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PART 1:

Motivation
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Motivation - (2014) - From anisotropic spin foam cosmology



History of generalized spin foam models

• (2000) - L. Freidel - Lorentzian Ponzano-Regge model.

• (2001) - A. Perez, C. Rovelli - GFT like model for SL(2,C) with timelike
contributions.

• (2003) - L. Freidel, E.R. Livine, C. Rovelli - Discussion of discrete vs.
continuous spectra in 3D Lorentzian models.

• (2003) - E.R. Livine, D. Oriti - Question about causality (of spacelike
components) in spinfoam models raised.

• (2005) - S. Alexandrov, Z. Kadar - Timelike surfaces and their spectrum in
CLQG.

• (2010) - F. Conrady, J. Hnybida - Generalized EPRL model using
FK-approach. First time really summing over timelike and spacelike
contributions in the bulk. (No asymptotic analysis as of now.)

• (2013) - S. Speziale, M. Zhang - Null twisted geometries.

• (2014/2016) - G. Immirzi - Discussion of timelike contributions in spin
foam models and how to obtain causality.



Motivation

Main question:

Is the EPRL-FK-KKL spin foam model our final spin foam model? Is the
dynamics of LQG solved?

In my opinion the answer is no.

• Second question: Asymptotics of the Conrady-Hnybida (or our new)
model? How does the dynamics change if we include timelike contributions in
the path integral? Spinfoams as a Rigging map / “Projector” on physical
Hilbert space of LQG.

• Introduction of auxiliary (timelike) normal vector NI in the linear
simplicity constraints N ·B = 0 in the EPRL-FK-KKL spin foam model rather
unsatisfactory from a covariant perspective. Possible solution: Phase space
extension / dynamical NI .

• Mathematical : Test the twistorial parametrization of LQG.

• Physical : Spectra of geometric operators in Lorentzian spacetime, discrete
or continuous?



Reminder: Spin foam models and BF-theory

• Spin foam models : covariant, background independent and
non-perturbative approach to define/calculate:

Z(M) =

∫
[dgµν ]Diff e

i
~SEH[gµν ] .

• First : Quantize (topological) BF-theory, because general relativity can be
formulated as a constrained BF-theory:

Z =

∫
[dA][dB][dφ] eiSPlebanski[A,B,φ] =

∫
[dA][dB] δ(C(B)) eiSBF[A,B] ,

with

SPlebanski[B,A, φ] =

∫
M

εIJKLB
IJ ∧ FKL[A] + φIJKLB

IJ ∧BKL ,

where the simplicity constraints : C(B) = 0 imply that the B-field is ‘simple’.

• From the Plebanski action we see that for B = e ∧ e we get back general
relativity in Einstein-Cartan form

SEC[e,A] =

∫
M

εIJKLe
I ∧ eJ ∧ FKL[A] .



Reminder: Spin foam models and BF-theory

• BF-theory is defined by

SBF[B,A] =

∫
M

Tr (B ∧ F [A]) .

• Partition function :

ZBF =

∫
[dA][dB] ei

∫
M Tr(B∧F [A]) =

∫
[dA] δ(F [A])

• Discretization :

BIJf =

∫
f

BIJ , ge[A] = P exp

(∫
e

A

)
,

Gf = ge1ge2 · · · gen = P exp

(∮
∂f

A

)
.

• In terms of holonomies and discretized fluxes one obtains:

ZBF(∆) =

∫ ∏
e∈∆∗

[dGf ]
∏
f∈∆∗

δG (Gf ) .



Reminder: Spin foam models and BF-theory

• Use Peter-Weyl theorem to rewrite the delta-function on the gauge-group
in terms of unitary irreducible representations.

ZBF(∆) =

∫ ∏
e∈∆∗

[dGf ]
∏
f∈∆∗

∑
ρ

dρ Trρ(Gf ) .

• For SL(2,C) we have

δG (Gf ) =

∞∑
n=0

∫ ∞
0

dp (n2 + p2) Tr
(
D((n,p))(Gf )

)
.

• Hence, we get a spin foam model expression for the BF-partition function,
which looks generally like

Zσ =
∑
jf ,ie

∏
e

Ae(jf , ie)
∏
f

Af (jf )
∏
v

Av(jf , ie) .



PART 2:

3D Lorentzian quantum gravity



3D Lorentzian quantum gravity

• 3D Lorentzian quantum gravity, with and without cosmological constant,
well understood. Both in the field theory contexta as well as LQG/spin foam
approach.

• Why important for us? Quantization (using inputs from Chern-Simons
theory) possible and leads to definite results about the kinematical structure as
well as the partition function and transition amplitudes of the theory. Further,
interesting to understand IR/classical limit and 3-manifold invariants.

• Aiming to match those results, we find both in the LQG and the spin foam
approach that spacelike AND timelike contributions are necessary/show up and
can not be neglected.

a E. Witten, 2+1 Dimensional gravity as an exactly soluble system (1988) and
Topology changing amplitudes in 2+1 dimensional gravity (1989).



Canonical quantization

• 3D Lorentzian gravity, with spin connection ωIJµ and triad eIµ, is given by

S[e, ω] =
1

16πG

∫
M

Tr(e ∧ F [ω]) .

• If we allow degenerate e, equivalence with ISO(1, 2) Chern-Simons theory.

• Equations of motion : F [ω] ≡ Dωω = 0 , T [e, ω] ≡ Dωe = 0.

• 2+1 split : M = I × Σ, where Σ is a Riemann surface of genus g ≥ 2.

• Poisson structure on Σ : {ωIa(x), eJb (y)} = εab η
IJδ(2)(x− y).

• Pull back of F = 0 = T to Σ gives 6 first class constraints. Hence, no
local d.o.f. But : can have finite dimensional physical phase space, capturing
non-trivial topology of Σ.

• F = 0 imposes flatness of ω and T = 0 tells us that ω is the (torsion less)
spin connection.



Canonical quantization

• The physical phase space is the solution space to those constraints modulo
gauge transformations. Moduli spaces of flat connections with
dim = (2g − 2) dim(G).

M = {(e, ω) : T [e, ω] = 0 , F [ω] = 0} / ISO(1, 2) ∼= TN ,

N = {ω : F [ω] = 0} / SO(1, 2) .

• The original Poisson structure reduces toM and N for gauge invariant
functions.

• Now, simple canonical quantization of those brackets and choice of
polarization gives the physical Hilbert space of 2+1 quantum gravity (with
vanishing Λ) : Ψ ∈ L2(N ).

• Elements ofM and N can be characterized by homomorphisms from
π1(M) ∼= π1(Σ) (for M = I ×Σ) into ISO(1, 2) or SO(1, 2). Hence, the states
of the physical Hilbert space L2(N ) are gauge-invariant functions of the a- and
b- cycles (holonomies around non-contractible loops) satisfying

U1V1U
−1
1 V −1

1 · · ·UgVgU−1
g V −1

g = 1 , Ui, Vi → E−1Ui, ViE .



LQG

• In LQG we consider directly a smearing of the variables (e, ω), obtaining
our holonomy-flux variables (E, h) ∈ T∗SU(1, 1), for each link of an embedded
graph Γ = (L, V ) ⊂ Σ, with corresponding Poisson structure.

• This classical phase space T∗SU(1, 1)L is quantized in the Hilbert space
Ψ(h) ∈ L2(SU(1, 1)L).

• Imposing the (quantized and discretized) Gauss constraint T = 0 in the
quantum theory leads to SU(1, 1) spin networks
Ψ ∈ L2(SU(1, 1)L /SU(1, 1)V ), i.e., vertices with SU(1, 1) intertwiners.

• The flatness constraint F = 0 can be quantized and solved, resulting in the
Lorentzian Ponzano-Regge spin foam modela, where the vertex amplitudes is
given by the SU(1, 1) 6j-symbol.

• Even if we where to restrict the allowed SU(1, 1) representations on the
spatial slice Σ to be only of the continuous series (positive area with
Â2 ≡ Qsu(1,1)), the solutions to F̂ |Ψ〉 = 0 would generate timelike
contributions, i.e., states of the discrete series with negative area.

a F. Girelli, G. Sellaroli, 3D Lorentzian loop quantum gravity and the spinor approach,
PRD 92, (2015).



Covariant quantization

• E. Witten calculated the path integral

Z(M) =

∫
[dω][de] e

i
~

∫
M Tr(e∧F [ω]) ,

for some closed manifold M , showing that it is essentially given by a
topological invariant of 3-manifolds, the Ray-Singer analytic torsion

Z(M) =
∑
α

(det ∆)2

| detL−|
or Z(M) =

∫
M

(det ∆)2

| det′ L−|
.

• For manifolds M with boundary one can calculate (topology changing)
amplitudes between the states of the canonical theory.

• Note, that by integrating over (degenerate) e we get

Z(M) =

∫
[dω]

∏
I,a,b,x

δ(F Iab(x)) ,

hence, we integrate the curvature over spatial (xy) and timelike (tx), (ty)
components.



Lorentzian Ponzano-Regge model

• Starting witha

Z(M) =

∫
[dω]

∏
I,a,b,x

δ(F Iab(x))

we can consider some (dual) 2-complex ∆∗ to approximate M and measure the
curvature around hinges using a holonomy h. Hence, the partition function
becomes

Z∆(M) =

∫
[dhi]

∏
f

δ(hf )

• Using again Peter-Weil
decomposition of δ(hf ) we obtain the
Lorentzian Ponzano-Regge model. It
contains again all (Plancherel)
representations of SU(1, 1), i.e., states
of continous and discrete series. This
corresponds to spacelike and timelike
contributions in the path integral.

a L. Freidel, A Ponzano-Regge model of Lorentzian 3-dimensional gravity, (2000).



PART 3:

Timelike twisted geometries



Timelike twisted geometries

• (Timelike) twisted geometries provide a parametrization of the LQG phase
space on a fixed graph Γ, i.e., T∗SU(2) per each link, in terms of twistors
(Z,W ) and a set of constraints that allow to (symplectically) embed
T∗SU(2) ↪→ T2 ∼= C8.

• Helped to uncover polyhedral interpretation of spin networks, covariance
properties and asymptotic analysis of EPRL-KKL model and ...

• Used to study null hypersurfaces (M. Zhang, S. Speziale, 2013).

• Applicable to timelike case?

• Starting point : BF-theory with Holst term and linear simplicity constraints

SBF[B,A] =

∫
M

Tr

(
∗Σ ∧ F [A]− 1

γ
Σ ∧ F [A]

)
, NIΣ

IJ = 0 .



Spinors and twisted geometries

• The twistorial / spinorial formulation of LQG uses the fact that
T∗SL(2,C), the link phase space of the boundary graph (before imposing the
simplicity constraints), can be parametrized in terms of twistors / spinors.

• Explicitly, the (self-dual part of the) fluxes (Lie algebra elements) and
holonomies (group elements) are given by

ΠAB =
1

2
ω(AπB) , hAB =

ω̃AπB + π̃AωB√
πω
√
ω̃π̃

,

where ZA = (ωA, iπ̄Ḃ) ∈ T is a twistor associated to a half-link.

• Imposing the Gauß constraints Gn at nodes and the simplicity constraints
Fl (with time gauge) at the links leads to the classical phase space underlying
the spin network states

T∗SL(2,C)
L �Fl �Gn ∼= T∗SU(2)

L � SU(2)V .

• What happens for spacelike normal NI = (0, 0, 0, 1)?

• Classically, one finds that indeed for spacelike normal vector one obtains
T∗SL(2,C)L �Fl �Gn ∼= T∗SU(1, 1)L � SU(1, 1)V .



Spinorial simplicity constraints

• One can show that the linear simplicity constraint NIΣIJ = 0 with
NI = (0, 0, 0, 1) in spinorial variables is equivalent to

F1 = Re(πω)− γ Im(πω) = 0 , F2 = nAḂπAω̄Ḃ = 0 .

• If we impose NI(∗ΣIJ) = 0 with NI = (0, 0, 0, 1) we get

F̃1 = Re(πω) +
1

γ
Im(πω) = 0 , F̃2 = F2 = nAḂπAω̄Ḃ = 0 .

• The second class constraints F2 will be dealt with as in the standard
spacelike case, where it is traded for an equivalent first class master constraint

M ≡ F̄2F2 = 0 ,

which, can be shown to be equal to

M =
(
CSL(2,C) − 2Qsu(1,1)

)
+ |πω|2 .



Quantization

• We start with the (half) link phase space T ' C4 3 Zα = (ωA, iπ̄Ḃ) whose
Poisson structure is given by

{πA, ωB} = δBA , {π̄Ȧ, ω̄
Ḃ} = δḂȦ .

• On this space we canonically quantize the brackets via

[π̂A, ω̂
B ] = −i~ δBA , [ˆ̄πA, ˆ̄ωB ] = −i~ δBA

and
ω̂Bf(ωA) = ωBf(ωA) , π̂Bf(ωA) = −i~ ∂

∂ωB
f(ωA) .

• In order to obtain a unitary and irreducible representation we have to
consider the space of homogeneous functions H(n,p), with n ∈ Z/2 and p ∈ R.
We call a function homogeneous of degree (a, b) if it satisfies

∀λ ∈ C∗ : f(λωA) = λaλ̄bf(ωA) , a− b ∈ Z .

• A scaling-invariant measure over CP1 is given by

dΩ(ωA) =
i

2
(ω0dω1 − ω1dω0) ∧ (ω̄0̇dω̄1̇ − ω̄1̇dω̄0̇) .



Quantization

• The homogeneous functions satisfy

ωA
∂

∂ωA
f (a,b) = af (a,b) , ω̄Ȧ

∂

∂ω̄Ȧ
f (a,b) = bf (a,b) .

• The numbers (a, b) and (n, p) are related by

a = −n− 1 + ip and b = n− 1 + ip .

• For example

π̂ω f (a,b) =
~
i

[a+ 1] f (a,b) and ̂̄πω̄ f (a,b) =
~
i

[b+ 1] f (a,b) .

• This is used to solve F̂1

F̂1 f
(a,b) =

~
i

[γ[a− b]− i[a+ b+ 2]] f (a,b) .

• In terms of the labels (n, p) we get (similarly for F̃1) (Note : no large spin
argument necessary.)

F̂1 f
(a,b) =

~
i

[−2γn+ 2p] f (a,b) !
= 0 ⇔ p = γn

(
p = −n

γ

)
.



Solutions to the simplicity constraints

• The constraints F1 and F̃1 can be solved as in the standard time gauge
case.

• The quantum conditions F̂1 . |(n, p); j,m〉 = 0 and ˆ̃F1 . |(n, p); j,m〉 = 0
lead, respectively, to

(n, p) = (n, γn) and (n, p) = (n,−n/γ) .

Note, that |(n, p); j,m〉 is not (necessarily) the canonical SU(2) basis.

• What is the correct solution for spacelike / timelike faces?

• Considering the area-form A = 1
2
Σ ·Σ one finds that the classical solutions

to F1 are given by πω = (γ + i)j, j ∈ R and those for F̃1 are given by
πω = i(γ + i)s, s ∈ R.

• The solutions of F1 correspond to A = γ2 Re
(

(πω)2

(γ+i)2

)
= γ2j2 > 0 and

those of F̃1 to A = γ2 Re
(

(πω)2

(γ+i)2

)
= −γ2s2 < 0 .

• Hence, we impose NIΣIJ = 0 to obtain spacelike faces and NI(∗ΣIJ) = 0
for timelike faces. (This is in correspondence to the solutions obtained by
F.Conrady and J.Hnybida in their model.)



Representations of SU(1, 1)

• In order to obtain all the solutions of M̂ . f (n,p(n)) = 0 we need to know
some details about the unitary irreducible representations of SL(2,C) and
SU(1, 1).

• Recall that
M =

(
CSL(2,C) − 2Qsu(1,1)

)
+ |πω|2 .

• We know the eigenvalues of the operators CSL(2,C) and |πω|2, since they
act only on the (n, p) values of the principal series states.

• One can show that (CSL(2,C) + |πω|2) . f (n,p) = (2n(n+ 1)) f (n,p) .

• We can further diagonalize the states f (n,p) with respect to Qsu(1,1) and
Lz (Note : difference with Conrady-Hnybida model.) and obtain the
non-canonical basis f (n,p)

j,m with

Qsu(1,1) . f
(n,p)
j,m = −j(j + 1) f

(n,p)
j,m , Lz . f

(n,p)
j,m = mf

(n,p)
j,m .



Solution space of M̂ = 0

• Acting now with M̂ on f (±n,±p)
j,m we find

M̂ f
(±n,±p)
j,m = [2n(n± 1) + 2j(j + 1)] f

(n,p)
j,m

!
= 0 .

• Hence, on each half-link we can solve M̂ = 0 with the continuous series
states with j(s) = − 1

2
+ is and −j(j + 1) = 1

4
+ s2, which leads to

s±(n) =

√
(2n± 1)2 − 2

2
.

• Again, difference to Conrady-Hnybida model :

sCH(n) =

√
n2

γ2
− 1

2
.

• Now, what about reduced Hilbert space? Certainly not complete with just
continuous series states.



Reduced Hilbert space and Clebsch-Gordan decomposition
• We find that the simplicity and reduced area matching constraints (on the
whole link) are now solved by the states

Ψns,εs,εt
ms,mt ≡ f

(ns,ps(ns)),εs

s+1 (ns),ms
⊗ f (−ns,−pt(ns)),εt

s−2 (ns),mt
.

• The coupling of two continuous states is given by

Cε1s1 ⊗ C
ε2
s2 =

∞⊕
K=Kmin

D+
K ⊕

∞⊕
K=Kmin

D−K ⊕ 2

∫ ∞⊕
0

Cεs ds ,

where Kmin = 1 and ε = 0 if ε1 + ε2 ∈ Z and Kmin = 3
2
and ε = 1

2
otherwise.

• Thus, the reduced Hilbert space is indeed spanned by all the necessary
Plancherel representations for SU(1, 1) and we have a valid spin network
decomposition. (Quantization does commute with reduction in our case.)

• We can perfectly embed now the 3D Lorentzian Ponzano-Regge model into
4D. Consider generalized Dupuis-Livine maps :

|j(k),m〉 7→
∑
ms,mt

C(ns)f
(ns,ps(ns)),εs

s+1 (ns),ms
⊗ f (−ns,−pt(ns)),εt

s−2 (ns),mt
,

|j(s),m〉 7→
∑
ms,mt

C̃(ns)f
(ns,ps(ns)),εs

s+1 (ns),ms
⊗ f (−ns,−pt(ns)),εt

s−2 (ns),mt
.



PART 4:

A new model for 4D Lorentzian quantum gravity



Generalized spinfoam model

• Now, let’s go back to our starting point

Z(M) =

∫
[dA][dB][dφ] eiSPlebanski[A,B,φ] =

∫
[dA][dB] δ(C(B)) eiSBF[A,B] .

• The treatment of the simplicity constraints C(B) is crucial. The (original,
quadratic) Barrett-Crane constraints have too many solution sectors and for
the linear simplicity constrains we have to introduce the normal vector NI .

• We believe that the linear EPRL simplicity constraints miss one sector of
the B-field, namely those configurations corresponding to timelike 2-surfaces.

• Along the lines of δ(g(x)) = δ(x−x0)
|g′(x0)| we consider (Overcounting?)

δ(C(B)) = δ(Nt ·B) + δ(Nz ·B) + δ(Nz · (∗B)) .

• The space of bivectors
∧2 TpM , like the vectors in Minkowski space, splits

into orbits under the action of SL(2,C) (timelike, spacelike and null bivectors).

• We want to focus on the measure [dB] in the above path integral and
really sum over all the gauge-inequivalent orbits. Hence, we would write (Null?)

[dB] = [dB]B2<0 [dB]B2=0 [dB]B2>0 .



Generalized spinfoam model

• From the 3D case and also the relativistic particle we know that it is
crucial to integrate over all possible gauge-inequivalent contributions to obtain
the proper quantum theory.

• Since our physical states (those, that solve simplicity and area matching)
are already in a factorized form, we can easily define our new vertex amplitude
Av, which, as in the 3D Ponzano-Regge model, can now depend on spacelike
and timelike contributions.

• We get Av ≡
∫

SL(2,C)4
[dgve]

∏
ve

〈
f

(ns,ps(ns)),εs

s+1 (ns),ms
g−1
ve′gvef

(ns,ps(ns)),εs

s−1 (ns),ms

〉
.



Generalized spinfoam model

• For boundaries, in order to embed boundary states |j,m〉, |k,m〉 or |s,m〉,
we will use the generalized Dupuis-Livine maps with the corresponding
Clebsch-Gordan coefficients.

• Hence, the new spin foam model for M without boundary is given by

Z(M) =

∫ ∏
ev

dgev
∑
nf∈N0

∑
Ne,ζef

∏
f

(1 + γ2ζef )n2
f

∏
v

Av(gev, Ne, ζef ) .

• Conceptually the same as Conrady-Hnybida model, but : different solutions
to simplicity constraints and simpler states to work with.

• Furthermore, now we have a formulation in terms of spinorial variables,
which should make the asymptotic analysis easier.

• On top of that, we can now easily work with/embed the standard
Perelomov coherent states, without the need to construct the Conrady-Hnybida
coherent states for timelike faces.



Thank you.
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