Quantization of lattice gauge theories and their continuum limit

Ruben Stienstra

Joint with F. Arici and W.D. van Suijlekom Radboud University Nijmegen Fifth Tux workshop on Quantum Gravity February 13, 2017

Contents

- General setup for lattice gauge theory
- Refinements of graphs and associated constructions
- Quantization and groupoids
- (Continuum) limit

Discretisation of space

Hamiltonian framework:

Approximate a Cauchy surface M with an oriented, finite, connected graph $\Lambda = (\Lambda^0, \Lambda^1)$:

- Points in $M \rightarrow$ set of vertices Λ^0
- \blacktriangleright Paths between points \rightarrow set of oriented edges Λ^1

Discretising connections

The graph Λ comes with two maps $s, t: \Lambda^1 \to \Lambda^0$: The source and target maps.

- G^{Λ^1} The space of connections: G^{Λ^0}
- The gauge group:
- Gauge transformations:

$$egin{aligned} G^{\Lambda^0} imes G^{\Lambda^1} & o G^{\Lambda^1}, \ ((g_x)_{x\in\Lambda^0},(a_e)_{e\in\Lambda^1}) &\mapsto (g_{s(e)}a_eg_{t(e)}^{-1})_{e\in\Lambda^1}. \end{aligned}$$

Groupoids

Approximating the continuum

One graph is insufficient; We require a **net** of graphs:

Refinement (1)

Let $\Lambda = (\Lambda^0, \Lambda^1)$ be an oriented graph. Consider the **free category** C_{Λ} **generated by** Λ :

- Objects:
- Let x, y ∈ Λ⁰. Morphisms from x to y:
- Composition:
- Identity element at x:

Notation:

- Set of objects:
- Set of morphisms:

paths from x to y in Λ concatenation of paths trivial path at x

٧0

Refinement (2)

Let Λ_i , Λ_j be oriented graphs. Suppose $\iota_{i,j} \colon C_i \to C_j$ is a functor. Suppose in addition that:

- ▶ The map between objects $\iota_{i,j}^{(0)}$: $C_i^{(0)} \to C_j^{(0)}$ is an injection;
- ▶ $\iota_{i,j}^{(1)}: C_i^{(1)} \to C_j^{(1)}$ maps edges to nontrivial paths;
- ► for each $e, e' \in \Lambda_i^1$, if $e \neq e'$, then $\iota_{i,j}^{(1)}(e)$ and $\iota_{i,j}^{(1)}(e')$ have no common edges;

Then we call $(\Lambda_i, \Lambda_j, \iota_{i,j})$ a refinement of the graph Λ_i .

	Refinements	Groupoids	
	00000000		
Evamples (1)			

Addition of an edge:

Subdivision of an edge:

Every refinement is a composition of a finite sequence of the above two types of refinements.

GT	Refinements	Groupoids	
	000000000		

Examples (2)

Quantization of lattice gauge theories and their continuum limit

Category of refinements

Let Refine denote the category with

- Objects: finite, connected, oriented graphs Λ
- Morphisms: refinements $(\Lambda_i, \Lambda_j, \iota_{i,j})$

Given the Lie group G, there exists a contravariant functor from **Refine** to the category of spaces with group actions.

- Objects: $\Lambda \mapsto (G^{\Lambda^0}, G^{\Lambda^1}, \cdot)$
- Morphisms: $(\Lambda_i, \Lambda_j, \iota_{i,j}) \mapsto (\rho_{i,j}, \mathsf{R}_{i,j}^{(0)})$

$$\rho_{i,j}$$
: G^{Λ⁰_j} → G<sup>Λ⁰_i 'restriction map'
 $\mathsf{R}^{(0)}_{i,j}$: G^{Λ¹_j} → G^{Λ¹_i}</sup>

	Refinements	
	0000000000	
D C	$(D^{(0)})$	
Definitio	n of R\.	

Addition of an edge:

`1,]

Subdivision of an edge:

- For general refinements, define R⁽⁰⁾_{i,j} by composition of these maps;
- $R_{i,j}^{(0)}$ is independent of the chosen sequence;

Hilbert space

Define covariant functors from **Refine** to the category of Hilbert spaces.

Unreduced Hilbert space:

- Objects: $\Lambda \mapsto L^2(G^{\Lambda^1})$
- Morphisms:

$$\begin{array}{ccc} (\Lambda_i,\Lambda_j,\iota_{i,j}) & \mapsto & u_{i,j} \colon L^2(G^{\Lambda_i^1}) & \to L^2(G^{\Lambda_j^1}), \\ \psi & \mapsto \psi \circ \mathsf{R}^{(0)}_{i,j}. \end{array}$$

Reduced Hilbert space

 $L^{2}(G^{\Lambda^{1}})$ carries a continuous unitary representation of $G^{\Lambda^{0}}$:

$$(g \cdot \psi)(a) := \psi(g^{-1} \cdot a), \quad a \in G^{\Lambda^1}, \ g \in G^{\Lambda^0}.$$

Reduced Hilbert space:

• Objects:
$$\Lambda \mapsto L^2(G^{\Lambda^1})^{G^{\Lambda^0}}$$

Morphisms:

$$(\Lambda_i,\Lambda_j,\iota_{i,j}) \quad \mapsto \quad \left. u_{i,j} \right|_{L^2(G^{\Lambda_i^1})^{G^{\Lambda_i^0}}} \colon L^2(G^{\Lambda_i^1})^{G^{\Lambda_i^0}} \to L^2(G^{\Lambda_j^1})^{G^{\Lambda_j^0}}$$

Observable algebra

Define covariant functors from $\ensuremath{\textbf{Refine}}$ to the category of C*-algebras.

Unreduced observable algebra:

- Objects: $\Lambda \mapsto B_0(L^2(G^{\Lambda^1}))$
- Morphisms:

$$(\Lambda_i, \Lambda_j, \iota_{i,j}) \quad \mapsto \quad \begin{array}{c} \mathsf{v}_{i,j} \colon B_0(L^2(G^{\Lambda_i^1})) \quad \to B_0(L^2(G^{\Lambda_j^1})), \\ a \quad \mapsto u_{i,j}au_{i,j}^*. \end{array}$$

Reduced observable algebra:

 ▶ Objects: ∧ → B₀(L²(G^{Λ¹})<sup>G^{Λ⁰})
 ▶ Morphisms: (Λ_i, Λ_i, ι_{i,j}) →
</sup>

$$v_{i,j}|_{B_0(L^2(G^{\Lambda_i^1})^{G^{\Lambda_i^0}})} : B_0(L^2(G^{\Lambda_i^1})^{G^{\Lambda_i^0}}) \to B_0(L^2(G^{\Lambda_j^1})^{G^{\Lambda_j^0}}).$$

The Stone–Von Neumann Theorem

Let U and V be one-parameter groups. The continuous unitary representations of these groups on $L^2(\mathbb{R})$ given by

$$(U(t)\psi)(x) := \psi(x-t), \quad (V(s)\psi)(x) := e^{isx}\psi(x).$$

are jointly irreducible, and satisfy the Weyl form of the CCR

$$U(t)V(s) = e^{-ist}V(s)U(t).$$

Any other pair of continuous unitary jointly irreducible representation of U and V on a Hilbert space \mathcal{H} satisfying the CCR is unitarily equivalent to this one.

Crossed product formulation (1)

Let G be a locally compact group. Then $(C_0(G), G, L)$ is a **C***-dynamical system.

$$(L(g)(f))(a) = f(g^{-1} \cdot a).$$

Now form its **crossed product** C^* -algebra $C_0(G) \rtimes_L G$:

• Endow $C_c(G, C_0(G))$ with the structure of a *-algebra by

$$f * g(a) := \int_G f(b)L(b)(g(b^{-1}a)) db,$$

 $(f^*)(a) := \Delta(a^{-1})L(a)(f(a^{-1}));$

Crossed product formulation (2)

• Complete $C_c(G, C_0(G))$ with respect to the **universal norm**:

$$\|f\|:=\sup_{(\pi,U)}\|\pi\rtimes U(f)\|,$$

where (π, U) is a nondegenerate covariant representation of $(C_0(G), G, L)$.

A covariant representation (π, U) consists of

- ► a *-representation: $\pi: C_0(G) \to B(H);$
- ▶ a continuous unitary representation: $U: G \rightarrow U(H);$
- $\pi\colon C_0(G)\to B(H);$ $U\colon G\to U(H);$

a covariance condition:

$$\pi(L(a)(f)) = U(a)\pi(f)U(a)^*, \quad \forall a \in G, \ \forall f \in C_0(G).$$

$$\pi \rtimes U \colon C_0(G) \rtimes_L G \to B(H), \quad f \mapsto \int_G \pi(f(a))U(a) \, da.$$

The Stone–Von Neumann theorem for crossed products

Let G be a locally compact group. Then

$$C_0(G) \rtimes_L G \cong B_0(L^2(G)).$$

In particular, the natural covariant representation (M, L) on $L^2(G)$ is irreducible and faithful.

Groupoids

Crossed products and groupoids

Let G be a compact Lie group. Then

$$B_0(L^2(G))\cong C(G)
times_LG\cong C^*(G\ltimes G)\cong C^*(\mathbf{G}).$$

Here

- $G \ltimes G$ is an **action groupoid**;
- **G** is the **pair groupoid** associated to *G*;
- $C^*(\cdot)$ denotes the **groupoid** C*-algebra of the groupoid.

What is a groupoid?

A **groupoid** is a small category in which each morphism is invertible.

Examples:

Any group *H*:

- Objects: a set containing a single point {*}
- Morphisms: H
- Composition: group multiplication in H
- Identity element at *: identity of H

Any set X:

- Objects: X
- Morphisms: X
- Composition: $x \circ x = x$
- Identity element at x: x

The action groupoid

Let X be a set, H a group with unit e. Suppose $\cdot: H \times X \to X$ is a group action. The **action groupoid** $H \ltimes X$ is now defined as follows:

- Objects: X
- Morphisms: $H \times X$, $(h, x) \in Mor(h^{-1} \cdot x, x)$.
- Composition: $(h_1, x_1) \circ (h_2, x_2) = (h_1 h_2, x_1)$ if $x_2 = h_1^{-1} \cdot x_1$
- Identity element at x: (e, x)

Take X = H = G, and $\therefore G \times G \rightarrow G$ is the group multiplication $\Rightarrow G \ltimes G$.

The pair groupoid

Let X be a set.

The **pair groupoid X** is now defined as follows:

- ► Objects: X
- Morphisms: $X \times X$, $Mor(x, y) = \{(x, y)\}$.
- Composition: $(x_1, y_1) \circ (x_2, y_2) = (x_2, y_1)$ if $x_1 = y_2$
- Identity element at x: (x, x)

Take $X = G \Rightarrow \mathbf{G}$.

 $G \ltimes G$ is isomorphic to **G**:

$$(G\ltimes G)^{(1)}
ightarrow {f G}^{(1)}, \quad (b,a)\mapsto (b^{-1}a,a).$$

This isomorphism is compatible with the Haar systems on both groupoids $\Rightarrow C^*(G \ltimes G) \cong C^*(\mathbf{G})$.

Groupoids and refinements

Let $f \in C_c(\mathbf{G}^{(1)}) = C_c(G \times G)$. Let $\pi \colon C^*(\mathbf{G}) \to B(L^2(G))$ be the natural representation. Then

$$\pi(f)(\psi)(a) = \int_{\mathcal{G}} f(b,a)\psi(b) \, db,$$

where $\psi \in L^2(G)$ and $a \in G$.

Question: How does this operator behave w.r.t. refinements? Let $(\Lambda_i, \Lambda_j, \iota_{i,j})$ be a refinement. Then

$$v_{i,j}(\pi_i(f)) = \pi_j(f \circ R_{i,j}^{(1)}),$$

where
$$R_{i,j}^{(1)} = R_{i,j}^{(0)} \times R_{i,j}^{(0)} : \mathbf{G}_j^{(1)} \to \mathbf{G}_i^{(1)}$$

 \Rightarrow a morphism of groupoids (functor) $R_{i,j} : \mathbf{G}_j \to \mathbf{G}_i$.

Inverse systems

Let (I, \leq) be a directed set, let **C** be a category. An **inverse system** in **C** consists of

- A net of objects (A_i)_{i∈I};
- ▶ A collection of morphisms $(\varphi_{i,j} : A_j \to A_i)_{i,j \in I, i \leq j}$ such that

$$\blacktriangleright \varphi_{i,i} = Id_{A_i};$$

• $\varphi_{i,k} = \varphi_{i,j} \circ \varphi_{j,k}$ whenever $i \leq j \leq k$.

More direct and inverse systems

Let $((\Lambda_i)_{i \in I}, ((\Lambda_i, \Lambda_j, \iota_{i,j}))_{i,j \in I, i \leq j})$ be a direct system in **Refine**. Contravariant functors to the categories of

- Spaces with group actions
- Groupoids
- \Rightarrow inverse systems.
- Covariant functors to the categories of
 - Hilbert spaces
 - C*-algebras
- \Rightarrow direct systems.

Inverse limits

Inverse limit of sets:

$$\lim_{i \in I} A_i := \left\{ (a_i)_{i \in I} \in \prod_{i \in I} A_i : \varphi_{i,j}(a_j) = a_i \; \forall i, j \in I, \; i \leq j \right\}.$$

Spaces with group actions:

$$\left(\varprojlim_{i\in I} G^{\Lambda_i^0}, \varprojlim_{i\in I} G^{\Lambda_i^1}\right);$$

Groupoids:

$$\lim_{i \in I} \mathbf{G}_{\mathbf{i}} \cong \text{Pair groupoid associated to } \lim_{i \in I} G^{\Lambda_i^1}.$$

Direct limits (1)

Direct limit $\varinjlim_{i \in I} A_i$ of Banach spaces with linear contractions: Completion of the space $\coprod_{i \in I} A_i / \sim$, where

$$(i, a_i) \sim (j, a_j) \iff \exists k \in I, \ k \ge i, j \colon \varphi_{i,k}(a_i) = \varphi_{j,k}(a_j),$$

with respect to the norm

$$\|[i,a_i]_{\sim}\|:=\lim_{j\in I: j\geq i}\|\varphi_{i,j}(a_i)\|_{A_j}.$$

Hilbert spaces:

$$\varinjlim_{i\in I} L^2(G^{\Lambda^1_i}) \cong L^2\left(\varprojlim_{i\in I} G^{\Lambda^1_i}\right);$$

Direct limits (2)

Observable algebras:

$$\varinjlim_{i\in I} B_0(L^2(G^{\Lambda_i^1})) \cong B_0\left(\varinjlim_{i\in I} L^2(G^{\Lambda_i^1})\right) \cong B_0\left(L^2\left(\varprojlim_{i\in I} G^{\Lambda_i^1}\right)\right).$$

It can be shown that

$$B_0\left(L^2\left(\varprojlim_{i\in I}G^{\Lambda^1_i}\right)\right)\cong C^*\left(\varprojlim_{i\in I}\mathbf{G}_i\right).$$

Hence

$$\varinjlim_{i\in I} C^*(\mathbf{G}_i) \cong C^*\left(\varprojlim_{i\in I} \mathbf{G}_i\right).$$

Outlook

- ► More direct proof of correspondence groupoids ↔ observable algebras in the limit, e.g. using induced representations
- Dynamics
- Inverse system of state spaces, renormalization group

Questions?

Quantization of lattice gauge theories and their continuum limit

Radboud University Nijmegen

Selected references (1)

🔋 J. C. Baez.

Spin networks in gauge theory. *Adv. Math.*, 117(2):253–272, 1996.

D. P. Williams.

*Crossed products of C***-algebras*, volume 134 of *Mathematical surveys and monographs*. AMS, 2007.

🔈 J. Renault.

A Groupoid approach to C^* -algebras, volume 793 of Lecture notes in Mathematics.

Springer-Verlag Berlin Heidelberg New York, 1980.

Selected references (2)

🔈 N. P. Landsman.

Mathematical topics between classical and quantum mechanics. Springer, 1998.

- A. Ashtekar, J. Lewandowski, Representation theory of analytic holonomy C*-algebras, Knots and quantum gravity 1 (1994), 21–61.
- P. S. Muhly, J. N. Renault, D. P. Williams Equivalence and isomorphism for groupoid C*-algebras, J. Operator Theory 17 (1987), 3–22.