry:
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Full Picture and Summary

Combination of two operations

[Goloo [K(Go)loo [K2(Go)lso [ oo [K"(Go)loo
¢',\¢;o ¢j;o ¢>>\¢\—>o ¢j\_,u Pr—0

Go — = K(Go) — X K2(Go)

|
K L Kn(Go)

with G; = K:i(Go), etc.

@ Generic initial conditions, K is generically pure quasi-isometry:

> two consecutive members, dg (G, Giy1) = oo : structurally different, carry
different metrics
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Full Picture and Summary

Combination of two operations

[Goloo [K(Go)loo [K2(Go)lso [ oo [K"(Go)loo
¢',\¢;o ¢Aﬁo ¢>>\¢\—>o ¢j\_,u Pr—0

Go — = K(Go) — X K2(Go)

|
K L Kn(Go)

with G; = K:i(Go), etc.

@ Generic initial conditions, K is generically pure quasi-isometry:

> two consecutive members, dg (G, Giy1) = oo : structurally different, carry
different metrics
> their continuum limits also different deh (Gi o0, Git1,00) = 00
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Full Picture and Summary

Combination of two operations

[Go]oo [K(Go)leo [K2(Go)l o [ s [K"(Go)leo
¢'j;o ¢Aﬁo ¢>\¢\—>o ¢j\ﬂu Pr—0

Go —=— K(Go) —E— K2(Go)

|
K K K"(Go)

with G; = ICI(GQ), etc.

@ Generic initial conditions, K is generically pure quasi-isometry:

> two consecutive members, dgy (Gi, Git1) = oo : structurally different, carry
different metrics
> their continuum limits also different deh (Gi o0, Git1,00) = 00

@ But, are homeomorphic; can even be chosen to be the same topological space
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Full Picture and Summary

Combination of two operations

[Go]oo [K(Go)leo [K2(Go)l o [ s [K"(Go)leo
¢'Ato ¢Aﬁo ¢>ﬁ>o ¢/\tu Pr—0

Go —=— K(Go) —E— K2(Go)

|
K K K"(Go)

with G; = ICI(GQ), etc.

@ Generic initial conditions, K is generically pure quasi-isometry:

> two consecutive members, dgy (Gi, Git1) = oo : structurally different, carry
different metrics
> their continuum limits also different deh (Gi o0, Git1,00) = 00

@ But, are homeomorphic; can even be chosen to be the same topological space

@ Implication: different levels of spacetime have different distance functions,
even if they are the same set (entanglement explanation? ER=EPR?)
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Full Picture and Summary

Combination of two operations

[Go]oo [K(Go)leo [K2(Go)l o [ s [K"(Go)leo
¢'j;o ¢Aﬁo ¢>\¢\—>o 1\

‘ ‘ ‘ Pr—0 $r—0

S S

Go —— K(Go) — 2 K2(Go) K"(Go)

with G; = ICI(GQ), etc.

Renormalization goes on until either:
@ Phase transition: K becomes rough isometry (hidden self-similarities, etc.)

@ Continuum limits will be the same, dgr(Gj oo, Git1,00) = 0: all isometric, in
the basin of attraction of Gj oo.
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Full Picture and Summary

Combination of two operations

[Go]oo [K(Go)leo [K2(Go)l o [ s [K"(Go)leo
¢'j;o ¢Aﬁo ¢>>ﬁ>o ¢j\ﬂu Pr—0

Go —=— K(Go) —E— K2(Go)

\
K"(Go)

with G; = ICI(GQ), etc.

Renormalization goes on until either:
@ Phase transition: K becomes rough isometry (hidden self-similarities, etc.)

@ Continuum limits will be the same, dgr(Gj oo, Git1,00) = 0: all isometric, in
the basin of attraction of Gj oo.

@ Coarse graining chain reaches a stable fixed point/set of accumulation points

@ If the spaces are uniformly compact, (Gromov's compactness theorem). Not
generic
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Brief Comments on Dimension

For graphs with polynomial growth, a dimension is

D(G) = lim '8P(C. Y1)

r—oc0 log r

coincides with
@ degree of polynomial growth, and
@ usual dim. for embedded spaces and lattices.
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Brief Comments on Dimension

For graphs with polynomial growth, a dimension is

I G,v;
D(G) = lim 1282 vi.r)
r—oc0 log r
coincides with
@ degree of polynomial growth, and
@ usual dim. for embedded spaces and lattices.

@ Integer D: graphs with locally finite vertex degree, connected, and vertex
transitive.
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Brief Comments on Dimension

For graphs with polynomial growth, a dimension is

[ .
D(G) = lim 2BA(C:vi:1)
r—o0 log r
coincides with
@ degree of polynomial growth, and

@ usual dim. for embedded spaces and lattices.

@ Integer D: graphs with locally finite vertex degree, connected, and vertex
transitive.

o If G, Gy quasi-isometric, with a globally bounded vertex degree = have the
same D
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coincides with
@ degree of polynomial growth, and

@ usual dim. for embedded spaces and lattices.

@ Integer D: graphs with locally finite vertex degree, connected, and vertex
transitive.

o If G, Gy quasi-isometric, with a globally bounded vertex degree = have the
same D

@ D stable under quasi-isometry K
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Brief Comments on Dimension

For graphs with polynomial growth, a dimension is

[ .
D(G) = lim 2BA(C:vi:1)
r—o0 log r
coincides with
@ degree of polynomial growth, and

@ usual dim. for embedded spaces and lattices.

@ Integer D: graphs with locally finite vertex degree, connected, and vertex
transitive.

o If G, Gy quasi-isometric, with a globally bounded vertex degree = have the
same D

@ D stable under quasi-isometry K

@ Change of D under renormalization? use not quasi-isometric K, but
translocal, i.e. change k-neighborhoods
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Future Directions

Future: color, dynamics, connecting to other approaches, ...
@ Add color (internal DoF of vertices and edges)
@ Color makes it possible to introduce dynamics
@ Makes it possible to connect with LQG, etc.
°

Makes it possible to connect with coarse graining methods of using projective
Hilbert space

Emergent color? Emergent symmetries?

How it affects distance?

More details: " Emergent Space-Time via a Geometric Renormalization Method",
SR, M. Requardt, Phys. Rev. D 94, 124019 (2016).
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Rescaling ¢ and continuum limit properties

Take lattice Z" embedded in R", take the scaling limit
¢1: (Z", dgn) — (Z", Xdyg») , A=2"'

with dz» a suitable metric on Z". Then

H n _ n
lim (2", Adz») = R,

in pointed GH-sense. For a fixed ball around x = 0, and for / — oo the ball is

more and more filled with points stemming from lattices having edge length 2/
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