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Motivation

- Simplest matter field

« Comparison to symmetry reduced models (Gambini + Pullin, ...)
« Comparison with deparametrized models (Rovelli + Smolin, ...)
- may also learn something about the vacuum case

Main ReSUItS J Lewandowski, HS:

. Phys.Rev. D91 (2015) 4, 044022
. Phys.Rev. D93 (2016) 2, 024042

- Non-standard scalar

- New diffeo invariant operators

- a well defined Hamiltonian constraint

- part of the hypersurface deformation algebra



Classical theory



Hamilton formulation (+time gauge).

Kinematic phase space coordinates (¢, m, A, E)
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Gauge, diffeo constraint.

Scalar constraint
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In the following, will use equivalent constraint (from solving H=0 for 7):

C(z) =7(z) F 7(v)

where
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For later we note commutator of constraint:
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Diffeo generator which depends on the phase space point.



Kinematic quantization



Gravity

mm Usual LQG treatment.
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Hilbert space (Ashtekar+Lewandowski 1993): Spanned by
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Scalars: Previous work

- Thiemann (1997): Diffeo invariant representation of group valued scalar fields. In

articular —
P eind(x) 7(f)

/\

well defined operators, and | z,n) := | [ e?+¢@)|0) x1 n1
form an orthonormal basis k X2 n2
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- Diffeo invariant representations for this algebra are in 3+1d

(Bobienski,Kaminski,Lewandowski, Okolow 2005).

- Domagala, Giesel, Kaminski, Lewandowski (2010): use diffeo constraint to eliminate
® from 7 . Constraint takes Schrodinger form.

« Gambini and Pullin: Quantum scalar on quantum spacetime (2013-now)



Non-standard scalar

Start with states dual to polymer states
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Can turn into Hilbert space by inner product
1 ifp=¢f
I\ __
Wl = {O otherwise

Previously employed in cosmology by Hossain, Husain, Seaha (2010), Barbero,
Pawlowski, Villasenor (2014). Also: Campiglia, Varadarajan (2013,14)!



Can go to the dual of the dual: (¥ | =) Tlp|(¢
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No inner product on these states anymore, in general. However, for some states dual
action of field and momentum
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recover the standard polymer states.



New geometric operator

sm Ingredient in quantisation of C: \/Qb,a(/ﬁ,bE?Ef(fE)
-

— Closely related to to Ma and Ling’s (2008) @ / A3z \/ EaEb@wawb

Single edge, ¢ monotone along e:
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general case: similar. ¢ = const.



Constraints



Quantisation of C_ GR

== In LQG we introduce a regulator CGR

Thiemann’s quantisation of C_GR relies on
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diffeo equivalent to

Not true anymore with scalar field:
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Our solution: scalar field constant near vertices, differ average only near vertices
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On this Hilbert space, can obtain operator version of

/N \/ ¢.aP p ELEY — 2V (¢)| det E| — 24/|det E|Cgr(A, E)(z)

Full constraint can not be defined because of x. Action of full constraint

C(z) =7(z)F 7(v)

well defined on (double) dual.



Commutators

mm Constraint only defined on dual, but commutator defined on H_diff. Explicit calculation:
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where for the derivation we assumed M,N constant in neighbourhood of vertices.
We will argue: This is a quantisation of
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Comparison:
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* inverse metric supported on edges v/

» do not see the contribution of C_GR, V because they would act at the vertices, where
N,M constant v

« do not see contribution of EF/®2 because

T ——

(NoM — M ,N) E¢E?

acting on state would give vector density tangent to edges, vanishing near vertices v



Further remarks, and outlook



Cautionary remarks

CM(®|@ (7, 5,:) =0, CN)(®|® (7,4,]) =0
& [O(M),C(N)] n((®| & (7, 4,¢]) =0

The latter will require a solution of the constraint to vanish in the current setup.

* No inner product on the double dual

» Restricting the scalar field to be constant around vertices is somewhat ad hoc



Nice things

mm ° Non-standard quantum scalar: position rep
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- relation to standard rep

- New operators coupling gravity and scalar
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- Have good home for 7
* Intriguing commutator
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Outlook

» Have worked out solutions for toy models of the full constraint
- position representation for gravity (—> Bahr, Dittrich, Geiller: BF vacuum)
- Further analysis of the commutator

* Physics?



