
Deformed relativistic symmetries
Symmetries and the spectral dimension

LQG, the signature-changing Poincaré algebra
and spectral dimension

Tomasz Trześniewski∗
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Deformed relativistic symmetries
Symmetries and the spectral dimension

Context and motivation

Deformed relativistic symmetries

LQG deformation of the hypersurface deformation algebra
[M. Bojowald & G. M. Paily (2012), M. Bojowald et al. (2016)]

The corresponding deformed Poincaré algebra and its relation
with the κ-Poincaré deformation [G. Amelino-Camelia et al. (2017)]; ex-
act results in 3d [F. Cianfrani et al. (2016)]

The dynamical signature change and asymptotic silence scenario
in cosmology [J. Mielczarek (2012), M. Bojowald & J. Mielczarek (2015)]

Spectral dimension

The dimensional flow to 2 in the UV is a common QG prediction
Different results may indicate separate phases of gravity
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HDA vs the Poincaré algebra
A model of the deformation

Hypersurface deformation algebra (HDA)
In the ADM formalism a covariant field theory has to appropriately
transform under local diffeomorphisms on any spatial hypersurface.
These diffeos can be parametrized by a lapse function N and shift vec-
tor field Na, a = 1,2,3 , while their generators are the scalar constraint
S[N] and diffeomorphism constraint D[Na] , satisfying the HDA{

D[Na],D[Ña]
}

= D
[
Nb∂bÑa − Ñb∂bNa] ,{

S[N],D[Na]
}

= −S
[
Nb∂bN

]
,{

S[N],S[Ñ]
}

= D
[
sqab(N∂bÑ − Ñ∂bN

)]
, (1)

where qab denotes the spatial metric. Spacetime signature s = 1 in
the Lorentzian case and s = −1 in the Euclidean one.
The prediction of LQG, besides quantization of the constraints, is that
several approximate calculations lead to a deformation in the bracket{

S[N],S[Ñ]
}

= D
[
sΩqab(N∂bÑ − Ñ∂bN

)]
, (2)

with some function Ω of gravitational variables.
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HDA vs the Poincaré algebra
A model of the deformation

Linearization of the (classical) HDA

HDA can be seen as a generalization of the Poincaré algebra. To
uncover the underlying Poincaré symmetry one restricts to linear hy-
persurface deformations, imposing the conditions qab = δab and

N(x) = δt + vaxa , Na(x) = δxa + Ra
bxb , (3)

where Ra
b ≡ εbacϕc , va, δt and δxa are infinitesimal parameters of ro-

tations, boosts and translations. Then the scalar and diffeomorphism
constraints can be expressed in terms of the latter, with the respective
generators Ka, Ja, P0 and Pa , namely

S[N] = −δt P0 − vaKa , D[Na] = −δxbPb − ϕbJb . (4)

Substituting the above expressions into the HDA brackets, in the clas-
sical case (with Ω = 1) we arrive at the Poincaré algebra. For the
deformed case we will remain in the semiclassical regime.
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A model of the deformation

Deformed Poincaré algebra
We may follow the analogous approach if Ω is extracted out of the
diffeo constraint. To this end we introduce the “effective signature"

seff := sΩ̃ = s
D
[
Ωqab(N1∂bN2 − N2∂bN1)

]
D [qab(N1∂bN2 − N2∂bN1)]

, (5)

which allows us to rewrite the third bracket of the deformed HDA as{
S[N],S[Ñ]

}
= D

[
sΩqab(N∂bÑ − Ñ∂bN

)]
= seffD

[
qab(N∂bÑ − Ñ∂bN

)]
. (6)

As the result we obtain the deformed Poincaré (non-Lie) algebra

{Ja, Jb} = εabcJc , {Ja,Kb} = εabcK c , {Ka,Kb} = −seffεabcJc ,

{Ja,Pb} = εabcPc , {Ja,P0} = 0 , {Ka,Pb} = δabP0 ,

{Ka,P0} = seffPa , {Pa,Pb} = 0 , {Pa,P0} = 0 , (7)

where Ω̃ in general can be some function of the generators.
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Changing signature of the metric

In particular, for a perturbed homogeneous and isotropic spacetime
configuration with LQG holonomy corrections the deformation factor is

Ω̃ = Ω = cos(2γµ̄k̄) ∼= 1− 2
ρ

ρc
∈ [−1,1] , (8)

where µ̄, k̄ depend on the Ashtekar variables and γ denotes the Im-
mirzi parameter, while ρ is the universe’s energy density and ρc its
critical value.
The effective spacetime’s metric seff = sΩ is Lorentzian for ρ < ρc/2
but becomes Euclidean for ρ > ρc/2 and at ρ = ρc/2 is indefinite. The
latter can be interpreted as realizing the asymptotic silence scenario,
or BKL conjecture, in cosmology.
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HDA vs the Poincaré algebra
A model of the deformation

Deformation factor and Casimir

To derive the form of Ω̃ (for s = 1) in an exact case we may assume:
• all Jacobi identities for the symmetry algebra are satisfied,
• the deformation factor Ω̃ is rotationally invariant
• and the deformation vanishes in the appropriate limit.
As the final, more specific assumption we take that Ω̃ = Ω̃(P0, |P|) =
F (P0)G(|P|) , P ≡ (P1,P2,P3) . As the result we find

Ω̃(P0, |P|) =
P2

0 − α
P2 − α

, (9)

where α ∈ R is a free parameter, with lim|α|→∞ Ω̃ = 1 and the sig-
nature can change for α > 0. Furthermore, combining Ω̃ and the unit
element of the algebra we construct the deformed mass Casimir

C =
−P2

0 + P2

1− α−1P2 . (10)
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HDA vs the Poincaré algebra
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Phase space with deformed symmetries
Let us consider an extension of our deformed Poincaré algebra by the
undeformed Heisenberg algebra of phase space coordinates

{xµ, xν} = 0 , {xµ,pν} = ηµν , {pµ,pν} = 0 , (11)

where µ, ν = 0,1,2,3 and the Minkowski metric η = diag(−1,1,1,1) .
Such an Ansatz can be implemented by using the following realization
of the symmetry generators in terms of xµ and pµ :

εabcJc := xapb − xbpa , Ka := xap0 − x0paΩ̃(p0, |p|) ,
Pa := pa , P0 := p0 . (12)

The remaining brackets of the total phase space algebra are

{Ka, x0} = xa − 2x0
p0pa

p2
0 − α

Ω̃ ,

{Ka, xb} = x0

(
δab − 2

papb

p2 − α

)
Ω̃ (13)

and all Jacobi identities for the xµ generators are indeed satisfied.
T. Trześniewski The signature change and spectral dimension 8 / 17



Deformed relativistic symmetries
Symmetries and the spectral dimension

HDA vs the Poincaré algebra
A model of the deformation

Deformed Lorentz transformations

The result is standard phase space but equipped with deformed sym-
metries∗∗. Lorentz transformations preserving the Casimir C =

−p2
0+p2

1−α−1p2

are naturally deformed as well. For example, the boost with a velocity
v in the direction of p1 acting on a four-momentum (p0,p) gives

p′0 = Qγ(p0 − vp1) ,

p′1 = Qγ(p1 − vp0) ,

p′2 = Qp2 , p′3 = Qp3 , (14)

where γ ≡
√

1− v2−1
denotes the Lorentz factor, while the deforma-

tion is contained in the function

Q ≡

√
1 +

γ2v2

α

(
p2

0 + p2
1 −

2
v

p0p1

)−1

. (15)

∗∗Since the full Hopf algebra structure for the symmetry algebra is unknown here, this
construction is ambiguous.
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Characteristic energy scale

Solving the equation p′0(p0) = p0 we discover that for α > 0 there ex-
ists a boost-invariant energy scale† p0 = ±

√
α . Consequently, taking

any vector (p0 = ε
√
α,p1,p2,p3) , ε ∈ (−1,1) we find that

p′0 =

√
α (ε
√
α− vp1)√

(ε
√
α− vp1)

2
+ (1− v2)(1− ε2)α

(16)

and hence −
√
α < p′0 <

√
α . It means there are three unconnected

momentum sectors, with p0 ∈ (−∞,−
√
α) , p0 ∈ (−

√
α,
√
α) or

p0 ∈ (
√
α,∞) . Moreover, both Ω̃ and C become divergent at |p| =

√
α ,

while Ω̃ changes its sign at |p| =
√
α and |p0| =

√
α .

Meanwhile, for α < 0 there is no such a special scale.

†Similar to DSR models, especially J. Magueijo & L. Smolin, Phys. Rev. Lett. 88,
190403 (2002).
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Necessary ingredients
Definitions and results

Measure on momentum space

The standard volume element of momentum space transforms into

d4p′ = det
(
∂p′µ
∂pν

)
d4p = Q6d4p . (17)

In order to find the measure that is boost-invariant we look for a func-
tion f (p) satisfying the condition f (p′)d4p′ = f (p)d4p and derive

dµ(p) ≡ f (p)d4p =

(
1− p2

α

)−3

d4p . (18)

On the other hand, introducing a metric on momentum space via the
Casimir C := gµν(p)pµpν one obtains the non-invariant measure

√
|det g(p)|d4p =

(
1− p2

α

)2

d4p , gµν(p) ≡ ηµν

1− α−1p2 . (19)
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Necessary ingredients
Definitions and results

Euclidean domain of the model

The Lorentzian and Euclidean versions of our symmetry algebra can
be connected by the usual Wick rotation: P0 −→ −iP0 , Ka −→ −iKa .
The only brackets of the algebra that become (implicitly) modified are

{Ka,Kb} = −seffεabcJc , {Ka,P0} = seffPa , (20)

where we already set s = −1 and now seff = sΩ̃E , Ω̃E = −P2
0 +α

P2−α ,
lim|α|→∞ Ω̃E = 1. Similarly, the Euclidean Casimir in the momentum
representation is obtained via p0 −→ −ip0 , which gives

CE =
p2

0 + p2

1− α−1p2 . (21)

If α > 0 , it is negative for |p| >
√
α . The same Ω̃E , CE can also be

derived starting from the deformed Euclidean symmetry algebra.
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Necessary ingredients
Definitions and results

Diffusion and the dimension of space(time)
On a manifold of d topological dimensions and with the Riemannian
metric g one considers a diffusion process described by the equation

∂

∂σ
K(x , x0;σ) = ∆xK(x , x0;σ) , K(x , x0; 0) =

δ(d)(x − x0)√
|det g(x)|

, (22)

with the Laplacian ∆x (not necessarily ∆ = gµν∂µ∂ν) and auxiliary
time σ. The solution of (22) can be written as the Fourier transform

K(x , x0;σ) = (2π)−4
∫

dµ(p) eipµ(x−x0)µe−σ∆p . (23)

For a flat g the trace of K(x , x0;σ) is the average return probability

P(σ) ≡ K(x , x ;σ) = (2π)−4
∫

dµ(p) e−σ∆p (24)

and the spectral dimension of the manifold is defined as

dS(σ) := −2
∂ logP(σ)

∂ logσ
. (25)
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Necessary ingredients
Definitions and results

Spacetime’s dimension in our model: α > 0

In general, the Laplacian on momentum space may be given by

∆p =
∑
n=1

cnα
n−1 (CE)n

, (26)

with some coefficients cn , but we assume the simple ∆p := CE . Using
the measure dµ(p) we then write the average return probability‡

P(σ) =
4π

(2π)4

∫
dp p2

(1− p2

α )3

∫
dp0 e−σ

p2
0+p2

1−α−1p2 . (27)

In the case of α > 0 the integration range of 3-momenta has to become
[0,
√
α) 3 |p| ≡ p (so that ∆p is positive). Then we calculate that

P(σ) = 1
16π2σ2 and the spectral dimension of spacetime is constant

dS(σ) = 4 . (28)

‡It may be compared with the case of noncommutative κ-Minkowski space, see
M. Arzano & T. T., Phys. Rev. D 89, 124024 (2014).
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Necessary ingredients
Definitions and results

Spacetime’s dimension in our model: α < 0
On the other hand, for α < 0 we obtain the dimensional reduction:

P(σ) =
erf(
√
|α|σ)

16π2σ2 −
√
|α|e−|α|σ

8π5/2σ3/2 , (29)

dS(σ) = 4− 4(|α|σ)
3
2

√
π e|α|σerf(

√
|α|σ)− 2

√
|α|σ

. (30)

In particular, in the IR
limσ→∞ dS(σ) = 4 , while in
the UV limσ→0 dS(σ) = 1 .

Figure: Spectral dimension (30) as a
function of |α|σ
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Necessary ingredients
Definitions and results

The Carrollian limit at high energies

The UV value of dS(σ) agrees with
that the symmetry algebra becomes
the Carroll§ algebra at |p| → ∞ (for
α < 0). The Carrollian (or ultralocal)
limit is defined as vanishing speed of
light and for spacetime it leads to the
collapse of lightcones into a congru-
ence of null worldlines. In contrast to
the asymptotic silence scenario, here
it happens not in the early universe but
at the smallest scales.

Figure: The asymptotic
silence scenario

§L. Carroll, Through the Looking Glass and what Alice Found There: “Now, here, you
see, it takes all the running you can do, to keep in the same place."
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Summary

LQG-deformed HDA in the linear limit reduces to a certain de-
formed Poincaré algebra
Using some assumptions we obtain a model example of the de-
formation, which exhibits the variable signature
Such a deformed symmetry algebra can be tentatively attached
to commutative phase space
It leads to deformed Lorentz transformations, invariant energy
scale and nontrivial measure on momentum space
Finally, we calculate the spectral dimension of spacetime
For α > 0 the dimension stays unchanged, while for α < 0 it
reduces to 1 in the UV, corresponding to the Carrollian limit
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