Quantization of lattice gauge theories and their continuum limit

Ruben Stienstra
Joint with F. Arici and W.D. van Suijlekom
Radboud University Nijmegen
Fifth Tux workshop on Quantum Gravity
February 13, 2017
Contents

- General setup for lattice gauge theory
- Refinements of graphs and associated constructions
- Quantization and groupoids
- (Continuum) limit
Discretisation of space

Hamiltonian framework:
Approximate a Cauchy surface M with an oriented, finite, connected graph $\Lambda = (\Lambda^0, \Lambda^1)$:

- Points in M \rightarrow set of vertices Λ^0
- Paths between points \rightarrow set of oriented edges Λ^1
Discretising connections

The graph \(\Lambda \) comes with two maps \(s, t : \Lambda^1 \to \Lambda^0 \): The source and target maps.

Let \(G \) be a compact, connected Lie group.

- The space of connections: \(G^{\Lambda^1} \)
- The gauge group: \(G^{\Lambda^0} \)
- Gauge transformations:

\[
\begin{align*}
G^{\Lambda^0} \times G^{\Lambda^1} &\to G^{\Lambda^1}, \\
((g_x)_{x \in \Lambda^0}, (a_e)_{e \in \Lambda^1}) &\mapsto (g_s(e)a_egt^{-1}_e)_{e \in \Lambda^1}.
\end{align*}
\]
Approximating the continuum

One graph is insufficient;
We require a **net** of graphs:
Refinement (1)

Let $\Lambda = (\Lambda^0, \Lambda^1)$ be an oriented graph.
Consider the free category C_{Λ} generated by Λ:

- **Objects:** Λ^0
- **Let** $x, y \in \Lambda^0$.
 - **Morphisms from** x to y: paths from x to y in Λ
- **Composition:** concatenation of paths
- **Identity element at** x: trivial path at x

Notation:

- **Set of objects:** $C^{(0)}_{\Lambda}$
- **Set of morphisms:** $C^{(1)}_{\Lambda}$
Refinement (2)

Let Λ_i, Λ_j be oriented graphs. Suppose $\iota_{i,j} : C_i \to C_j$ is a functor. Suppose in addition that:

- The map between objects $\iota_{i,j}^{(0)} : C_i^{(0)} \to C_j^{(0)}$ is an injection;
- $\iota_{i,j}^{(1)} : C_i^{(1)} \to C_j^{(1)}$ maps edges to nontrivial paths;
- for each $e, e' \in \Lambda_i^1$, if $e \neq e'$, then $\iota_{i,j}^{(1)}(e)$ and $\iota_{i,j}^{(1)}(e')$ have no common edges;

Then we call $(\Lambda_i, \Lambda_j, \iota_{i,j})$ a refinement of the graph Λ_i.
Examples (1)

Addition of an edge:

![Addition of an edge diagram]

Subdivision of an edge:

![Subdivision of an edge diagram]

Every refinement is a composition of a finite sequence of the above two types of refinements.
Examples (2)

Quantization of lattice gauge theories and their continuum limit

Radboud University Nijmegen
Category of refinements

Let \textbf{Refine} denote the category with

- **Objects**: finite, connected, oriented graphs Λ
- **Morphisms**: refinements $(\Lambda_i, \Lambda_j, \nu_{i,j})$

Given the Lie group G, there exists a contravariant functor from \textbf{Refine} to the category of spaces with group actions.

- **Objects**: $\Lambda \mapsto (G^{\Lambda_0}, G^{\Lambda_1}, \cdot)$
- **Morphisms**: $(\Lambda_i, \Lambda_j, \nu_{i,j}) \mapsto (\rho_{i,j}, R^{(0)}_{i,j})$

- $\rho_{i,j} : G^{\Lambda_j} \rightarrow G^{\Lambda_i}$ 'restriction map'
- $R^{(0)}_{i,j} : G^{\Lambda_j} \rightarrow G^{\Lambda_i}$
Definition of $R_{i,j}^{(0)}$

Addition of an edge:

$$(a_1, a_2, a_3) \leftrightarrow (a_1, a_2, a_3, a_4)$$

Subdivision of an edge:

$$(a_1 a_2) \leftrightarrow (a_1, a_2)$$

- For general refinements, define $R_{i,j}^{(0)}$ by composition of these maps;
- $R_{i,j}^{(0)}$ is independent of the chosen sequence;
Define covariant functors from \textbf{Refine} to the category of Hilbert spaces.

\textbf{Unreduced Hilbert space:}

- **Objects:** \(\Lambda \mapsto L^2(G^{\Lambda^1}) \)
- **Morphisms:**

\[(\Lambda_i, \Lambda_j, \iota_{i,j}) \mapsto u_{i,j} : L^2(G^{\Lambda^1_i}) \to L^2(G^{\Lambda^1_j}), \quad \psi \mapsto \psi \circ R^{(0)}_{i,j} \]
Reduced Hilbert space

\[L^2(G^{Λ^1}) \] carries a continuous unitary representation of \(G^{Λ^0} \):

\[(g \cdot \psi)(a) := \psi(g^{-1} \cdot a), \quad a \in G^{Λ^1}, \ g \in G^{Λ^0}.\]

Reduced Hilbert space:

- **Objects:** \(Λ \mapsto L^2(G^{Λ^1})^{G^{Λ^0}} \)
- **Morphisms:**

\[(Λ_i, Λ_j, \iota_{i,j}) \mapsto u_{i,j}|_{L^2(G^{Λ^1}_i)^{G^{Λ^0}_i}} : L^2(G^{Λ^1}_i)^{G^{Λ^0}_i} \to L^2(G^{Λ^1}_j)^{G^{Λ^0}_j}. \]
Define covariant functors from \textbf{Refine} to the category of \(C^*\)-algebras.

Unreduced observable algebra:
- **Objects:** \(\Lambda \mapsto B_0(L^2(G^{\Lambda^1}))\)
- **Morphisms:**

\[
(\Lambda_i, \Lambda_j, \iota_{i,j}) \mapsto v_{i,j}: B_0(L^2(G^{\Lambda^1_i})) \rightarrow B_0(L^2(G^{\Lambda^1_j})),
\]

\[
a \mapsto u_{i,j} a u_{i,j}^*.
\]

Reduced observable algebra:
- **Objects:** \(\Lambda \mapsto B_0(L^2(G^{\Lambda^1_0} G^{\Lambda^0}))\)
- **Morphisms:**

\[
(\Lambda_i, \Lambda_j, \iota_{i,j}) \mapsto v_{i,j} \bigg|_{B_0(L^2(G^{\Lambda^1_i} G^{\Lambda^0_i}))}: B_0(L^2(G^{\Lambda^1_i} G^{\Lambda^0_i})) \rightarrow B_0(L^2(G^{\Lambda^1_j} G^{\Lambda^0_j})).
\]
The Stone–Von Neumann Theorem

Let U and V be one-parameter groups. The continuous unitary representations of these groups on $L^2(\mathbb{R})$ given by

$$(U(t)\psi)(x) := \psi(x - t), \quad (V(s)\psi)(x) := e^{isx}\psi(x).$$

are jointly irreducible, and satisfy the Weyl form of the CCR

$$U(t)V(s) = e^{-ist}V(s)U(t).$$

Any other pair of continuous unitary jointly irreducible representation of U and V on a Hilbert space \mathcal{H} satisfying the CCR is unitarily equivalent to this one.
Crossed product formulation (1)

Let G be a locally compact group. Then $(C_0(G), G, L)$ is a C^*-dynamical system.

$$(L(g)(f))(a) = f(g^{-1} \cdot a).$$

Now form its crossed product C^*-algebra $C_0(G) \rtimes_L G$:

- Endow $C_c(G, C_0(G))$ with the structure of a *-algebra by

$$f * g(a) := \int_G f(b)L(b)(g(b^{-1}a)) \, db,$$

$$f^*(a) := \Delta(a^{-1})L(a)(f(a^{-1})).$$
Crossed product formulation (2)

- Complete \(C_c(G, C_0(G)) \) with respect to the **universal norm**:

\[
\|f\| := \sup_{(\pi, U)} \|\pi \rtimes U(f)\|,
\]

where \((\pi, U)\) is a nondegenerate covariant representation of \((C_0(G), G, L)\).

A **covariant representation** \((\pi, U)\) consists of

- a *-representation: \(\pi: C_0(G) \to B(H) \);
- a continuous unitary representation: \(U: G \to U(H) \);
- a covariance condition:

\[
\pi(L(a)(f)) = U(a)\pi(f)U(a)^*, \quad \forall a \in G, \forall f \in C_0(G).
\]

\[
\pi \rtimes U: C_0(G) \rtimes L G \to B(H), \quad f \mapsto \int_G \pi(f(a))U(a)\, da.
\]
Let G be a locally compact group. Then

$$C_0(G) \rtimes_L G \cong B_0(L^2(G)).$$

In particular, the natural covariant representation (M, L) on $L^2(G)$ is irreducible and faithful.
Crossed products and groupoids

Let \(G \) be a compact Lie group. Then

\[
B_0(L^2(G)) \cong C(G) \rtimes_L G \cong C^*(G \ltimes G) \cong C^*(G).
\]

Here

- \(G \ltimes G \) is an action groupoid;
- \(G \) is the pair groupoid associated to \(G \);
- \(C^*(\cdot) \) denotes the groupoid \(C^* \)-algebra of the groupoid.
What is a groupoid?

A **groupoid** is a small category in which each morphism is invertible.

Examples:

Any group H:
- **Objects**: a set containing a single point \{*$\}
- **Morphisms**: H
- **Composition**: group multiplication in H
- **Identity element at $*$**: identity of H

Any set X:
- **Objects**: X
- **Morphisms**: X
- **Composition**: $x \circ x = x$
- **Identity element at x**: x
The action groupoid

Let X be a set, H a group with unit e.
Suppose $\cdot : H \times X \to X$ is a group action.
The **action groupoid** $H \ltimes X$ is now defined as follows:

- **Objects:** X
- **Morphisms:** $H \times X$, $(h, x) \in \text{Mor}(h^{-1} \cdot x, x)$.
- **Composition:** $(h_1, x_1) \circ (h_2, x_2) = (h_1 h_2, x_1)$ if $x_2 = h_1^{-1} \cdot x_1$
- **Identity element at** x: (e, x)

Take $X = H = G$, and $\cdot : G \times G \to G$ is the group multiplication
$\Rightarrow G \ltimes G$.
The pair groupoid

Let X be a set.

The **pair groupoid** X is now defined as follows:

- **Objects**: X
- **Morphisms**: $X \times X$, $\text{Mor}(x, y) = \{(x, y)\}$.
- **Composition**: $(x_1, y_1) \circ (x_2, y_2) = (x_2, y_1)$ if $x_1 = y_2$
- **Identity element at** x: (x, x)

Take $X = G \Rightarrow G$.

$G \ltimes G$ is isomorphic to G:

$$(G \ltimes G)^{(1)} \to G^{(1)}, \quad (b, a) \mapsto (b^{-1}a, a).$$

This isomorphism is compatible with the Haar systems on both groupoids $\Rightarrow C^*(G \ltimes G) \cong C^*(G)$.

Quantization of lattice gauge theories and their continuum limit

Radboud University Nijmegen
Let \(f \in C_c(G^{(1)}) = C_c(G \times G) \). Let \(\pi : C^*(G) \to B(L^2(G)) \) be the natural representation. Then
\[
\pi(f)(\psi)(a) = \int_G f(b, a)\psi(b) \, db,
\]
where \(\psi \in L^2(G) \) and \(a \in G \).

Question: How does this operator behave w.r.t. refinements? Let \((\Lambda_i, \Lambda_j, \iota_{i,j})\) be a refinement. Then
\[
\nu_{i,j}(\pi_i(f)) = \pi_j(f \circ R^{(1)}_{i,j}),
\]
where \(R^{(1)}_{i,j} = R^{(0)}_{i,j} \times R^{(0)}_{i,j} : G^{(1)}_j \to G^{(1)}_i \Rightarrow \) a morphism of groupoids (functor) \(R_{i,j} : G_j \to G_i \).
Direct systems

Let \((I, \leq)\) be a directed set, let \(\mathbf{C}\) be a category. A **direct system** in \(\mathbf{C}\) consists of

- A net of objects \((A_i)_{i \in I}\);
- A collection of morphisms \((\varphi_{i,j}: A_i \to A_j)_{i,j \in I, i \leq j}\) such that
 - \(\varphi_{i,i} = \text{Id}_{A_i}\);
 - \(\varphi_{i,k} = \varphi_{j,k} \circ \varphi_{i,j}\) whenever \(i \leq j \leq k\).

Example:
Inverse systems

Let \((I, \leq)\) be a directed set, let \(\mathbf{C}\) be a category. An inverse system in \(\mathbf{C}\) consists of

- A net of objects \((A_i)_{i \in I}\);
- A collection of morphisms \((\varphi_{i,j} : A_j \to A_i)_{i,j \in I, i \leq j}\) such that
 - \(\varphi_{i,i} = \text{Id}_{A_i}\);
 - \(\varphi_{i,k} = \varphi_{i,j} \circ \varphi_{j,k}\) whenever \(i \leq j \leq k\).
More direct and inverse systems

Let \(((\Lambda_i)_{i \in I}, ((\Lambda_i, \Lambda_j, \iota_{i,j}))_{i,j \in I, i \leq j})\) be a direct system in \textbf{Refine}. Contravariant functors to the categories of
- Spaces with group actions
- Groupoids

\implies \text{inverse systems.}

Covariant functors to the categories of
- Hilbert spaces
- \(C^\ast\)-algebras

\implies \text{direct systems.}
Inverse limits

Inverse limit of sets:

\[\lim_{i \in I} A_i := \left\{ (a_i)_{i \in I} \in \prod_{i \in I} A_i : \varphi_{i,j}(a_j) = a_i \quad \forall i, j \in I, \quad i \leq j \right\}. \]

- Spaces with group actions:

\[\left(\lim_{i \in I} G^\Lambda_i^0, \lim_{i \in I} G^\Lambda_i^1 \right); \]

- Groupoids:

\[\lim_{i \in I} G_i \cong \text{Pair groupoid associated to} \lim_{i \in I} G^\Lambda_i^1. \]
Direct limits (1)

Direct limit $\lim_{i \in I} A_i$ of Banach spaces with linear contractions: Completion of the space $\bigsqcup_{i \in I} A_i / \sim$, where

$$(i, a_i) \sim (j, a_j) \iff \exists k \in I, k \geq i, j : \varphi_{i,k}(a_i) = \varphi_{j,k}(a_j),$$

with respect to the norm

$$\| [i, a_i]_\sim \| := \lim_{j \in I : j \geq i} \| \varphi_{i,j}(a_i) \|_{A_j}.$$

- Hilbert spaces:

$$\lim_{i \in I} L^2(G_i^\Lambda) \cong L^2 \left(\lim_{i \in I} G_i^\Lambda \right);$$
Direct limits (2)

- Observable algebras:

\[
\lim_{i \in I} B_0(L^2(G^\Lambda_i^1)) \cong B_0 \left(\lim_{i \in I} L^2(G^\Lambda_i^1) \right) \cong B_0 \left(L^2 \left(\lim_{i \in I} G^\Lambda_i^1 \right) \right).
\]

It can be shown that

\[
B_0 \left(L^2 \left(\lim_{i \in I} G^\Lambda_i^1 \right) \right) \cong C^* \left(\lim_{i \in I} G_i \right).
\]

Hence

\[
\lim_{i \in I} C^*(G_i) \cong C^* \left(\lim_{i \in I} G_i \right).
\]
Outlook

- More direct proof of correspondence groupoids ↔ observable algebras in the limit, e.g. using induced representations
- Dynamics
- Inverse system of state spaces, renormalization group
Questions?
Selected references (1)

J. C. Baez.
Spin networks in gauge theory.

D. P. Williams.
Crossed products of C\(^\ast\)-algebras, volume 134 of Mathematical surveys and monographs.

J. Renault.
A Groupoid approach to C\(^\ast\)-algebras, volume 793 of Lecture notes in Mathematics.
Selected references (2)

N. P. Landsman.
Mathematical topics between classical and quantum mechanics.

A. Ashtekar, J. Lewandowski,
Representation theory of analytic holonomy C*-algebras,

P. S. Muhly, J. N. Renault, D. P. Williams
Equivalence and isomorphism for groupoid C*-algebras,