Reduced quantisation versus quantum reduction for spherical symmetry

[arXiv:1512.00221]

Antonia Zipfel

joint work with N. Bodendorfer

University of Warsaw

Grant: 2012/05/E/ST2/03308

1 / 22

Motivation - Black hole in LQG

Traditional approach

- Isolated horizons
- Chern-Simons on boundary
- Gas of punctures

[Ashtekar, Gambini, Kuchar, Perez, Pullin]

•

Recent approaches

- Spherical symmetric QG [Gambini, Pullin,Olemedo,..]
- GFT condensates [Oriti,Pranzetti,Sindoni '15]

•

Open questions

- Fluctuations around symmetry reduced sector
- State of a black hole in Loop Quantum Gravity

radial gauge

Core assumption

The midisuperspace model is an effective model of the finer quantum reduced one, the latter of which captures more quantum degrees of freedom.

We do **not** aim at..

... a mathematical exact embedding of the midisuperspace model into the quantum reduced model. Such embedding might even be not possible.

What we find

- Qualitative match in sub-sector of quantum reduced model
- But: Identification of sub-sector needs to be refined

Plan of the talk

Classical Preparation

- The radial gauge full system
- The symmetry reduced system
- Relation of full and reduced system

2 Quantum theory

- Quantisation of the reduced system
- Quantisation of the full system
- Relation of full and reduced system

3 Summary and outlook

Classical Background - Radial Gauge [Duch, Kaminski, Lewandowski, Świeżewski '14], [Bodendorfer, Lewandowski, Świeżewski '15]

Step I: Choose adapted coordinates and gauge fix spherical diffeomorphisms

$$q_{ab} = \left(egin{array}{cc} q_{rr} & q_{rA} \\ q_{rA} & q_{AB} \end{array}
ight) \quad \xrightarrow{\text{gauge fix } C^A} \quad q_{ab} = \left(egin{array}{cc} q_{rr} & 0 \\ 0 & q_{AB} \end{array}
ight)$$

 q_{ab} 3-metric, A = 1, 2 label angular coordinates, C^A generator of spherical diffeomorphisms

Reduced phase space

$$\{q_{rr}, P_{rr}\} = \delta \cdots$$
 and $\{q_{AB}, P^{AB}\} = \delta \cdots$

Step II: Solve spherical diffeomorphisms constraint C^A for momenta P^{rA}

$$C^{A} = 0 \quad \Rightarrow \quad P^{rA}(q_{AB}, P^{AB}, q_{rr}, P_{rr})$$

Reduction to spherical symmetry

 $P^{rA} = 0 \quad \Leftrightarrow \quad \text{spherical diffeomorphisms preserving sphere } S_r^2$

Classical Background - Connection formulation I

Canonical transformation

$$q_{rr} \rightarrow \Lambda := \sqrt{q_{rr}}$$
 and $P^{rr} \rightarrow P^{\Lambda}$
 $q_{AB} \rightarrow \tilde{q}_{AB} := \Lambda^2 q_{AB}$ and $P^{AB} \rightarrow \tilde{P}^{AB} := \Lambda^{-2} P^{AB}$

Partial gauge fixing of radial diffeomorphisms

$$\Lambda = \Lambda(r) \rightsquigarrow P_{\Lambda}(r) = \int_{S_r^2} P_{\Lambda}(r, \Theta)$$

Constraints not considered

- Hamiltonian
- Radial diffeomorphisms
- Reduction constraint $P^{rA} = 0$

Classical Background - Connection formulation II

 $\tilde{q}_{AB}, \tilde{P}^{AB}$ can now be replaced by triads and SU(2)-connections

Classical Background - Spherical symmetric model

Spherical symmetric metric

$$q_{AB} = R^2(r)\Omega_{AB}$$

 Ω_{AB} standard metric on S^2

Symplectic structure

$$\{\Lambda, P_{\Lambda}\} = \delta$$
 and $\{R, P_{R}\} = \delta$

Hamiltonian

not considered

Constraints

11 / 22

Classical Background - Relation to full theory

- Λ , P_{Λ} are defined as in full theory
- Canonical Transformation: $R
 ightarrow { ilde R}, \ P_R
 ightarrow { ilde P}_R$
- \tilde{R}, \tilde{P}_R related to Area (S^2) and scalar "curvature" $\tilde{K} = \tilde{K}_A E^A$

Plan of the talk

Classical Preparation

- The radial gauge full system
- The symmetry reduced system
- Relation of full and reduced system

2 Quantum theory

- Quantisation of the reduced system
- Quantisation of the full system
- Relation of full and reduced system

3 Summary and outlook

Quantisation of the reduced system

Point holonomies

$$h_r^{\rho}(P_{\Lambda}) = \mathrm{e}^{-i\,\rho\,P_{\Lambda}}_{\rho\,\in\,\mathbb{R}^+}$$

"Fluxes"

$$\Lambda(e_r) := \int_{r_1}^{r_2} \Lambda(r) \quad \text{with } e_r = [r_1, r_2]$$

"Spin networks"

$$|\rho_1,\ldots,\rho_n\rangle = h_{r_1}^{\rho_1}\cdots h_{r_n}^{\rho_n}$$

Operators

 $\widehat{h^{
ho}}$ acts by multiplication: $\widehat{\Lambda}$ acts by derivation:

$$\begin{split} h^{\rho'} \left| \rho \right\rangle &= \left| \rho + \rho' \right\rangle \\ \widehat{\Lambda} \left| \rho \right\rangle &= \rho \left| \rho \right\rangle \end{split}$$

Antonia Zipfel (UW)

Quantisation of the reduced system

Point holonomies

$$h_r^{
ho}(\tilde{P}_R) = \mathrm{e}^{-i\,
ho\,\tilde{P}_R}_{
ho\,\in\,\mathbb{R}^+}$$

"Fluxes"

$$ilde{R}(e_r) := \int_{r_1}^{r_2} ilde{R}(r) \quad ext{with } e_r = [r_1, r_2]$$

"Spin networks"

$$|\rho_1,\ldots,\rho_n\rangle = h_{r_1}^{\rho_1}\cdots h_{r_n}^{\rho_n}$$

Operators

 $\hat{h}^{
ho}$ acts by multiplication: $\hat{\tilde{R}}$ acts by derivation:

$$\begin{split} h^{\rho'} \left| \rho \right\rangle &= \left| \rho + \rho' \right\rangle \\ \widehat{\tilde{R}} \left| \rho \right\rangle &= \rho \left| \rho \right\rangle \end{split}$$

Antonia Zipfel (UW)

Quantisation of the full system

- (Λ, P_{Λ}) quantised as in reduced theory
- (A_A^i, E_i^A) usual loop-quantisation
- Holonomies h(A) along edges in S^2
- Fluxes E(S), where the surface S intersects sphere in a line
- Scalar product as usual

Reduction $P^{rA} = 0$

Equivalent to imposing spherical diffeomorphisms \rightsquigarrow in the same way as diffeo's are imposed in 3+1

Reduced operators in full theory - \tilde{R}

Recall:
$$ilde{R}^2(r) = rac{1}{4\pi} \int_{S^2} \sqrt{\det ilde{q}_{AB}}$$

Can be quantised in the same way as volume $V^{(2d)}$ in 2+1 [Thiemann]

- Rewrite det \tilde{q}_{AB} in terms of triads
- Choose appropriate regularisation

Simplest non trivial action

$$\widehat{\tilde{R}} \stackrel{j \ j}{\longrightarrow} = \sqrt{\widehat{V^{(2d)}}} \stackrel{j \ j}{\longrightarrow} = \sqrt{j} \stackrel{j \ j}{\longrightarrow}$$

Reduced operators in full theory - \tilde{P}_R

Classical expression

$$ilde{P}_{R} = -rac{1}{ ilde{R}}\int_{\mathcal{S}^{2}}\sqrt{\det \widetilde{q}}\,\, \widetilde{K}$$

 \tilde{K} scalar "curvature" of \tilde{q} , not the geometric curvature!

Thiemann Trick - define "Hamiltonian" $H^{(2d)}$ s.t. $\sqrt{\det \tilde{q}} \ \tilde{K} \propto \{H^{(2d)}, V^{(2d)}\}$ $H^{(2d)}$ is T^{rap} , the physical

Another Thiemann Trick

$$\tilde{P}_R \propto \{H^{(2d)}, \sqrt{V^{(2d)}}\}$$

Antonia Zipfel (UW)

Reduced operators in full theory - \ddot{P}_R

- Regularisation of $H^{(2d)}$ along the lines of [Thiemann]
- But here: graph-preserving
- Curvature F of A in $H^{(2d)}$ changes representation on links
- Evaluation via graphical calculus [Alesci, Thiemann, AZ'13]

Comparison

Note: \tilde{P}_R preserves kink space only if the regularisation is graph preserving

	Comparison	
	Midisuperspace model	Kink space
states on S^2	ho angle	j angle
Action of \tilde{R}	$ ilde{R} \ket{ ho} = ho \ket{ ho}$	$ ilde{R} \ket{j} = \sqrt{j} \ket{j}$
Action of \tilde{P}_R	$\left\langle ho \pm \mu \right ilde{P}_{R} \left ho ight angle = \cdots$	$\langle j \pm rac{1}{2} ilde{P}_R j angle = \cdots$
$[ilde{P}_R, ilde{R}]$	$\langle \rho \pm \mu \left[\tilde{P}_{R}, \tilde{R} \right] \rho \rangle = \frac{i}{2}$	$\langle j \pm \frac{1}{2} [\tilde{P}_R, \tilde{R}] j \rangle \approx i 0.1 + \mathcal{O}(j^{-1})$

Comments

But

• Qualitative match for $\mu = 1/2$ and $\rho \leftrightarrow j$ on the kinematical level between midisuperspace model and quantum reduced model in kink sector

Midisuperspace model can be seen as effective theory of the full model

Quantitative mismatch in commutators
 → strongly dependent on choice of regularisation
 and choice of state

• different scaling behaviours of spectra of \tilde{R} and \tilde{P}_R \rightarrow strongly dependent on choice of state

We need to improve identification of the sub-sector ~ coarse-graining?

Summary and outlook

Core assumption

The classical reduced model is an effective theory of the quantum reduced.

What we found

• Qualitative match in sub-sector of quantum reduced model

• But: Identification of sub-sector needs to be refined

Outlook

Can we construct a coarse graining procedure such that the effective action of the coarse-grained full theory operators on the coarsest possible state matches with the action in the midisuperspace model?

Summary and outlook

Core assumption

The classical reduced model is an effective theory of the quantum reduced.

What we found

Qualitative match in sub-sector of quantum reduced model

But: Identification of sub-sector needs to be refined

Outlook

Can we construct a coarse graining procedure such that the effective action of the coarse-grained full theory operators on the coarsest possible state matches with the action in the midisuperspace model? Have fun of the slopes!

22 / 22