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Motivation

Goal: Extract cosmology from (loop) quantum gravity.

Loop quantum cosmology (LQC) —where the quantization
techniques of loop quantum gravity (LQG) are applied in the
symmetry-reduced minisuperspaces relevant for homogeneous
space-times— has given some potentially important insights in this
direction.

However, despite its successes, the exact relation between loop
quantum gravity and loop quantum cosmology remains unclear. It is
important to go beyond LQC, using any hints LQC may offer.
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Cosmology as a Condensate of Geometry

In any theory such as LQG which predicts that space-time is
constituted of quanta of geometry, it is reasonable to assume that
large space-times (including cosmological space-times)

are constituted of a large number of quanta of geometry,
each quanta contributes only a small fraction of the spatial
volume.

Furthermore, the improved dynamics of loop quantum cosmology
suggest that the N quanta are in fact in the same state and that
each contributes the same minimal Vmin to the total volume,

Vtot = NVmin.

If all the quanta are indeed in the same state, this suggests using
condensate states to extract cosmology from LQG.

This in turn directly leads to group field theory, a field theory for
the quanta of geometry of LQG.
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Interpretation of the Condensate State

The key idea here is that the continuous cosmological space-time
emerges from the coarse-graining of the group field theory (GFT)
condensate state.

Then the equations of motion for the coarse-grained continuous
space-time (in this case, the Friedmann equations) are extracted from
the dynamics of the GFT condensate state by evaluating the relevant
cosmological observables (e.g., total spatial volume) and calculating
their evolution as determined by the microscopic GFT model (with
respect to some relational time).

Note that we make assumptions on the type of LQG/GFT state that
is relevant for cosmology, but we do not impose any symmetries upon
the underlying GFT theory.
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Group Field Theory

Group field theory (GFT) can be seen as a second-quantized
language for loop quantum gravity, where the field operators

ϕ̂(gv1 , gv2 , gv3 , gv4), ϕ̂†(gv1 , gv2 , gv3 , gv4),

create and annihilate quanta of geometry: spin network nodes [Oriti].

For the sake of simplicity here we are considering four-valent spin
network nodes only, and the gvi denote the parallel transport along
each of the links leaving the spin network node.

Gauge invariance at the nodes is obtained by requiring that the field
operators are invariant under multiplication from the right,

ϕ̂(gv1h, gv2h, gv3h, gv4h) = ϕ̂(gv1 , gv2 , gv3 , gv4), ∀ h ∈ SU(2).
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GFT Fock Space

Assuming bosonic statistics for the GFT field operators,

[ϕ̂(gv ), ϕ̂†(gw )] = ISU(2)4/SU(2),

it is straightforward to construct the GFT Fock space [Oriti]. Note that
the Fock vacuum |0〉 corresponds to the state without any quanta of
geometry.

The operators have the standard second-quantized form, and in
particular the number operator will be important,

N̂ =

∫
dgv ϕ̂

†(gv ) ϕ̂(gv ).
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GFT Action

The GFT action S [ϕ, ϕ̄] can be chosen so that the perturbative
expansion of the GFT partition function matches the sum over
geometries of a spin foam model [Oriti]:∫

DϕDϕ̄Ψ̄f [φ̄]e−S[ϕ,ϕ̄]Ψi [ϕ] =
∑

two−complexes
with boundary Ψi ,Ψf

j ,ι

∏
e

Ae

∏
f

Af

∏
v

Av .

For spin foam models which are based on simplicial interactions, the
only interaction terms are five-valent in which case the GFT action
contains a kinetic term and ϕ5 interaction terms, e.g.,

S =

∫
dgv1dgv2ϕ̄(gv1)ϕ(gv2)K2(gv1 , gv2)

+

∫ ( 5∏
a=1

dgvaϕ̄(gva)

)
V̄5(gva) +

∫ ( 5∏
a=1

dgvaϕ(gva)

)
V5(gva).
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GFT with a Scalar Field

A matter field is needed for cosmology. A scalar field can be added to
GFTs via

ϕ̂(gv )→ ϕ̂(gv , φ).

From a spin foam perspective, it is reasonable to discretize the scalar
field on chunks of 4D space-time, or at the vertices of the
two-complex dual to the discretization of the space-time.

This means that the interaction term in the GFT action must include
delta functions so all φ have the same value at the vertex. Clearly,
the gradients of φ will be encoded in the propagator of the GFT.

Furthermore, if we assume φ is massless and minimally coupled to
gravity, the symmetries φ→ φ + const and φ→ −φ require

K2(gv1 , gv2 , φ1, φ2) = K2(gv1 , gv2 , (φ1 − φ2)2),

V5(gva , φa) = V5(gva)
∏

δ(φa − φ1).

E. Wilson-Ewing (AEI) GFT Cosmology February 15, 2016 9 / 21



GFT with a Scalar Field

A matter field is needed for cosmology. A scalar field can be added to
GFTs via

ϕ̂(gv )→ ϕ̂(gv , φ).

From a spin foam perspective, it is reasonable to discretize the scalar
field on chunks of 4D space-time, or at the vertices of the
two-complex dual to the discretization of the space-time.

This means that the interaction term in the GFT action must include
delta functions so all φ have the same value at the vertex. Clearly,
the gradients of φ will be encoded in the propagator of the GFT.

Furthermore, if we assume φ is massless and minimally coupled to
gravity, the symmetries φ→ φ + const and φ→ −φ require

K2(gv1 , gv2 , φ1, φ2) = K2(gv1 , gv2 , (φ1 − φ2)2),

V5(gva , φa) = V5(gva)
∏

δ(φa − φ1).

E. Wilson-Ewing (AEI) GFT Cosmology February 15, 2016 9 / 21



Expansion of the Kinetic Term

Assuming the field operator is analytic in φ, it is possible to perform
a derivative expansion of the kinetic term of the GFT action:

K =

∫
dgvdgwdφvdφw ϕ̄(gv , φv )K2(gw , gv ; (φw − φv )2)ϕ(gw , φw )

=

∫
dgvdgwdφdu ϕ̄(gv , φ)K2(gw , gv ; u2)ϕ(gw , φ + u)

=
∞∑
n=0

∫
dgvdgwdφ ϕ̄(gv , φ)K

(2n)
2 (gv , gw )

∂2n

∂φ2n
ϕ(gw , φ).

In the case where the difference between φv and φw is small
compared to the Planck mass, a truncation of the sum will provide a
good approximation to the full kinetic term.

We will only keep the first two terms.
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Condensate States

A simple family of condensate states are the Gross-Pitaevskii
condensate states, i.e., coherent states of the GFT field operator
which are, up to a numerical prefactor, [Gielen, Oriti, Sindoni]

|σ〉 ∼ exp

(∫
dgvdφ σ(gv , φ)φ̂†(gv , φ)

)
|0〉,

where σ(gv , φ) is the condensate wave function. Note that σ(gv , φ)
is not normalized; rather, its norm gives the number of fundamental
GFT quanta.

Importantly, the massless scalar field can be used as a relational
clock: σ(gv , φo) can be understood as the condensate wave function
evaluated at the ‘time’ φo .

Thus, imposing the quantum equations of motion on |σ〉 will give
relational dynamics with respect to φ.
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The Form of σ(gv , φ)

It is important to make choices for σ(gv , φ) so that the condensate
state represents a cosmological space-time. Furthermore, appropriate
approximations will simplify the equations to be solved.

We are interested in the spatially flat FLRW space-time.
So we neglect connectivity: the main observable is the total
volume where connectivity is unimportant, and the space-time is
spatially flat so we do not need to worry about encoding the
spatial curvature in the connectivity of the graph [Gielen, Oriti, Sindoni].

We are only interested in isotropic observables.
So we restrict our attention to equilateral (isotropic)
configurations, this way we can only reconstruct isotropic
observables from σ(gv , φ). This can also be motivated by the
improved dynamics of LQC.
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Relational Dynamics

We expect the condensate state to only be an approximate solution
to the quantum equations of motion. So, we will only impose the
first Schwinger-Dyson equation [Gielen, Oriti, Sindoni],

〈σ| δ̂S
δϕ̄
|σ〉 = 0.

Since we are neglecting connectivity, and only considering equilateral
spin network nodes, σ(gv , φ)→ σj(φ) since for each j only one
equilateral spin network node exists.

Imposing the first Schwinger-Dyson equation on |σ〉 gives the
non-linear equation (assuming a GFT action based on EPRL)

∂2
φσj(φ)−m2

j σj(φ) + wj σ̄j(φ)4 = 0,

where the numerical values of the m2
j ∼ K

(0)
2 /K

(2)
2 and wj ∼ V5/K

(2)
2

depend on the details of the GFT action.
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Neglecting Interactions and Conserved Quantities

The Gross-Pitaevskii condensate approximation assumes that
interactions are small. Therefore, it is consistent (to leading order) to
neglect the interaction term. To consider cases when the interaction
term becomes important, it will be necessary to go beyond the
Gross-Pitaevskii approximation.

Neglecting interactions, the condensate equation of motion becomes

∂2
φσj(φ)−m2

j σj(φ) ≈ 0,

and it is clear that in this limit, for each j ,

Ej = |∂φσj(φ)|2 −m2
j |σj(φ)|2,

Qj = − i

2

[
σj(φ)?∂φσj(φ)− σj(φ)∂φσj(φ)?

]
,

are conserved quantities (with respect to φ).
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Cosmological Observables

In order to extract cosmology from the state |σ〉, it is necessary to
relate the volume V and the momentum of the scalar field πφ to the
appropriate GFT observables.

These are

V (φ) =
∑
j

Vjσj(φ)?σj(φ) =
∑
j

Vj |σj(φ)|2,

πφ(φ) = − i~
2

[
σj(φ)?∂φσj(φ)− σj(φ)∂φσj(φ)?

]
= ~

∑
j

Qj .

It immediately follows that

∂φπφ(φ) = 0,

and so we recover the continuity equation for an FLRW space-time
with a massless scalar field.
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The Condensate Friedmann Equation

Writing σj(φ) = ρj(φ)e iθj (φ), the equation of motion for V , using

V ′ = 2
∑
j

Vjρ
′
j ρj , where f ′ := ∂φf ,

and the equation of motion for σj(φ) given earlier, is

(
V ′

3V

)2

=

2
∑

j Vj ρj

√
Ej −

Q2
j

ρ2
j

+ m2
j ρ

2
j

3
∑

j Vjρ2
j


2

.

The classical Friedmann equation(
V ′

3V

)2

=
4πG

3

is recovered in the low curvature semi-classical limit (which here
corresponds to large ρj) for m2

j = 3πG .
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Breakdown of the Condensate Approximation

Recall that the Gross-Pitaevskii condensate approximation is only
valid so long as the interaction terms are small.

As can easily be checked in the equation of motion for σj , the
interaction term will become large when ρj becomes sufficiently large.

This corresponds to the large volume limit: the Gross-Pitaevskii
condensate approximation breaks down at large volumes.
Therefore, the previous results hold for large volumes so long as the
volume is not so large that the Gross-Pitaevskii approximation fails.

The fact that interactions become large at large volumes may be
related to the fact that we have neglected connectivity information:
all GFT quanta are interacting with all other quanta. Restoring the
connectivity information in σj may fix this.
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Resolution of the Singularity

Assuming ρj is sufficiently small so that interactions are negligible,
the equation of motion for σj(φ) can be rewritten as

ρ′′j −
Q2

j

ρ3
j

−m2
j ρj ≈ 0,

where it is clear that ρj can never become zero due to the repulsive
‘potential’ Q2

j /ρ
3
j which diverges at ρj = 0 (assuming Qj 6= 0 which is

true for at least one j if πφ 6= 0). Instead, the ρj will ‘bounce’.

This has important cosmological consequences. Since V =
∑

j Vjρ
2
j ,

if ρj(φ) is always different from 0, so is V (φ).

The cosmological singularity is resolved, and is generically
replaced by a bounce (so long as one Qj is non-vanishing, which is
required for non-vacuum space-times like the FLRW space-times).
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A Simple Ansatz to (Almost) Recover LQC

Recall that LQC suggests that the appropriate condensate state is
one where all the quanta are equilateral spin networks with j = 1/2.
Motivated by this observation, let’s consider the case where σj(φ)
only has support on j = jo .

Then, using ρ = π2
φ/2V 2, the condensate Friedmann equation

becomes (
V ′

3V

)2

=
4πG

3

(
1− ρ

ρc

)
+

VjoEjo

9V
,

with ρc = 6πG~2/V 2
jo
∼ (6π/j3

o )ρPl.

This is (almost) exactly the LQC effective Friedmann
equation, up to the extra term that depends on Ejo .

While Ej plays an important role in the dynamics of the GFT
condensate, its geometric interpretation remains unclear.
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Conclusions

Motivated by LQC, we made a specific ansatz on the type of
state in (the GFT reformulation of) LQG that corresponds to
cosmological space-times: GFT condensate states.

The equations of motion for the condensate states are
determined by the GFT action, and from these equations of
motion we can extract the continuity and Friedmann equations.

The classical Friedmann equations are recovered in an
appropriate semi-classical limit for some choices of parameters in
the GFT action.

The classical singularity is resolved and is generically replaced by
a bounce. Also, the LQC effective Friedmann equations are
(almost) recovered for a natural choice of the condensate wave
function.
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Outlook

There are many open questions:

Further investigate the condensate Friedmann equation for a
variety of condensate wave functions,

Consider other types of matter fields, including scalar fields with
non-trivial potentials and Maxwell fields,

Develop a framework to study cosmological perturbation theory,

Include anisotropies,

Include connectivity information in the analysis,

Understand the physical interpretation of the ‘energy’ Ej .

Thank you for your attention!
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