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Discretisation of space

Hamiltonian framework:
Approximate a Cauchy surface M with an oriented, finite,
connected graph Λ = (Λ0,Λ1):

I Points in M → set of vertices Λ0

I Paths between points → set of oriented edges Λ1

M Λ
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Discretising connections

The graph Λ comes with two maps s, t : Λ1 → Λ0:
The source and target maps.

Let G be a compact, connected Lie group.

I The space of connections: GΛ1

I The gauge group: GΛ0

I Gauge transformations:

GΛ0 × GΛ1 → GΛ1
,

((gx)x∈Λ0 , (ae)e∈Λ1) 7→ (gs(e)aeg
−1
t(e))e∈Λ1 .

Quantization of lattice gauge theories and their continuum limit Radboud University Nijmegen



LGT Refinements Groupoids Limit

Approximating the continuum

One graph is insufficient;
We require a net of graphs:

. . .
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Refinement (1)

Let Λ = (Λ0,Λ1) be an oriented graph.
Consider the free category CΛ generated by Λ:

I Objects: Λ0

I Let x , y ∈ Λ0.
Morphisms from x to y : paths from x to y in Λ

I Composition: concatenation of paths

I Identity element at x : trivial path at x

Notation:

I Set of objects: C
(0)
Λ

I Set of morphisms: C
(1)
Λ
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Refinement (2)

Let Λi , Λj be oriented graphs.
Suppose ιi ,j : Ci → Cj is a functor.
Suppose in addition that:

I The map between objects ι
(0)
i ,j : C

(0)
i → C

(0)
j is an injection;

I ι
(1)
i ,j : C

(1)
i → C

(1)
j maps edges to nontrivial paths;

I for each e, e ′ ∈ Λ1
i , if e 6= e ′, then ι

(1)
i ,j (e) and ι

(1)
i ,j (e ′) have no

common edges;

Then we call (Λi ,Λj , ιi ,j) a refinement of the graph Λi .
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Examples (1)

Addition of an edge:

Subdivision of an edge:

Every refinement is a composition of a finite sequence of the above
two types of refinements.
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Examples (2)

. . .
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Category of refinements

Let Refine denote the category with

I Objects: finite, connected, oriented graphs Λ

I Morphisms: refinements (Λi ,Λj , ιi ,j)

Given the Lie group G , there exists a contravariant functor from
Refine to the category of spaces with group actions.

I Objects: Λ 7→ (GΛ0
,GΛ1

, ·)
I Morphisms: (Λi ,Λj , ιi ,j) 7→ (ρi ,j ,R

(0)
i ,j )

I ρi ,j : GΛ0
j → GΛ0

i ‘restriction map’

I R
(0)
i ,j : GΛ1

j → GΛ1
i
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Definition of R
(0)
i ,j

Addition of an edge:

(a1, a2, a3) (a1, a2, a3, a4)←[

Subdivision of an edge:

(a1a2) (a1, a2)←[

I For general refinements, define R
(0)
i ,j by composition of these

maps;

I R
(0)
i ,j is independent of the chosen sequence;
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Hilbert space

Define covariant functors from Refine to the category of Hilbert
spaces.
Unreduced Hilbert space:

I Objects: Λ 7→ L2(GΛ1
)

I Morphisms:

(Λi ,Λj , ιi ,j) 7→ ui ,j : L2(GΛ1
i ) → L2(GΛ1

j ),

ψ 7→ ψ ◦ R
(0)
i ,j .
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Reduced Hilbert space

L2(GΛ1
) carries a continuous unitary representation of GΛ0

:

(g · ψ)(a) := ψ(g−1 · a), a ∈ GΛ1
, g ∈ GΛ0

.

Reduced Hilbert space:

I Objects: Λ 7→ L2(GΛ1
)G

Λ0

I Morphisms:

(Λi ,Λj , ιi ,j) 7→ ui ,j |
L2(G

Λ1
i )G

Λ0
i

: L2(GΛ1
i )G

Λ0
i → L2(GΛ1

j )G
Λ0
j
.
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Observable algebra

Define covariant functors from Refine to the category of
C∗-algebras.
Unreduced observable algebra:

I Objects: Λ 7→ B0(L2(GΛ1
))

I Morphisms:

(Λi ,Λj , ιi ,j) 7→ vi ,j : B0(L2(GΛ1
i )) → B0(L2(GΛ1

j )),
a 7→ ui ,jau

∗
i ,j .

Reduced observable algebra:

I Objects: Λ 7→ B0(L2(GΛ1
)G

Λ0

)

I Morphisms: (Λi ,Λj , ιi ,j) 7→

vi ,j |
B0(L2(G

Λ1
i )G

Λ0
i )

: B0(L2(GΛ1
i )G

Λ0
i )→ B0(L2(GΛ1

j )G
Λ0
j
).
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The Stone–Von Neumann Theorem

Let U and V be one-parameter groups.
The continuous unitary representations of these groups on L2(R)
given by

(U(t)ψ)(x) := ψ(x − t), (V (s)ψ)(x) := e isxψ(x).

are jointly irreducible, and satisfy the Weyl form of the CCR

U(t)V (s) = e−istV (s)U(t).

Any other pair of continuous unitary jointly irreducible
representation of U and V on a Hilbert space H satisfying the
CCR is unitarily equivalent to this one.
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Crossed product formulation (1)

Let G be a locally compact group.
Then (C0(G ),G , L) is a C∗-dynamical system.

(L(g)(f ))(a) = f (g−1 · a).

Now form its crossed product C∗-algebra C0(G ) oL G :

I Endow Cc(G ,C0(G )) with the structure of a ∗-algebra by

f ∗ g(a) :=

∫
G
f (b)L(b)(g(b−1a)) db,

(f ∗)(a) := ∆(a−1)L(a)(f (a−1));
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Crossed product formulation (2)

I Complete Cc(G ,C0(G )) with respect to the universal norm:

‖f ‖ := sup
(π,U)

‖π o U(f )‖,

where (π,U) is a nondegenerate covariant representation of
(C0(G ),G , L).

A covariant representation (π,U) consists of
I a ∗-representation: π : C0(G )→ B(H);
I a continuous unitary representation: U : G → U(H);
I a covariance condition:

π(L(a)(f )) = U(a)π(f )U(a)∗, ∀a ∈ G , ∀f ∈ C0(G ).

π o U : C0(G ) oL G → B(H), f 7→
∫
G
π(f (a))U(a) da.
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The Stone–Von Neumann theorem for crossed products

Let G be a locally compact group. Then

C0(G ) oL G ∼= B0(L2(G )).

In particular, the natural covariant representation (M, L) on L2(G )
is irreducible and faithful.
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Crossed products and groupoids

Let G be a compact Lie group.
Then

B0(L2(G )) ∼= C (G ) oL G ∼= C ∗(G n G ) ∼= C ∗(G).

Here

I G n G is an action groupoid;

I G is the pair groupoid associated to G ;

I C ∗(·) denotes the groupoid C∗-algebra of the groupoid.
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What is a groupoid?

A groupoid is a small category in which each morphism is
invertible.
Examples:
Any group H:

I Objects: a set containing a single point {∗}
I Morphisms: H

I Composition: group multiplication in H

I Identity element at ∗: identity of H

Any set X :

I Objects: X

I Morphisms: X

I Composition: x ◦ x = x

I Identity element at x : x
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The action groupoid

Let X be a set, H a group with unit e.
Suppose · : H × X → X is a group action.
The action groupoid H n X is now defined as follows:

I Objects: X

I Morphisms: H × X , (h, x) ∈ Mor(h−1 · x , x).

I Composition: (h1, x1) ◦ (h2, x2) = (h1h2, x1) if x2 = h−1
1 · x1

I Identity element at x : (e, x)

Take X = H = G , and · : G × G → G is the group multiplication
⇒ G n G .
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The pair groupoid

Let X be a set.
The pair groupoid X is now defined as follows:

I Objects: X

I Morphisms: X × X , Mor(x , y) = {(x , y)}.
I Composition: (x1, y1) ◦ (x2, y2) = (x2, y1) if x1 = y2

I Identity element at x : (x , x)

Take X = G ⇒ G.
G n G is isomorphic to G:

(G n G )(1) → G(1), (b, a) 7→ (b−1a, a).

This isomorphism is compatible with the Haar systems on both
groupoids ⇒ C ∗(G n G ) ∼= C ∗(G).
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Groupoids and refinements

Let f ∈ Cc(G(1)) = Cc(G × G ).
Let π : C ∗(G)→ B(L2(G )) be the natural representation.
Then

π(f )(ψ)(a) =

∫
G
f (b, a)ψ(b) db,

where ψ ∈ L2(G ) and a ∈ G .
Question: How does this operator behave w.r.t. refinements?
Let (Λi ,Λj , ιi ,j) be a refinement. Then

vi ,j(πi (f )) = πj(f ◦ R
(1)
i ,j ),

where R
(1)
i ,j = R

(0)
i ,j × R

(0)
i ,j : G

(1)
j → G

(1)
i

⇒ a morphism of groupoids (functor) Ri ,j : Gj → Gi .
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Direct systems

Let (I ,≤) be a directed set, let C be a category.
A direct system in C consists of

I A net of objects (Ai )i∈I ;
I A collection of morphisms (ϕi ,j : Ai → Aj)i ,j∈I , i≤j such that

I ϕi,i = IdAi ;
I ϕi,k = ϕj,k ◦ ϕi,j whenever i ≤ j ≤ k .

Example:

. . .
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Inverse systems

Let (I ,≤) be a directed set, let C be a category.
An inverse system in C consists of

I A net of objects (Ai )i∈I ;
I A collection of morphisms (ϕi ,j : Aj → Ai )i ,j∈I , i≤j such that

I ϕi,i = IdAi ;
I ϕi,k = ϕi,j ◦ ϕj,k whenever i ≤ j ≤ k .
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More direct and inverse systems

Let ((Λi )i∈I , ((Λi ,Λj , ιi ,j))i ,j∈I , i≤j) be a direct system in Refine.
Contravariant functors to the categories of

I Spaces with group actions

I Groupoids

⇒ inverse systems.
Covariant functors to the categories of

I Hilbert spaces

I C∗-algebras

⇒ direct systems.
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Inverse limits

Inverse limit of sets:

lim←−
i∈I

Ai :=

{
(ai )i∈I ∈

∏
i∈I

Ai : ϕi ,j(aj) = ai ∀i , j ∈ I , i ≤ j

}
.

I Spaces with group actions:(
lim←−
i∈I

GΛ0
i , lim←−

i∈I
GΛ1

i

)
;

I Groupoids:

lim←−
i∈I

Gi
∼= Pair groupoid associated to lim←−

i∈I
GΛ1

i .
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Direct limits (1)

Direct limit lim−→i∈I Ai of Banach spaces with linear contractions:

Completion of the space
∐

i∈I Ai/ ∼, where

(i , ai ) ∼ (j , aj) ⇔ ∃k ∈ I , k ≥ i , j : ϕi ,k(ai ) = ϕj ,k(aj),

with respect to the norm

‖[i , ai ]∼‖ := lim
j∈I : j≥i

‖ϕi ,j(ai )‖Aj
.

I Hilbert spaces:

lim−→
i∈I

L2(GΛ1
i ) ∼= L2

(
lim←−
i∈I

GΛ1
i

)
;
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Direct limits (2)

I Observable algebras:

lim−→
i∈I

B0(L2(GΛ1
i )) ∼= B0

(
lim−→
i∈I

L2(GΛ1
i )

)
∼= B0

(
L2

(
lim←−
i∈I

GΛ1
i

))
.

It can be shown that

B0

(
L2

(
lim←−
i∈I

GΛ1
i

))
∼= C ∗

(
lim←−
i∈I

Gi

)
.

Hence

lim−→
i∈I

C ∗(Gi ) ∼= C ∗

(
lim←−
i∈I

Gi

)
.
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Outlook

I More direct proof of correspondence groupoids ↔ observable
algebras in the limit, e.g. using induced representations

I Dynamics

I Inverse system of state spaces, renormalization group
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Questions?
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