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Motivation

High precision observations of the
cosmic microwave background
(CMB) have taught us a lot about
the early universe. In particular,
they have ruled out a number of
cosmological models, including
some of the simplest models for
inflation, as well as alternatives to
inflation.

[Planck2015+BICEP2/Keck]

Can they teach us anything about quantum gravity effects in the
early universe? More specifically, can we test loop quantum
cosmology (LQC)? To do this, it is necessary to develop a framework
for cosmological perturbation theory in LQC.
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The Standard Hamiltonian Treatment

In the usual treatment of linear perturbations in cosmology, one
treats the background and the perturbations separately.

The background is typically taken to be a spatially flat
Friedmann-Lemâıtre-Robertson-Walker (FLRW) space-time, with

ds2 = a(η)2
[
−dη2 + d~x 2

]
,

and a matter content consisting of perfect fluids with energy density
ρ, pressure P and sound speed cs and/or scalar fields φ.

In the Hamiltonian framework, the symplectic structure splits nicely
into a background part for the background variables and a
perturbation part for the variables describing the perturbations
around the background.

Then, there is a Hamiltonian constraint Ho for the background and a
separate Hamiltonian δH for the perturbations.
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The Mukhanov-Sasaki Equation

The dynamics for scalar perturbations in general relativity (those
mainly responsible for the temperature anisotropies in the CMB) are
given by the Mukhanov-Sasaki equation,

v ′′k +

(
k2 − z ′′

z

)
vk = 0, f ′ :=

df

dη
,

where the Fourier modes of the Mukhanov-Sasaki variable vk are
related to the co-moving curvature perturbation Rk by vk = zRk ,
and

z =
a2
√
ρ + P

csH
, H =

a′

a
,

depends on the dynamics of the background space-time.

Importantly, in cosmology it is almost always a good approximation
to entirely neglect either k2 or z ′′/z .
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What About Loop Quantum Cosmology?

In loop quantum cosmology (LQC), we study cosmological
space-times—like the FLRW and Bianchi models—following loop
quantum gravity as closely as possible.

This is why the basic variables in LQC are holonomies of the
connection and areas of surfaces.

But now if we want to follow the standard treatment of linear
perturbations in LQC, we must perform a loop quantization of the
Hamiltonian for the perturbations δH , which contains terms
corresponding to perturbations in the connection δAi

a.

How can you build a holonomy out of a perturbation of a
connection? The whole connection is necessary for this...
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The Separate Universe Framework

For long-wavelength modes—Fourier modes that satisfy
k2 � z ′′/z—gradients can entirely be neglected. So, if one splits the
space-time into patches with size ∼ λlong , then the dynamics of the
perturbation in that patch are entirely determined by the background
dynamics: interactions between patches are negligible [Salopek, Bond; Wands,

Malik, Lyth, Liddle; . . . ].

Furthermore, it is reasonable to
approximate each of these patches to be
homogeneous. This corresponds to a
discretization of the space-time with a
lattice spacing of ∼ λlong .

Application to LQC:
So, to study long-wavelength perturbations, it is sufficient to consider
a collection of uninteracting homogeneous patches. Importantly,
since each patch is homogeneous, the standard LQC quantization
techniques for homogeneous space-times can safely be used in each
patch.
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Aside: Other Approaches to Perturbations in LQC

There are two other approaches to study perturbations in LQC:

Effective constraints: Start with the classical constraints for
cosmological perturbations, and add in ‘correction functions’
encoding holonomy or inverse triad corrections, while requiring
an anomaly-free constraint algebra [Bojowald, Kagan, Hussein, Shankaranarayanan;

Cailleteau, Mielczarek, Barrau, Grain; Ben Achour, Brahma, Grain, Marciano; . . . ].

Hybrid quantization: Do a loop quantization of the
background degrees of freedom, and a Fock quantization of the
perturbations [Fernandez-Mendez, Mena Marugan, Olmedo; Agullo, Ashtekar, Nelson; . . . ].

The three approaches each try to bypass the difficulties of performing
a loop quantization of all inhomogeneous degrees of freedom. Note
that while these other two approaches can be used for both short-
and long-wavelength perturbations, neither provides a loop
quantization of the perturbations.
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Choice of Gauge and Variables

For scalar perturbations, in the longitudinal gauge (assuming the
matter field has zero anisotropic stress), the metric is

ds2 = −a2(1 + 2ψ)dη2 + a2(1− 2ψ)d~x2,

where ψ encodes the perturbations in the lapse and the scale factor.

Breaking the spatial manifold into large patches n which are each
approximated to be homogeneous, following the separate universe
approach, in this gauge the metric in each patch is that of a spatially
flat FLRW space-time, with

an = a(1− ψ), Nn = a(1 + ψ).

This greatly simplifies the Hamiltonian treatment and the loop
quantization.
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The Variables in Each Patch

Since each patch is a spatially flat FLRW space-time, the basic
variables in each patch are, as usual in LQC,

(E a
i )n = pn

(
∂

∂x i

)a

,
(
Ai
a

)
n

= cn
(
dx i
)
a
,

and so an :=
√
pn.

The mean scale factor is

a =
1

ntot

ntot∑
n=1

an, ⇒ ψn =
a − an

a
,

and it follows that

Nn = a(1 + ψn) = 2a − an.

From this discussion, it is clear that the usual LQC quantization in
each patch is possible, the only modification being a different lapse
function.
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Loop Quantization

The Hilbert space H is given by the tensor product of the Hilbert
spaces for each cell n in the discretization,

H =
⊗
n

H (LQC)
n ,

where H
(LQC)
n is the usual LQC Hilbert space for FLRW space-times.

The next step is to impose the constraints. Given that the patches
do not interact in the separate universe approximation, this is simply
obtained by requiring

(̂CS)nΨ(pi) = 0,

in each patch. Here ĈS is the usual scalar constraint operator of LQC
for a spatially flat FLRW space-time.
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Quantum Dynamics

The quantum dynamics are generated by the Hamiltonian constraint
operator, ∑

n

N̂n(̂CS)nΨ = 0.

Since we are working in the longitudinal gauge, the Gauss constraint
was solved at the classical level.

In addition, for long-wavelength perturbations, the diffeomorphism
constraint in fact follows from the scalar constraint and the dynamics.

Finally, for small perturbations the different patches should be
‘similar’ to each other: for non-constraint operators Ôn,∣∣∣〈Ôi〉 − 〈Ôj〉

∣∣∣� ∣∣∣∣∣ 1

ntot

∑
n

〈Ôn〉

∣∣∣∣∣ .
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The Quantum Theory and Effective Dynamics

Following these steps gives a loop quantization for the background
and long-wavelength perturbative degrees of freedom. However, the
constraints and quantum dynamics are cumbersome and difficult to
work with.

On the other hand, for states in homogeneous LQC that are
sharply-peaked, there exist effective equations that provide an
excellent approximation to the full quantum dynamics so long as the
spatial volume is much larger than `3

Pl [Ashtekar, Paw lowski, Singh; Taveras; Rovelli, WE; . . . ]

The same is true patch by patch in the separate universe framework:
so long as the volume of each patch remains much larger than `3

Pl,
sharply-peaked states will remain sharply-peaked and the effective
equations in each patch can be trusted.
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Effective Equations

The effective equations in each patch are the usual LQC Friedmann
equations in conformal time,

H2
n =

8πG

3
N2

nρn

(
1− ρn

ρc

)
,

H′n = −4πGN2
n (ρn + Pn)

(
1− 2ρn

ρc

)
+

N ′na
′
n

Nnan
,

ρ′n + 3Hn (ρn + Pn) = 0.

Expressing the above equations in terms of a, ρ̄ and P̄ and
perturbations away from the average values, the background variables
clearly follow the usual LQC effective dynamics.
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Long-Wavelength Mukhanov-Sasaki Equation

The perturbative part of the above three effective equations
determine the dynamics of long-wavelength scalar perturbations.

In the longitudinal gauge, (assuming a scalar field as matter content)
the Mukhanov-Sasaki variable v has the form

vn = zψn + a δφn,

and with some work, the perturbative part of the effective equations
above can be shown to imply that

v ′′n −
z ′′

z
vn = 0.

This is the LQC effective equation for long-wavelength scalar
perturbations.

While the equation’s form is the same as in general relativity, the
dynamics of z will be different in LQC.
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Evolution Through the LQC Bounce

Using the LQC effective long-wavelength Mukhanov-Sasaki equation,
it is possible to calculate the evolution of long-wavelength scalar
perturbations through the LQC bounce.

Assuming a constant equation of state ω in the matter field for
simplicity, before the bounce when GR holds (recall R = v/z)

Rk = Ak + Bk |t|(ω−1)/(1+ω),

there is a constant and a growing mode (assuming −1 < ω < 1).

Then, as a result of the LQC dynamics, after the bounce

Rk = Ak − Bkα
(1−ω)/2(1+ω)

(
ω − 1

1 + ω

) √
π Γ( 2+ω

1+ω
− 3

2
)

2 Γ(2+ω
1+ω

)
+ decay,

where α = 6πGρc(1 + ω)2.
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Application to Cosmological Models

This result is particularly interesting when considering alternatives to
inflation in LQC, like the matter bounce scenario and the ekpyrotic
universe, where scale-invariant perturbations are generated in a
contracting pre-bounce epoch: it shows precisely how these
perturbations propagate to the post-bounce era.

In particular, this result shows that both scenarios—combined with
an LQC bounce—are viable alternatives to inflation, although these
two alternatives are now quite strongly constrained by observational
bounds on non-Gaussianities.

This framework could also be used to study the behaviour of
long-wavelength modes during the bounce in inflationary models,
which would correspond to super-horizon perturbations today.
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Comments on Coarse-Graining & Renormalization

If one is interested in physics at very large scales, then it is possible
to consider coarse-graining patches, for example coarse-graining

8 patches → 1 large patch.

This is similar to the block-spin renormalization procedure used in,
e.g., the Ising model. Is there any running of coupling constants?

It is possible to do this calculation in (a slight modification of) the
separate universe approach, with the result that the coupling
constants don’t run [Bodendorfer].

The next question is: What happens if the (sub-leading) interactions
are included? Will they introduce a running in coupling constants?

Also, note that here the RG flow occurs with respect to a length
scale, not an energy scale. Is this an artifact of the setting, or should
we expect this more generally for quantum gravity?

E. Wilson-Ewing (AEI) Separate Universes in LQC February 16, 2017 18 / 19



Comments on Coarse-Graining & Renormalization

If one is interested in physics at very large scales, then it is possible
to consider coarse-graining patches, for example coarse-graining

8 patches → 1 large patch.

This is similar to the block-spin renormalization procedure used in,
e.g., the Ising model. Is there any running of coupling constants?

It is possible to do this calculation in (a slight modification of) the
separate universe approach, with the result that the coupling
constants don’t run [Bodendorfer].

The next question is: What happens if the (sub-leading) interactions
are included? Will they introduce a running in coupling constants?

Also, note that here the RG flow occurs with respect to a length
scale, not an energy scale. Is this an artifact of the setting, or should
we expect this more generally for quantum gravity?

E. Wilson-Ewing (AEI) Separate Universes in LQC February 16, 2017 18 / 19



Comments on Coarse-Graining & Renormalization

If one is interested in physics at very large scales, then it is possible
to consider coarse-graining patches, for example coarse-graining

8 patches → 1 large patch.

This is similar to the block-spin renormalization procedure used in,
e.g., the Ising model. Is there any running of coupling constants?

It is possible to do this calculation in (a slight modification of) the
separate universe approach, with the result that the coupling
constants don’t run [Bodendorfer].

The next question is: What happens if the (sub-leading) interactions
are included? Will they introduce a running in coupling constants?

Also, note that here the RG flow occurs with respect to a length
scale, not an energy scale. Is this an artifact of the setting, or should
we expect this more generally for quantum gravity?
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Conclusions

The separate universe framework in LQC provides a loop
quantization of long-wavelength scalar perturbations;

The effective equations allow us to calculate the dynamics of
long-wavelength perturbations through the bounce;

This is particularly important for alternatives to inflation, like the
matter bounce scenario and the ekpyrotic universe, where
scale-invariant fluctuations are generated in a contracting
pre-bounce epoch, and could also be used to study super-horizon
modes in inflation.

This framework could be extended:
to work in a gauge-invariant setting,
to include tensor modes.

Thank you for your attention!
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