• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Institute for Theoretical Physics III Chair for Quantum Gravity
  • FAUTo the central FAU website
  • Campo
  • UnivIS
  • Jobs
  • Map
  • Help
Friedrich-Alexander-Universität Institute for Theoretical Physics III Chair for Quantum Gravity
Navigation Navigation close
  • Research
    • What is Quantum Gravity?
    • General Relativity
    • Quantum Field Theory
    • Gauge Theory
    • Cosmology
    • High Energy and Astroparticle Physics
    • Mathematical Physics
    • Loop Quantum Gravity
    Portal Research
  • Publications
    • Past bachelor, master and phd theses
    Portal Publications
  • Teaching
    • Winter Term 22/23
    • Summer Term 2022
    • Winter Term 21/22
    • Summer Term 2021
    • Winter Term 20/21
    • Previous Terms
    Portal Teaching
  • People
  • Events
  • Seminars
    • Group Seminar
    • International Loop Quantum Gravity Seminar
    • Students Quantum Gravity Seminar
    • Physics Colloquium
    Portal Seminars
  • Contact
    • How to find us
    • Join the Institute
    • Theses Projects
    • Login
    Portal Contact
  1. Home
  2. Research
  3. General Relativity

General Relativity

In page navigation: Research
  • What is Quantum Gravity?
  • General Relativity
  • Quantum Field Theory
  • Gauge Theory
  • Cosmology
  • High Energy and Astroparticle Physics
  • Mathematical Physics
  • Loop Quantum Gravity
  • Publications
    • Past bachelor, master and phd theses

General Relativity

General Relativity

General Relativity (GR) is Einstein’s geometric theory of gravity. It is different than the other interactions because the gravitational field, the metric, is not a field that propagates on some space-time, it DEFINES the space-time. This makes the gravitational field self-interacting and interacting with matter in a much more complicated way than matter by itself does. For instance, the Lagrangian of the Standard Model is a fourth order polynomial in all matter fields. The Einstein-Hilbert Lagrangian is not even a polynomial. The interaction of geometry and matter is the content of Einstein’s field equations which relates the curvature of geometry to energy density of matter. Classical GR is our best theory of the gravitational interactions but it has its limitations: The celebrated Penrose-Hawking singularity theorems predict its own failure since the field equations become meaningless inside black holes and close to the big bang. Both curvature and energy density diverge, they become singular. This indicates that the theory has been pushed beyond the limits of validity and must be replaced by a more fundamental one.

Institute for Quantum Gravity
Chair for Theoretical Physics III

Staudtstraße 7/B2
91058 Erlangen
  • Legal notice
  • Privacy
  • Accessibility
Up