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PART 1:

Motivation



Motivation - (2014) - From anisotropic spin foam cosmology

Spinfoam cosmology and the oactogon graph
Further developments

The Octogon graph and spinfoams with timelike faces

Motivation: Describe a truly closed boundary with clear ‘in-" and ‘out-’
interpretation.

NS
N

One can treat all boundary cubes as spacelike, but the idea is to include
timelike boundary cubes. (— Investigate generalized EPRL/FK SFM due
to Conrady and Hnybida®®. Change of asymptotic analysis?)

©F. Conrady, Spin foams with timelike surfaces, Classical and Quantum Gravity, vol. 27, no. 15, (2010)
bE. Conrady and J. Hnybida, A spin foam model for general lorentzian 4-geometries, Classical and Quantum

Gravity, vol. 27, no. 18, (2010)
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History of generalized spin foam models

e (2000) - L. Freidel - Lorentzian Ponzano-Regge model.

e (2001) - A. Perez, C. Rovelli - GFT like model for SL(2, C) with timelike
contributions.

e (2003) - L. Freidel, E.R. Livine, C. Rovelli - Discussion of discrete vs.
continuous spectra in 3D Lorentzian models.

e (2003) - E.R. Livine, D. Oriti - Question about causality (of spacelike
components) in spinfoam models raised.

e (2005) - S. Alexandrov, Z. Kadar - Timelike surfaces and their spectrum in
CLQG.

e (2010) - F. Conrady, J. Hnybida - Generalized EPRL model using
FK-approach. First time really summing over timelike and spacelike
contributions in the bulk. (No asymptotic analysis as of now.)

e (2013) - S. Speziale, M. Zhang - Null twisted geometries.

e (2014/2016) - G. Immirzi - Discussion of timelike contributions in spin
foam models and how to obtain causality.



Motivation

Main question:

Is the EPRL-FK-KKL spin foam model our final spin foam model? Is the
dynamics of LQG solved?

In my opinion the answer is no.

e Second question: Asymptotics of the Conrady-Hnybida (or our new)
model? How does the dynamics change if we include timelike contributions in
the path integral? Spinfoams as a Rigging map / “Projector” on physical
Hilbert space of LQG.

e Introduction of auxiliary (timelike) normal vector N7 in the linear
simplicity constraints N - B = 0 in the EPRL-FK-KKL spin foam model rather
unsatisfactory from a covariant perspective. Possible solution: Phase space
extension / dynamical N’.

e  Mathematical : Test the twistorial parametrization of LQG.

e Physical : Spectra of geometric operators in Lorentzian spacetime, discrete
or continuous?



Reminder: Spin foam models and BF-theory

e Spin foam models : covariant, background independent and
non-perturbative approach to define/calculate:

Z(M) :/[dgw]DifFe%SEH[gw]'

e  First : Quantize (topological) BF-theory, because general relativity can be
formulated as a constrained BF-theory:

Z= / [dA][dB)[dg)] ' Spiebansial 4:5:9] — / [dA][dB] 5(C(B)) e*9sr 1451
with

SPlebanski[B, A4, ¢] = / ersxr B N FEY[A] + 1y B A BRY

M
where the simplicity constraints : C(B) = 0 imply that the B-field is ‘simple’.
e From the Plebanski action we see that for B = e Ae we get back general
relativity in Einstein-Cartan form

SEc[e,A}Z/ EIJKLGI/\eJ/\FKL[A}.
M



Reminder: Spin foam models and BF-theory

e  BF-theory is defined by
Ser[B, A] :/ e (B A FIA)).
M

e Partition function :

Zer :/[dA][dB] ¢! g TrBATIAD =/[dA] S(F[A])

e Discretization :

By =[5 ge[A]:Pexp(/A),
f e

Gf =geyges " Ge,, = Pexp (}4 A) .
of

e In terms of holonomies and discretized fluxes one obtains:

Zer() = [ T] 4G I] 40 (Gy).

eEA* fenx



Reminder: Spin foam models and BF-theory

e Use Peter-Weyl theorem to rewrite the delta-function on the gauge-group
in terms of unitary irreducible representations.

Zgr(A / IT @cs 1 Zd Tr,(Gy).

ecA* feax

e For SL(2,C) we have
566 =3 [y 49 T (D7)
n=0"0

e Hence, we get a spin foam model expression for the BF-partition function,
which looks generally like

Zo = ZHA (Jrste) HAf (Jy) HA Jfyde) -

Jfite €



PART 2:

3D Lorentzian quantum gravity



3D Lorentzian quantum gravity

e 3D Lorentzian quantum gravity, with and without cosmological constant,
well understood. Both in the field theory context® as well as LQG/spin foam
approach.

e  Why important for us? Quantization (using inputs from Chern-Simons
theory) possible and leads to definite results about the kinematical structure as
well as the partition function and transition amplitudes of the theory. Further,
interesting to understand IR/classical limit and 3-manifold invariants.

e Aiming to match those results, we find both in the LQG and the spin foam
approach that spacelike AND timelike contributions are necessary/show up and
can not be neglected.
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@ E. Witten, 2+1 Dimensional gravity as an exactly soluble system (1988) and
Topology changing amplitudes in 2+1 dimensional gravity (1989).



Canonical quantization

3D Lorentzian gravity, with spin connection w[;’ and triad ef“ is given by

1

Sle.w] = 167G Jy,

Tr(e A Flw]) .

If we allow degenerate e, equivalence with ISO(1,2) Chern-Simons theory.
Equations of motion :  Flw]=D“w =0 , Tle,w]=D"e=0.

2+1 split : M =TI x X, where ¥ is a Riemann surface of genus g > 2.
Poisson structure on ¥ :  {wl(z),e] (y)} = €as n'7 6@ (z — y).

Pull back of FF =0 =T to X gives 6 first class constraints. Hence, no

local d.o.f. But : can have finite dimensional physical phase space, capturing
non-trivial topology of .

F = 0 imposes flatness of w and T' = 0 tells us that w is the (torsion less)

spin connection.



Canonical quantization

e  The physical phase space is the solution space to those constraints modulo
gauge transformations. Moduli spaces of flat connections with
dim = (29 — 2) dim(G).

M ={(e,w) : Tle,w] =0, Flw] =0} /ISO(1,2) X TN,
N ={w: Flw] =0}/S0(1,2) .
e  The original Poisson structure reduces to M and A for gauge invariant
functions.

e Now, simple canonical quantization of those brackets and choice of
polarization gives the physical Hilbert space of 2+1 quantum gravity (with
vanishing A) : ¥ € L2(N).

e Elements of M and A can be characterized by homomorphisms from

m (M) 2w (X) (for M =1 x X) into ISO(1,2) or SO(1,2). Hence, the states
of the physical Hilbert space £*(N\) are gauge-invariant functions of the a- and
b- cycles (holonomies around non-contractible loops) satisfying

LUy Ve U VU Y =1, U Vi ETUL VE.



LQG

e In LQG we consider directly a smearing of the variables (e,w), obtaining
our holonomy-flux variables (E, h) € T*SU(1, 1), for each link of an embedded
graph I' = (L, V) C X, with corresponding Poisson structure.

e  This classical phase space T*SU(1, 1)L is quantized in the Hilbert space
W(h) € L2(SU(L,1)").

e Imposing the (quantized and discretized) Gauss constraint 7' =0 in the
quantum theory leads to SU(1, 1) spin networks
U e £L2(SU(1,1)" /Su(1,1)"), i.e., vertices with SU(1, 1) intertwiners.

e The flatness constraint F' = 0 can be quantized and solved, resulting in the
Lorentzian Ponzano-Regge spin foam model®, where the vertex amplitudes is
given by the SU(1, 1) 6j-symbol.

e Even if we where to restrict the allowed SU(1, 1) representations on the
spatial slice 3 to be only of the continuous series (positive area with

A? = = Qsu(1,1)), the solutions to F|\Il) = 0 would generate timelike
contnbutlons i.e., states of the discrete series with negative area.

@ F. Girelli, G. Sellaroli, 3D Lorentzian loop quantum gravity and the spinor approach,
PRD 92, (2015).



Covariant quantization

e E. Witten calculated the path integral
2(M) = [ ldwllde] ek HerD,

for some closed manifold M, showing that it is essentially given by a
topological invariant of 3-manifolds, the Ray-Singer analytic torsion

det A)? det A)?
2(M) = Z |(dez Li| or 2(M) = /M |(de‘:' L),| ’

e For manifolds M with boundary one can calculate (topology changing)
amplitudes between the states of the canonical theory.
e Note, that by integrating over (degenerate) e we get
2) = [ @) T] 8(Fta)).
I,a,b,x

hence, we integrate the curvature over spatial (zy) and timelike (tz), (ty)
components.



Lorentzian Ponzano-Regge model

e  Starting with®

2) = [ @) T] 8(Fhte)
I,a,b,x
we can consider some (dual) 2-complex A* to approximate M and measure the
curvature around hinges using a holonomy h. Hence, the partition function
becomes

2a01) = [ an) [T o)
f

e Using again Peter-Weil
decomposition of §(hy) we obtain the
Lorentzian Ponzano-Regge model. It
contains again all (Plancherel)
representations of SU(1,1), i.e., states
of continous and discrete series. This
corresponds to spacelike and timelike
contributions in the path integral.

@ L. Freidel, A Ponzano-Regge model of Lorentzian 3-dimensional gravity, (2000).



PART 3:

Timelike twisted geometries



Timelike twisted geometries

o (Timelike) twisted geometries provide a parametrization of the LQG phase
space on a fixed graph T, i.e., T*SU(2) per each link, in terms of twistors
(Z,W) and a set of constraints that allow to (symplectically) embed

T*SU(2) — T? = C®.

e Helped to uncover polyhedral interpretation of spin networks, covariance
properties and asymptotic analysis of EPRL-KKL model and ...

e Used to study null hypersurfaces (M. Zhang, S. Speziale, 2013).
e Applicable to timelike case?

e Starting point : BF-theory with Holst term and linear simplicity constraints

SBF[B,A}:/ Tr (*ZAF[A]—leF[A]> , N2 =o0.
M Y



Spinors and twisted geometries

e  The twistorial / spinorial formulation of LQG uses the fact that
T*SL(2,C), the link phase space of the boundary graph (before imposing the
simplicity constraints), can be parametrized in terms of twistors / spinors.

e  Explicitly, the (self-dual part of the) fluxes (Lie algebra elements) and
holonomies (group elements) are given by

aB _ 1 (B A @tmp+7tws
I - = -w"'n , h'p=———F"rv—,
2 N

where Z# = (w?,i7) € T is a twistor associated to a half-link.

e Imposing the GauR constraints G,, at nodes and the simplicity constraints
F; (with time gauge) at the links leads to the classical phase space underlying
the spin network states

T*SL(2,C)" JF, | G 2 T*SU(2)" JSU2)V .

e  What happens for spacelike normal N7 = (0,0,0,1)?

e C(lassically, one finds that indeed for spacelike normal vector one obtains
T*SL(2,C)" JF J G, = T*SU(1,1)* /SU(1,1)".



Spinorial simplicity constraints

e  One can show that the linear simplicity constraint N;3'/ = 0 with
NT =(0,0,0,1) in spinorial variables is equivalent to

Fi = Re(nmw) — yIm(7rw) =0 , = nABﬂ'ArDB =0.
o If we impose N;(*277) = 0 with N' = (0,0,0,1) we get
. 1 . :
Fy = Re(nw) + 5 Im(7mw) =0 , Fy=F,=n*"Praw,=0.

o The second class constraints F5 will be dealt with as in the standard
spacelike case, where it is traded for an equivalent first class master constraint

M= FQFQ = 0,
which, can be shown to be equal to

M = (CSL(Z»C) - 2Q5u(1,1)) + |7'I'w|2 .



Quantization

e We start with the (half) link phase space T ~ C* 5 Z* = (w®, i7;3) whose
Poisson structure is given by

{WA,wB}:5fi , {ﬁ'A',LDB :5f.

e On this space we canonically quantize the brackets via
[#a,0%) = —inés | [Ta,07] = —ih o]
and

S =W fwh) | Fef(wt) = i fwh).

e In order to obtain a unitary and irreducible representation we have to
consider the space of homogeneous functions (") with n € Z/2 and p € R.
We call a function homogeneous of degree (a,b) if it satisfies

YAEC, : fOwH)=ANf(w?) , a—beZ.
e A scaling-invariant measure over CP! is given by
i

d0w") = (W dw’ — w'dw®) A (@de' — o'de?).



Quantization
e The homogeneous functions satisfy

7] i 0
A (a,b) _  r(a,b) A (a,b) _ 3 p(a,b)
W SA f =af , w ood f =bf .

e  The numbers (a,b) and (n,p) are related by
a=-n—1+ip and b=n—1+1ip.

e  For example

BfOV = Tat 1] SOV and 7B = Dy fen.
e This is used to solve £y
- a h . a
B = < [yla—b] —ila+ b+ 2] f@

7

e In terms of the labels (1, p) we get (similarly for F1) (Note : no large spin
argument necessary.)

n a h a : n
F1f( b) :€[—2fyn+2p]f( b Lo & p="n (p:—f> .



Solutions to the simplicity constraints

e The constraints Fy and Fy can be solved as in the standard time gauge
case.

e The quantum conditions £ > |(n, p); j,m) = 0 and Fy > |(n, p); 4, m) =0
lead, respectively, to
(n,p) = (n,yn)  and  (n,p) = (n,—n/7).
Note, that |(n, p); 4, m) is not (necessarily) the canonical SU(2) basis.
e What is the correct solution for spacelike / timelike faces?

e Considering the area-form A = %Z - ¥ one finds that the classical solutions
to Fi are given by mw = (v +14)j, j € R and those for F are given by
mw=1i(y+1i)s, s €R.

e  The solutions of Fy correspond to A = 4% Re ((:Tii))zz) =~252>0and

~ Tw 2
those of F1 to A =~%Re (((WH))Q) =232 <0.
e Hence, we impose N/ = 0 to obtain spacelike faces and N;(xX!7) =0
for timelike faces. (This is in correspondence to the solutions obtained by
F.Conrady and J.Hnybida in their model.)



Representations of SU(1, 1)

e In order to obtain all the solutions of M f(™?(™) = ( we need to know
some details about the unitary irreducible representations of SL(2,C) and
SU(1,1).
o  Recall that

M = (Cspiz0) — 2Qauqrn)) + 7wl*.

e  We know the eigenvalues of the operators Csy,2,¢c) and |rw
act only on the (n,p) values of the principal series states.

e One can show that (Csp(a,c) + |7w|?) > f"P) = (2n(n + 1)) f™P)

2 since they

e We can further diagonalize the states f(?) with respect to Qsu(1,1) and
L. (Note : difference with Conrady-Hnybida model.) and obtain the

non-canonical basis f](?,’bp) with

qu(l,l) > f(:’;r,y,p) = _](] + 1) f(;?qsz) ) L.> fj(:f;;Lp) = mf(;l;zp) .



Solution space of M =0

e Acting now with M on f;fn"’ip) we find
M £ = 2n(n 1) + 24+ 1)] £ =

e Hence, on each half-link we can solve M = 0 with the continuous series
states with j(s) = —1 +is and —j(j + 1) = 1 + s°, which leads to

(nt1)2—2
st(n) = -

e Again, difference to Conrady-Hnybida model :

21
SCH(n) = B

e Now, what about reduced Hilbert space? Certainly not complete with just
continuous series states.



Reduced Hilbert space and Clebsch-Gordan decomposition

e We find that the simplicity and reduced area matching constraints (on the
whole link) are now solved by the states

ns,es,et — p(ns,ps(ng)),es (=ns,—pt(ns)),et
\Ilm:,;u fs+<; ),m ' ®fsf(n’)m T
] (ns),ms 2 (ns),my

e  The coupling of two continuous states is given by

oo (e} co®
creci= @ pie P D @2/ Ce ds,
K=K K=FKumin 0

where Kmin =1 and e =0 if e1 + €2 € Z and Kmin = 2 and £ = J otherwise.

e Thus, the reduced Hilbert space is indeed spanned by all the necessary
Plancherel representations for SU(1,1) and we have a valid spin network
decomposition. (Quantization does commute with reduction in our case.)

e We can perfectly embed now the 3D Lorentzian Ponzano-Regge model into
4D. Consider generalized Dupuis-Livine maps :

‘j(k),m) — Z C(ns)fs("sms("s)),es ® f(*”s,*:t)t(ns))xst ,

T (ne)ms sy (ng),my
ms,mt
, = (nesps(Me))es o pl—ns,—pt(ns))es
— s - .
i(s)m) = > Cln Metmome By me

Mg, Mt



PART 4:

A new model for 4D Lorentzian quantum gravity



Generalized spinfoam model

e Now, let's go back to our starting point
Z(M) = / [dA][dB][d¢] e Plebanskil P91 — / [dA][dB] §(C(B)) e*98F 451

e  The treatment of the simplicity constraints C(B) is crucial. The (original,
quadratic) Barrett-Crane constraints have too many solution sectors and for
the linear simplicity constrains we have to introduce the normal vector NT.

e We believe that the linear EPRL simplicity constraints miss one sector of

the B-field, namely those configurations corresponding to timelike 2-surfaces.

d(z—=q)
lg"(zo)]

§(C(B)) = 6(N; - B) + 6(N. - B) + 6(N- - (+B)).

e Along the lines of §(g(z)) =

we consider (Overcounting?)

e  The space of bivectors /\2 T,M , like the vectors in Minkowski space, splits
into orbits under the action of SL(2,C) (timelike, spacelike and null bivectors).

e We want to focus on the measure [dB] in the above path integral and
really sum over all the gauge-inequivalent orbits. Hence, we would write (Null?)

[dB] = [dB]p2 <o [dB] g2—¢ [dB]g2>0 -



Generalized spinfoam model

e From the 3D case and also the relativistic particle we know that it is
crucial to integrate over all possible gauge-inequivalent contributions to obtain
the proper quantum theory.

e  Since our physical states (those, that solve simplicity and area matching)

are already in a factorized form, we can easily define our new vertex amplitude
Ay, which, as in the 3D Ponzano-Regge model, can now depend on spacelike

and timelike contributions.

Y st

3 (ng)my

(s Dy () 0 ,f< o (ns).2

stno)me 53 (ne)omy

+(n )M (ns),ms

o Weget Ay = [, cyaldgue] [T, <f(n5’ps<n5)) e ue/gvefms’pS(nS)) 6s>-



Generalized spinfoam model

e  For boundaries, in order to embed boundary states |j, m), |k, m) or |s,m),
we will use the generalized Dupuis-Livine maps with the corresponding
Clebsch-Gordan coefficients.

e Hence, the new spin foam model for M without boundary is given by

Z(M):/Hdgev Z Z H(]_+ry2<ef)’n?rHAv(ge'u,NeaCef)'

nf€Ng Ne,Cep f v

e  Conceptually the same as Conrady-Hnybida model, but : different solutions
to simplicity constraints and simpler states to work with.

e  Furthermore, now we have a formulation in terms of spinorial variables,
which should make the asymptotic analysis easier.

e  On top of that, we can now easily work with/embed the standard
Perelomov coherent states, without the need to construct the Conrady-Hnybida
coherent states for timelike faces.



Thank you.



	Motivation
	3D Lorentzian quantum gravity
	Canonical quantization
	Covariant quantization

	Timelike twisted geometries
	Classical
	Quantum

	A new model for 4D Lorentzian quantum gravity

